Continuous Mathematical Methods, Emphasis on Machine Learning

Ron Fedkiw*¹, Yilin Zhu*²³, Winnie Lin*³, Jane Wu*³, Kevin Li*³

* Stanford University, ¹ Slide Design and Content (and Instructor), ² Slide Illustrator, ³ Teaching Assistant
Table of Contents

• Unit 1: Introduction
• Unit 2: Linear Systems
• Unit 3: Understanding Matrices
• Unit 4: Special Matrices
• Unit 5: Iterative Solvers
• Unit 6: Local Approximations
• Unit 7: Curse of Dimensionality
• Unit 8: Least Squares
• Unit 9: Basic Optimization
• Unit 10: Solving Least Squares
• Unit 11: Zero Singular Values
• Unit 12: Regularization
• Unit 13: Optimization
• Unit 14: Nonlinear Systems
• Unit 15: 1D Root Finding
• Unit 16: 1D Optimization
• Unit 17: Computing Derivatives
• Unit 18: Avoiding Derivatives
• Unit 19: Descent Methods
• Unit 20: Momentum Methods
• Appendix: Notation
Unit 1
What is Learning?
What is Learning?

• There are lots of answers to this question, and explanations often become philosophical
• A more practical question might be:

 What can we teach/train a person, animal, or machine to do?
Example: Addition “+”

• How is addition taught in schools?
 • Memorize rules for pairs of numbers from the set \{0,1,2,3,4,5,6,7,8,9\}
 • Memorize redundant rules collectively, for efficiency, e.g. 0+x=x
 • Learn to treat powers of 10 implicitly, e.g. 12+34=46 since 1+3=4 and 2+4=6
 • Learn to carry when the sum of two numbers is larger than 9
 • Learn to add larger sets of numbers by considering them one pair at a time
 • Learn how to treat negative numbers
 • Learn how to treat decimals and fractions
 • Learn how to treat irrational numbers
Knowledge Based Systems (KBS)

Contains two parts:

1) Knowledge Base
 - Explicit knowledge or facts
 - Often populated by an expert (expert systems)

2) Inference Engine
 - Way of reasoning about the facts in order to generate new facts
 - Typically follows the rules of Mathematical Logic
KBS Approach to Addition

• Rule: x and y commute
• Start with x and y as single digits, and record all $x + y$ outcomes as facts
• Add rules to deal with muti-digit numbers by pulling out powers of 10
• Add rules for negative numbers, decimals, fractions, irrationals, etc.

• Mimics human learning (or at least human teaching)
• This is a discrete approach, and it has no inherent error
Machine Learning (ML)

Contains two parts:

1) Training Data
 • Data Points - typically as domain/range pairs
 • Hand labeled by a user, measured from the environment, generated procedurally, etc.

2) Model
 • Derived from the Training Data in order to estimate new data points with (hopefully) minimal error
 • Uses Algorithms, Statistical Reasoning, Rules, Networks, Etc.
KBS vs. ML

• KBS and ML can be seen as the discrete math and continuous math approaches (respectively) to the same problem

• KBS’s Knowledge Base serves the same role as ML’s Training Data

• Logic is the algorithm used to discover new discrete facts for KBS, whereas many numerical algorithms/methods are used to approximate continuous facts/data for ML
 • Logic (in particular) happens to be especially useful for discrete facts
 • Numerical algorithms are especially usefully for continuous approximations

• ML, derived from continuous math, will tend to have inherent approximation errors
ML Approach to Addition

- Make a 2D domain in R^2, and a 1D range in R^1 for the addition function
- As training data, choose a number of input points (x_i, y_i) with output $x_i + y_i$
- Plot the 3D points $(x_i, y_i, x_i + y_i)$ and determine a model function $z = f(x, y)$ that best approximates the training data
- Turns out that the plane $z = x + y$ exactly fits the training data
 - Only need 3 training points to determine this plane
- Don’t need special rules for negative numbers, decimals, fractions, irrationals such as $\sqrt{2}$ and π, etc.
- However, small errors in the training data lead to a slightly incorrect plane, which has quite large errors far away from the training data
- This can be alleviated to some degree by adding training data where one wants smaller errors (and computing the best fitting plane to all the training data)
ML Approach to Addition

\[z = x + y \]
Example: Multiplication “∗”

• KBS creates new rules for $x \ast y$, utilizing the rules from addition too.

• ML utilizes a set of 3D points $(x_i, y_i, x_i \ast y_i)$ as training data, and the model function $z = x \ast y$ can be found to exactly fit the training data.
 • However, one may claim that it is “cheating” to use an inherently represented floating point operation (i.e., multiplication) as the model.
ML Approach to Multiplication
Example: Unknown Operation “#”

• KBS fails!
• How can KBS create rules for $x # y$ when we don’t even know what # means?
• This is the case for many real-world phenomena that are not fully understood.
• However, sometimes it is possible to get some examples of $x # y$
• That is, through experimentation or expert knowledge, one might be able to discover $z_i = x_i # y_i$ for some number of pairs (x_i, y_i)
• Subsequently, these known (or estimated) 3D points (x_i, y_i, z_i) can be used as training data to determine a model function $z = f(x, y)$ that approximately fits the data.
Determining the Model Function

• How does one determine $z = f(x, y)$ near the training data, so that it robustly predicts/infers \hat{z} for new inputs (\hat{x}, \hat{y}) not contained in the training data?

• How does one minimize the effect of inaccuracies or noise in the training data?

• Caution: away from the training data, the model function f is likely to be highly inaccurate (extrapolation is ill-posed)
Nearest Neighbor

• If asked to multiply 51.023 times 298.5, one might quickly estimate that 50 times 300 is 15,000
• This is a nearest neighbor algorithm, relying on nearby data where the answer is known, better known, or more easy to come by
• Given \((\hat{x}, \hat{y})\), find the closest (Euclidean distance) training data \((x_i, y_i)\) and return its associated \(z_i\) (with error \(\|z_i - \hat{z}\|\))
• This represents \(z = f(x, y)\) as a piecewise constant function with discontinuities on the boundaries of Voronoi regions around the training data
• This is the simplest possible Machine Learning algorithm (a piecewise constant function), and it works in an arbitrary number of dimensions
Data Interpolation

• In order to elucidate various concepts, let’s consider data interpolation in more detail

• Let’s begin with a very simple case with $1D$ inputs and $1D$ outputs, i.e. $y = f(x)$
Polynomial Interpolation

• Given 1 data point, one can (at best) draw a constant function
Polynomial Interpolation

• Given 2 data points, one can (at best) draw a linear function
Polynomial Interpolation

• Given 3 data points, one can (at best) draw a quadratic function
Polynomial Interpolation

- Unless all 3 points are on the same line, in which case one can only draw a linear function.
Polynomial Interpolation

• Given m data points, one can (at best) draw a unique $m - 1$ degree polynomial that goes through all of them
 • As long as they are not degenerate, like 3 points on a line
Overfitting

• Given a new input \hat{x}, the interpolating polynomial infers/predicts an output \hat{y} that may be far from what one may expect.

• Interpolating polynomials are smooth (continuous function and derivatives).
• Thus, they wiggle/overshoot in between data points (so that they can smoothly turn back and hit the next point).
• Overly forcing polynomials to exactly hit every data point is called overfitting (overly fitting to the data).
• It results in inference/predictions that can vary wildly from the training data.
Regularization

• Using a lower order polynomial that doesn’t (can’t) exactly fit the data points provides some degree of regularization

 • A regularized interpolant contains intentional errors in the interpolation, missing some/all of the data points
 • However, this hopefully makes the function more predictable/smooth in between the data points
 • The data points themselves may contain noise/error, so it is not clear whether they should be interpolated exactly anyways
Regularization

• Given \hat{x}, the regularized interpolant infers/predicts a more reasonable \hat{y}

• There is a trade-off between sacrificing accuracy on fitting the original input data, and obtaining better accuracy on inference/prediction for new inputs
Underfitting

- Using **too low** of an order polynomial causes it to miss the data by too much

- A linear function doesn’t capture the essence of this data as well as a quadratic function does
- Choosing too simple of a model function or regularizing too much prevents one from properly representing the data
Nearest Neighbor

- Piecewise-constant interpolation on this data (equivalent to nearest neighbor)

- The reasonable behavior of the piecewise constant (nearest neighbor) function stresses the importance of approximating data locally

- We address Local Approximations in Unit 6
Caution: Overfitting

• Higher order polynomials tend to oscillate wildly, but even a simple quadratic polynomial can overfit by quite a bit
Caution: Overfitting

- A piecewise linear approach works much better on this data
Noisy Data

• There may be many sources of error in data, so it can be unwise to attempt to fit data too closely
Linear Regression

• One commonly fits a low order model to such data, while minimizing some metric of mis-interpolating or mis-representing the data
Noise vs. Features

• But how does one differentiate between noise and features?
Noise vs. Features

• When training a neural network, split the available data into 3 sets
 • E.g., 80% training data, 10% model validation data, and 10% test data
• Training data is used to train the neural network
 • An interpolating function is fit to the training data (potentially overfitting it)
• When considering features vs. noise, overfitting, etc., model validation data is used to select the best model function or the best fitting strategy
 • Compare inference/prediction on model validation data to the known answers
• Finally, when disseminating results advocating the “best” validated model, inferencing on the test data gives some idea as to how well that validated model might generalize to unseen data
 • Competitions on unseen data have become a good way to stop “cheating” on test data
Errors in Equations

• **Modeling errors** – Parts of a problem under consideration might be ignored. E.g., when simulating solids/fluids, sometimes frictional/viscous effects are not included.

• **Empirical constants** – Some numbers are unknown, and measured with limited precision. Others may be known more accurately, but limited precision hinders the ability to express them. E.g. Avogadro’s number, the speed of light in a vacuum, the charge on an electron, Planck’s constant, Boltzmann’s constant, pi, etc. (Note that the speed of light is 299792458 m/s exactly, so ok for double precision but not for single precision.)
Errors in Numerical Methods

- **Rounding errors**: Even integer calculations lead to floating point numbers, e.g. \(5/2=2.5\), and floating point calculations frequently admit rounding errors, e.g. \(1./3.=.3333333...\) cannot be expressed on the computer. Machine precision is \(10^{-7}\) for single precision and \(10^{-16}\) for double precision.

- **Truncation errors** – Also called discretization errors. These occur in the mathematical approximation of an equation as opposed to an approximation of the physics (modeling errors). E.g. one (often) cannot take a derivative/integral exactly on a computer, and instead approximates them (recall Simpson’s rule from Calculus).
Errors in Inputs

- **Inaccurate inputs** – Often, one is only concerned with part of a calculation, where a given set of inputs is used to produce outputs. Those inputs may have previously been subjected to any of the errors listed above, and thus may already have limited accuracy. This has implications for various algorithms. E.g., if inputs are only accurate to 4 decimal places, it probably doesn’t make sense to carry out an algorithm to an accuracy of 8 decimal places.

- **Inaccurate Measurements** – It can be difficult to accurately measure real-world phenomena, generating another source of inaccurate inputs.
A Robust Computational Approach

- **Well Posedness:** A problem is ill-posed if small changes in the inputs lead to large changes in the outputs. Any source of error dominates the result.

- **Condition Number:** An algorithm is ill-conditioned if small changes in the inputs lead to large changes in the outputs. Large condition numbers are bad (sensitive), and small condition numbers are good (insensitive). If the relative changes in the inputs and outputs are identical, the condition number is 1.

- **Stability:** An algorithm is stable if it can complete itself in any meaningful way. Unstable algorithms give wild (explosive) results, usually leading to NaN’s.

- **Accuracy:** Accuracy refers to the size of the error, or how close the answer is to the correct solution.
A Robust Computational Approach

• A problem should be well-posed before even considering it computationally

• Computational Approach:
 • 1) **Conditioning** - formulate a well-conditioned approach, or as well-conditioned as is possible
 • 2) **Stability** - devise a stable algorithm; otherwise, the result is typically NaNs
 • 3) **Accuracy** – even a well-conditioned and stable approach can result in large errors; so, make the algorithm as accurate as is warranted or practical
Being Careful: Vector Norms

• Consider the norm of a vector: \[\|x\|_2 = \sqrt{x_1^2 + \cdots + x_m^2} \]

• Straightforward algorithm:
 for \(i=1, m \) \(\text{sum} += x(i) \times x(i) \); return sqrt(sum);

• This can overflow MAX_FLOAT/MAX_DOUBLE for large \(m \)

• Safer algorithm:
 find \(z = \max(\text{abs}(x(i))) \)
 for \(i=1, m \) \(\text{sum} += (x(i)/z)^2 \); return \(z \times \text{sqrt(sum)} \);
Being Careful: Quadratic Formula

• Consider \(0.0501x^2 - 98.78x + 5.015 = 0\)
 • To 10 digits of accuracy: \(x \approx 1971.605916\) and \(x \approx 0.05077069387\)

• Using 4 digits of accuracy in the quadratic formula gives:
 \[\frac{98.78 + 98.77}{1.002} = 1972\quad \text{and}\quad \frac{98.78 - 98.77}{1.002} = 0.0998\]
 • The second root is completely wrong (in the leading significant digit!)

• De-rationalize: \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) to \(\frac{2c}{-b \pm \sqrt{b^2 - 4ac}}\)

• Using 4 digits of accuracy in this de-rationalized quadratic formula gives:
 \[\frac{10.03}{98.78 - 98.77} = 1003\quad \text{and}\quad \frac{10.03}{98.78 + 98.77} = 0.05077\]
 • Now the second root is fine, but the first root is wrong!

• Conclusion: use one formula for each root
Being Careful: L’Hopital’s Rule

- Consider \(\frac{x^2-4}{x-2} \) near \(x = 2 \) where it becomes \(\frac{0}{0} \)
- Adding a small number to the denominator \(\frac{x^2-4}{x-2+\epsilon} \) incorrectly gives 0 near \(x = 2 \)
- Noting that \(\frac{x^2-4}{x-2} = x + 2 \) leads to correct values near 4 when \(x \) is near 2

- Similar issues occur for \(\frac{\sin x}{x} \) near \(x = 0 \)
- Similar issues occur for 0 times \(\infty \) and other cases where L’Hopital’s rule is needed to address removable singularities
Did you know about these issues?

• Imagine debugging code with the correct quadratic formula implementation and getting zero digits of accuracy on a test case!
Polynomial Interpolation

• Given \(m \) data points \((x_i, y_i)\), find the unique polynomial that passes through them: \(y = c_1 + c_2 x + c_3 x^2 + \cdots + c_m x^{m-1} \)

• Write an equation for each data point, note that the equations are linear, and put into matrix form

• For example, consider \((1,3), (2,4), (5,-3)\) and a quadratic polynomial

• Then, \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 5 & 25
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix} =
\begin{pmatrix}
3 \\
4 \\
-3
\end{pmatrix}
gives
\[
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix} =
\begin{pmatrix}
1/3 \\
7/2 \\
-5/6
\end{pmatrix}
\]
and \(f(x) = \frac{1}{3} + \frac{7}{2} x - \frac{5}{6} x^2 \)
Polynomial Interpolation

• In general, solve $Ac = y$ where A (the Vandermonde matrix) has a row for each data point of the form $(1 \ x_i \ x_i^2 \ \cdots \ x_i^{m-1})$

- Monomials look more similar at higher powers
- This makes the rightmost columns of a Vandermonde matrix tend to become more parallel
 - Round-off errors and other numerical approximations exacerbate this
- More parallel columns make the matrix less invertible, and thus it becomes more difficult to solve for the parameters c_k
- Too nearly parallel columns make the matrix ill-conditioned to invert (and thus difficult/impossible to invert with a computer)

$f(x) = 1, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8$
Matrix Columns as Vectors

- Let the k-th column of A be vector a_k, so $Ac = y$ is equivalent to $\sum_k c_k a_k = y$
- Find a linear combination of the columns of A that gives the right hand side vector y
Matrix Columns as Vectors

- As columns become more parallel, the values of c become arbitrarily large, ill-conditioned, and prone to error.

- In this example, the red vectors go too far to the right and back in order to (fully) illustrate...
Singular Matrices

- If two columns of a matrix are parallel, they may be combined in an infinite number of ways while still obtaining the same result
 - Thus, the problem does not have a unique solution
- In addition, the n columns of A span at most an $n - 1$ dimensional subspace
 - So, the range of A is at most $n - 1$ dimensional
- If the right hand side vector is not contained in this $n - 1$ dimensional subspace, the problem has no solution
 - otherwise, there are infinite solutions
Singular Matrices

• If any column of a matrix is a linear combination of other columns, they may be combined in an infinite number of ways while still obtaining the same result
 • Thus, the problem does not have a unique solution
• In addition, the n columns of A span at most an $n - 1$ dimensional subspace
 • So, the range of A is at most $n - 1$ dimensional
• If the right hand side vector is not contained in this $n - 1$ dimensional subspace, the problem has no solution
 • otherwise, there are infinite solutions
Near Singular Matrices

• With limited numerical precision, one struggles when columns (or linear combinations of columns) are too close to being parallel to each other
• Analytically invertible matrices may not be computationally invertible
• A condition number can be used to describe how close a matrix is to being non-invertible on a computer
• The condition number is ∞ for a singular matrix and 1 for the identity matrix
Being Careful: Polynomial Interpolation

• Given **basis functions** ϕ and unknowns c:
 \[y = c_1 \phi_1 + c_2 \phi_2 + \cdots + c_n \phi_n \]

• **Monomial basis**: $\phi_k(x) = x^{k-1}$

• As we have seen, the Vandermonde matrix may become near-singular and difficult to invert!
Lagrange Basis

- **Basis functions:** \(\phi_k(x) = \frac{\prod_{i \neq k} (x-x_i)}{\prod_{i \neq k} x_k-x_i} \)
- Thus, \(\phi_k(x_k) = 1 \)
- Thus, \(\phi_k(x_i) = 0 \) for \(i \neq k \)
- As usual: write an equation for each point, note that the equations are linear, and put into matrix form
- Obtain \(Ax = y \) where \(A \) is the identity matrix (i.e. \(Ic = y \)), so \(c = y \) trivially
- Easy to solve for \(c \), but evaluation of the polynomial (with lots of terms) is expensive
 - i.e. inference is expensive
Lagrange Basis

- Consider data (1,3), (2,2), (3,3) with quadratic basis functions that are 1 at their corresponding data point and 0 at the other data points

\[
\phi_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{1}{2} (x - 2)(x - 3)
\]
\[
\phi_1(1) = 1, \phi_1(2) = 0, \phi_1(3) = 0
\]
\[
\phi_2(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)} = -(x - 1)(x - 3)
\]
\[
\phi_2(1) = 0, \phi_2(2) = 1, \phi_2(3) = 0
\]
\[
\phi_3(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)} = \frac{1}{2} (x - 1)(x - 2)
\]
\[
\phi_3(1) = 0, \phi_3(2) = 0, \phi_3(3) = 1
\]
Newton Basis

- Basis functions: $\phi_k(x) = \prod_{i=1}^{k-1} x - x_i$
- $Ac = y$ has a lower triangular A (as opposed to being dense or diagonal)
- Columns don’t overlap, and it’s not too expensive to evaluate/inference
- Can solve via a divided difference table:
 - Initially: $f[x_i] = y_i$
 - Then, at each level, recursively: $f[x_1, x_2, \ldots, x_k] = \frac{f[x_2, x_3, \ldots, x_k] - f[x_1, x_2, \ldots, x_{k-1}]}{x_k - x_1}$
 - Finally: $c_k = f[x_1, x_2, \ldots, x_k]$
- As usual, high order polynomials still tend to be oscillatory
 - Using unequally spaced data points can help, e.g. Chebyshev points
Summary

• Monomial/Lagrange/Newton basis all give the same exact unique polynomial as one can see by multiplying out and collecting like terms.

• But the representation used makes it easier/harder to find the polynomial as well as to subsequently evaluate the polynomial.
Representation Matters

- Consider: Divide CCX by VI
- As compared to: Divide 210 by 6

- See Chapter 15 on Representation Learning in the Deep Learning book
Predict 3D Cloth Shape from Body Pose

- **Input**: pose parameters θ are joint rotation matrices
 - 10 upper body joints with a 3×3 rotation matrix for each gives a $90D$ pose vector ($30D$ when using quaternions)
 - Ignore global translation/rotation of the root frame
- **Output**: 3D cloth shape φ
 - 3,000 vertices in a cloth triangle mesh gives a $9,000D$ shape vector
- **Function** $f : \mathbb{R}^{90} \rightarrow \mathbb{R}^{9000}$
Approach

• **Given:** m training data points (θ_i, φ_i) generated from the true/approximated function $\varphi_i = f(\theta_i)$
 - E.g. using physical simulation or computer vision techniques

• **Goal:** learn an \hat{f} that approximates f
 - i.e. $\hat{f}(\theta) = \hat{\varphi} \approx \varphi = f(\theta)$

• **Issue:** As joints rotate (rotation is highly nonlinear), cloth vertices move in complex nonlinear ways that are difficult to capture with a neural network
 - i.e. it is difficult to ascertain a suitable \hat{f}

• How should the nonlinear rotations be handled?
Skinning

• Deforms a body surface mesh to match a skeletal pose
 • well studied and widely used in graphics

• Each vertex of the body surface mesh is associated with one or more nearby bones

• A weight (for each bone/vertex pair) dictates how much a change in a bone’s position/orientation impacts a vertex’s position

• As the pose changes, bone changes dictate new positions for body surface mesh vertices

Credit: Blender website
Leveraging Skinning (to be careful)

• Leverage the plethora of prior work on procedural skinning to estimate the body surface mesh S based on pose parameters θ

• Then, represent the cloth mesh as offsets $D(\theta)$ from the skinned mesh $S(\theta)$

• Overall, $\varphi = f(\theta) = S(\theta) + D(\theta)$, where only $D(\theta)$ needs to be learned

• The skinning prior $S(\theta)$ captures much of the nonlinearities, so that the remaining $D(\theta)$ is a smoother function and thus easier to approximate/learn
Shrink Wrap the Cloth Mesh

• Shrink-wrap the cloth vertices to the body triangle mesh
• Barycentrically embed the cloth vertices to follow body mesh triangles
• As the body deforms, cloth vertices move with their parent triangles
Displacement Map

• Assign \((u, v)\) texture coordinates to the cloth vertices and transfer the mesh into texture space
• Store \((u, v, n)\) offsets in texture space
• Convert \((u, v, n)\) offsets to RGB-triple color values
Displacement Map
Image Based Cloth

• Rasterize triangle vertex colors to 2D image pixels (in texture space)
• Function output becomes a 2D RGB image, instead of displacements
• The images are more continuous than cloth vertices (which have discrete mesh/graph topology)
• Learn to predict images as a function of pose θ, using Convolutional Neural Networks (CNNs)
Training Data

• For each pose in the training data, calculate per-vertex offsets and rasterize them into an image in texture space
Inference

• Learn to predict an image from pose parameters, i.e. learn $\hat{I}(\theta) \approx I(\theta)$
• Given an inferenced $\hat{I}(\theta)$, interpolate to cloth vertices and convert RGB values to offsets added to the skinned vertex positions: $\hat{\phi}(\theta) = S(\theta) + \psi(\hat{I}(\theta))$
Unit 2
Linear Systems
Motivation

• “Matrices are bad, vector spaces are good”
 • Don’t think of matrices as a collection of numbers
 • Instead, think of the columns as vectors in a high dimensional space
• We don’t have great intuition going from \mathbb{R}^1 to \mathbb{R}^2 to \mathbb{R}^3 to \mathbb{R}^n (for large n)
• Thinking about vectors in high dimensional spaces is a good way of gaining intuition about what’s going on
• Linear algebra contains a lot of machinery for dealing with, discussing, and gaining intuition about vectors in high dimensional spaces
• We will cover linear algebra from the viewpoint of understanding higher dimensional spaces
System of Linear Equations

- System of equations: $3c_1 + 2c_2 = 6$ and $-4c_1 + c_2 = 7$
- Matrix form: $\begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ or $Ac = b$
- Given A and b, determine c
- Theoretically, there is a unique solution, no solution, or infinite solutions
- Ideally, software would determine whether there was a unique solution, no solution, or infinite solutions; in the last case, it would list a parameterized family of solutions. Unfortunately, this is quite difficult to accomplish.

- Note: in this class, x is used for data, and c is used for unknowns (such as for the unknown parameters of a neural network)
“Zero”

• On the computer, defining “zero” is not straightforward

• When dealing with large numbers (e.g. Avogadro’s number: $6.022e23$) zero can be quite large
 • E.g. $6.022e23 - 1e7 = 6.022e23$ in double precision, making $1e7$ behave like “zero”

• When dealing with small numbers (e.g. $1e - 23$), “zero” is much smaller
 • In this case, on the order of $1e - 39$ in double precision

• Mixing big and small numbers often wreaks havoc on algorithms

• So, we typically non-dimensionalize and normalize to make equations $O(1)$ as opposed to $O(“big”) \ or \ O(“small”)$
Row/Column Scaling

• Consider:
 \[
 \begin{pmatrix}
 3e6 & 2e10 \\
 1e - 4 & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 c_1 \\
 c_2 \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 5e10 \\
 6 \\
 \end{pmatrix}
 \]

• Row Scaling - divide first row by 1e10 to obtain:
 \[
 \begin{pmatrix}
 3e - 4 & 2 \\
 1e - 4 & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 c_1 \\
 c_2 \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 5 \\
 6 \\
 \end{pmatrix}
 \]

• Column Scaling - define a new variable \(c_3 = (1e - 4)c_1\) to obtain:
 \[
 \begin{pmatrix}
 3 & 2 \\
 1 & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 c_3 \\
 c_2 \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 5 \\
 6 \\
 \end{pmatrix}
 \]

• The final matrix is much easier to treat with finite precision arithmetic

• Solve for \(c_3\) and \(c_2\); then, \(c_1 = (1e4)c_3\)
Some Definitions...

- **Elements** of a matrix are often referred to by their row and column.
- For example, a_{ik} is the element of matrix A in row i and column k.

- **Transpose** swaps the row and column of every entry.
- A^T moves element a_{ik} to row k column i (and vice versa).

- Non-square matrices change size:
 \[
 \begin{pmatrix}
 1 & 4 \\
 2 & 5 \\
 3 & 6 \\
 \end{pmatrix}^T =
 \begin{pmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 \end{pmatrix}
 \]

Symmetric Matrices have $A^T = A$ meaning that $a_{ik} = a_{ki}$ for all i and k.
Square Matrices

• A size mxn matrix has m rows and n columns
• For now, let’s just consider square nxn matrices
• We will consider non-square (rectangular) matrices with $m \neq n$ a bit later
Solvability

- **Singular** – A is singular when it is not invertible (does not have an inverse)
- Various ways of showing this:
 - At least one column is linearly dependent on others (as discussed in Unit 1)
 - The **determinant** is zero: $\det A = 0$
 - A has a nonempty **null space**, i.e. $\exists c \neq 0$ with $Ac = 0$
- **Rank** - maximum number of linearly independent columns
- Singular matrices have rank $< n$ (the # of columns), i.e. they are rank-deficient
 - So, they have either no solution or infinite solutions
- **Nonsingular** square matrices are invertible: $AA^{-1} = A^{-1}A = I$
 - So, $Ac = b$ can be solved for c via $c = A^{-1}b$
- **Note**: we **typically do not compute the inverse, but instead have a solution algorithm that exploits its existence**
Matrices as Vectors (an example)

• Recall $Ac = \sum_k c_k a_k$ where the a_k are the columns of A

• Consider $Ac = 0$ or $\sum_k c_k a_k = 0$

• If one column is a linear combination of others, then the linear combination weights can be used to obtain $Ac = 0$ with c nonzero
 • This nonzero c is in the null space of A, and A is singular

• Conversely: If the only solution to $Ac = 0$ is c identically 0, then no column is linearly dependent on the others
 • Thus, A is nonsingular
Diagonal Matrices

• All off-diagonal entries are 0
• Equations are decoupled, and easy to solve
 E.g. \[
 \begin{pmatrix}
 5 & 0 \\
 0 & 2
 \end{pmatrix}
 \begin{pmatrix}
 c_1 \\
 c_2
 \end{pmatrix} =
 \begin{pmatrix}
 10 \\
 -1
 \end{pmatrix}
\]
 has \(5c_1 = 10\) and \(2c_2 = -1\); so, \(c_1 = 2\) and \(c_2 = -0.5\)
• A zero on the diagonal indicates a singular system
 • Either no solution (e.g. \(0c_1 = 10\)) or infinite solutions (e.g. \(0c_1 = 0\))
• The determinant of a diagonal matrix is obtained by multiplying all the diagonal elements together
 • Thus, a 0 on the diagonal implies a zero determinant and a singular matrix
Upper Triangular Matrices

- All entries below the diagonal are 0
- Nonsingular when the diagonal elements are all nonzero
 - Determinant is obtained by multiplying all the diagonal elements together
- Solve via back substitution

\[
\begin{pmatrix}
2 & 3 & 1 \\
0 & 1 & -1 \\
0 & 0 & 5
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix}
=
\begin{pmatrix}
0 \\
10 \\
10
\end{pmatrix}
\]

- E.g. consider \(2c_1 + 3c_2 + c_3 = 0\); so, \(2c_1 + 36 + 2 = 0\) and \(c_1 = -19\)
- Move up one row: \(c_2 - c_3 = 10\); so, \(c_2 - 2 = 10\) and \(c_2 = 12\)
- Move up one row: \(5c_3 = 10\); so, \(c_3 = 2\)
- Move up one row: \(5c_3 = 10\); so, \(c_3 = 2\)
Lower Triangular Matrices

• All entries above the diagonal are 0
• Nonsingular when the diagonal elements are all nonzero
 • Determinant is obtained by multiplying all the diagonal elements together
• Solve via forward substitution

E.g. consider

\[
\begin{pmatrix}
5 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 3 & 2
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix}
=
\begin{pmatrix}
10 \\
10 \\
0
\end{pmatrix}
\]

• Start at the top: \(5c_1 = 10\), so, \(c_1 = 2\)
• Move down one row: \(-c_1 + c_2 = 10\); so, \(-2 + c_2 = 10\) and \(c_2 = 12\)
• Move down one row: \(c_1 + 3c_2 + 2c_3 = 0\); so, \(2 + 36 + 2c_3 = 0\) and \(c_3 = -19\)
Elimination Matrix

- Given a column $\begin{pmatrix} a_{1k} \\ \vdots \\ a_{ik} \\ a_{i+1,k} \\ \vdots \\ a_{mk} \end{pmatrix}$, define $m_{ik} = \frac{1}{a_{ik}} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_{i+1,k} \\ \vdots \\ a_{mk} \end{pmatrix}$.

- Then, the size $m \times m$ elimination matrix $M_{ik} = I_{m \times m} - m_{ik} \hat{e}_i^T$ subtracts multiples of row i from rows $> i$ in order to create zeroes in column k.

- Standard basis vector $\hat{e}_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ has a 1 in the i-th row.
Elimination Matrix

• Let $a_k = \begin{pmatrix} 2 \\ 4 \\ -8 \end{pmatrix}$

• $M_{1k} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 4 \\ -8 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$ and $M_{1k}a_k = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

• $M_{2k} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 0 \\ 0 \\ -8 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$ and $M_{2k}a_k = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$
Elimination Matrix Inverse

• Inverse of an elimination matrix is $L_{ik} = M_{ik}^{-1} = I_{m \times m} + m_{ik} \hat{e}_i^T$

• L_{ik} is a size $m \times m$ elimination matrix that adds multiples of row i to rows $> i$ in order to reverse the effect of M_{ik}

• $L_{1k} = M_{1k}^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
-4 & 0 & 1
\end{pmatrix}$

• $L_{2k} = M_{2k}^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{pmatrix}$
Combining Elimination Matrices

\[M_{i_1k_1}M_{i_2k_2} = I - m_{i_1k_1}\hat{e}_{i_1}^T - m_{i_2k_2}\hat{e}_{i_2}^T \text{ when } i_1 < i_2 \text{ (but not when } i_1 > i_2) \]

\[M_{1k}M_{2k} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 2 & 1 \end{pmatrix}, \text{ but } M_{2k}M_{1k} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \]

\[L_{i_1k_1}L_{i_2k_2} = I + m_{i_1k_1}\hat{e}_{i_1}^T + m_{i_2k_2}\hat{e}_{i_2}^T \text{ when } i_1 < i_2 \text{ (but not when } i_1 > i_2) \]

\[L_{1k}L_{2k} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -4 & -2 & 1 \end{pmatrix}, \text{ but } L_{2k}L_{1k} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -8 & -2 & 1 \end{pmatrix} \]
Gaussian Elimination

• Consider
\[
\begin{pmatrix}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix} =
\begin{pmatrix}
2 \\
8 \\
10
\end{pmatrix}
\]

• \[M_{11}A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{pmatrix}\] and \[M_{11}b = \begin{pmatrix} 2 \\ 4 \\ 12 \end{pmatrix}\]

• \[M_{22}M_{11}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix}\] and \[M_{22}M_{11}b = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}\]

• Then, solve the upper triangular
\[
\begin{pmatrix}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix} =
\begin{pmatrix}
2 \\
4 \\
8
\end{pmatrix}\] via back substitution
LU Factorization

- Gaussian Elimination gives an upper triangular $U = M_{n-1,n-1} \cdots M_{22}M_{11}A$

- Using inverses, $A = L_{11}L_{22} \cdots L_{n-1,n-1}M_{n-1,n-1} \cdots M_{22}M_{11}A = L_{11}L_{22} \cdots L_{n-1,n-1}U$

- Since $L_{i_1i_1}L_{i_2i_2} = I + m_{i_1i_1} \hat{e}_{i_1}^T + m_{i_2i_2} \hat{e}_{i_2}^T$ when $i_1 < i_2$, $L = L_{11}L_{22} \cdots L_{n-1,n-1}$ is lower triangular and $A = LU$

- Here $L = L_{11}L_{22} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$

- $A = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} = LU$
LU Factorization

- Factoring $A = LU$ helps to solve $Ac = b$

- In order to solve $LUc = b$, define an auxiliary variable $\hat{c} = Uc$

- First, solve $L\hat{c} = b$ for \hat{c} via forward substitution

- Second, solve $Uc = \hat{c}$ for c via back substitution

- Note: the LU factorization is only computed once, and then can be used afterwards on many right hand side vectors (on many b vectors)
Pivoting

• $A = \begin{pmatrix} 0 & 4 \\ 4 & 9 \end{pmatrix}$ requires division by zero in order to create M_{11}

• (Partial) Pivoting - swap rows to use the largest (magnitude) element in the column under consideration
 • Don’t forget to swap the right hand side b too

• Full Pivoting swap rows and columns to use the largest possible element
 • Don’t forget to change the order of the unknowns c

• When considering column k, can only swap with rows/columns $\geq k$
Permutation Matrix

• Constructed by switching the 2 rows of I that one wants swapped

$$P_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \text{ and } P_{13}A \text{ swaps the first and third rows of } A$$

• Permutation matrices are their own inverses (swapping again restores the rows)

• Switching rows i_1 and i_2 moves a 1 from $a_{i_1 i_1}$ to $a_{i_2 i_1}$ as well as from $a_{i_2 i_2}$ to $a_{i_1 i_2}$, preserving symmetry (i.e. $P_{i_1 i_2}^T = P_{i_1 i_2}$)

• To swap the first and third unknowns: $Ac = AP_{13}P_{13}c = (AP_{13})(P_{13}c)$ where $P_{13}c$ swaps the unknowns and AP_{13} swaps the columns (to see this, consider $(AP_{13})^{TT} = (P_{13}A^T)^T$ which swaps the rows of A^T)
Full Pivoting

- Let P_{ri} be the permutation matrix that (potentially) switches row i with a row $> i$
- Let P_{ck} be the permutation matrix that (potentially) switches column k with a col $> k$
- Then full pivoting can be written as:
 \[
 (M_{n-1,n-1} P_{n-1} \cdots M_{22} P_{2} M_{11} P_{1} A P_{c1} P_{c2} \cdots P_{cn-1}) (P_{cn-1} \cdots P_{c2} P_{c1} c)
 \]
- Once known, $P_r = P_{r_{n-1}} \cdots P_{r2} P_{r1}$ and $P_c = P_{c_{n-1}} \cdots P_{c2} P_{c1}$ can be used to do all the permutations ahead of time (the resulting matrix doesn’t require pivoting)
- $Ac = b$ becomes $(P_r A P_c^T)(P_c c) = P_r b$ or $A_p c_p = b_p$; then, $A_p = L_p U_p$ can be computed without pivoting
- Subsequently, given any right hand side b, solve $L_p U_p c_p = P_r b$ to find c_p using forward/back substitution; then, $c = P_c^T c_p$
Permuting before Elimination

• Assume \(i > j \),

\[
P_r_i M_{jj} P_r_i = I_{m \times m} - P_r_i m_{jj} \hat{e}_j^T P_r_i = I_{m \times m} - \hat{m}_{jj} \hat{e}_j^T = \hat{M}_{jj}
\]

\[
P_r_i M_{jj} = P_r_i M_{jj} P_r_i P_r_i = \hat{M}_{jj} P_r_i
\]

• Thus, for some suitable definition of the hat notation (there are multiple premutation operators to consider for each \(M_{jj} \), except \(M_{n-2,n-2} \)):

\[
M_{n-1,n-1} P_{r_{n-1}} \cdots M_{22} P_{r_2} M_{11} P_{r_1} A = M_{n-1,n-1} \cdots \hat{M}_{22} \hat{M}_{11} P_r A
\]

• This shows that you can permute first and do elimination afterwards
Sparsity

- Most large matrices (of interest) operate on variables that only interact with a sparse set of other variables.
- This makes the matrix sparse (as opposed to dense), with most entries identically 0.
- However, the inverse of a sparse matrix can contain an unwieldy amount of non-zero entries.

- E.g. the 3D Poisson equation on a relatively small 100^3 Cartesian grid has an unknown for each of the 10^6 grid points.
- For each unknown, the discretized Poisson equation depends on the unknown itself and its 6 immediate Cartesian grid neighbors.
- Thus, the size $10^6 \times 10^6$ matrix has only 7×10^6 nonzero entries.
- But, the inverse can have 10^{12} nonzero entries!
Computing the Inverse

• When A is relatively small (and dense), computing A^{-1} is fine

• Since $AA^{-1} = I$, the solution c_k to $Ac_k = \hat{e}_k$ is the k-th column of A^{-1}

• First, compute $A_p = L_p U_p$ as usual

• Then, solve $Ac_k = \hat{e}_k$ once for each column (n times)
Unit 3
Understanding Matrices
Eigensystems

- **Eigenvectors** - special directions v_k in which a matrix only applies scaling
- **Eigenvalues** - the amount λ_k of that scaling
- **Right Eigenvectors** (or just eigenvectors) satisfy $A v_k = \lambda_k v_k$
 - Eigenvectors represent directions, so $A(\alpha v_k) = \lambda_k (\alpha v_k)$ is also true for all α
- **Left Eigenvectors** satisfy $u_k^T A = \lambda_k u_k^T$ (or $A^T u_k = \lambda_k u_k$)
- Diagonal matrices have eigenvalues on the diagonal, and eigenvectors \hat{e}_k

$$
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix} =
2
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}
\begin{pmatrix}
0 \\
1
\end{pmatrix} =
3
\begin{pmatrix}
0 \\
1
\end{pmatrix}
$$

- Upper/lower triangular matrices also have eigenvalues on the diagonal

$$
\begin{pmatrix}
2 & 1 \\
0 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix} =
2
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
2 & 1 \\
0 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
1
\end{pmatrix} =
3
\begin{pmatrix}
1 \\
1
\end{pmatrix}
$$
Complex Numbers

- Complex numbers may appear in both eigenvalues and eigenvectors
 \[
 \begin{pmatrix}
 0 & 1 \\
 -1 & 0 \\
 \end{pmatrix}
 \begin{pmatrix}
 1 \\
 i \\
 \end{pmatrix}
 =
 i
 \begin{pmatrix}
 1 \\
 i \\
 \end{pmatrix}
 \]

- Recall: complex conjugate: \((a + bi)^* = a - bi\)

- **Hermitian Matrix**: \(A^* = A\) (often, \(A^*\) is written as \(A^H\))
 - \(Av = \lambda v\) implies \((Av)^* = (\lambda v)^*\) or \(v^* A = \lambda^* v^*\)
 - Using this, \(Av = \lambda v\) implies \(v^* A v = v^* \lambda v\) or \(\lambda^* v^* v = \lambda v^* v\) or \(\lambda^* = \lambda\)
 - Thus, Hermitian matrices have \(\lambda \in \mathbb{R}\) (no complex eigenvalues)

- **Symmetric real-valued matrices** have real-valued eigenvalues/eigenvectors
 - However, complex eigenvectors work too, e.g. \(A(\alpha v_k) = \lambda_k (\alpha v_k)\) with \(\alpha\) complex
Vector Deformation

Let \(c = \sum_k \alpha_k v_k \), so that \(A c = \sum_k \alpha_k A v_k = \sum_k (\alpha_k \lambda_k) v_k \)

- \(A \) tilts \(c \) away from directions with smaller eigenvalues and towards directions with larger eigenvalues
- Large \(\lambda_k \) stretch in their associated \(v_k \) directions
- Small \(\lambda_k \) squish in their associated \(v_k \) directions
- Negative \(\lambda_k \) flip the sign (i.e. direction) in their associated \(v_k \) directions
Spatial Deformation

- Consider every point on the unit circle (green) as a vector \(c = \sum_k \alpha_k v_k \), and remap each point via \(A_c = \sum_k (\alpha_k \lambda_k) v_k \)

- The remapped shape (blue) is more elliptical than the original circle (green)
- The circle is stretched/compressed along the (red) axis with the larger/smaller eigenvalue, respectively
- The larger the ratio of eigenvalues, the more elliptical the new shape becomes
- This is true for all circles (and thus all points in the plane)
Solving Linear Systems

- Perturb the right hand side from b to \hat{b}, and solve $A\hat{c} = \hat{b}$ to find \hat{c}
- Note: c and \hat{c} are more separated than b and \hat{b}, i.e. the solution is perturbed more than the right hand side is
 - Small changes in b lead to larger changes in the solution
 - Small algorithmic errors are also amplified: they change $A^{-1}b$ to $\hat{A}^{-1}b$, which is similar to changing $A^{-1}b$ to $A^{-1}\hat{b}$
 - The amount of amplification is proportional to the ratio of the eigenvalues
Preconditioning

• Suppose A has large eigenvalue ratios, making $Ac = b$ difficult to solve
 - Let $\hat{A}^{-1} \approx A^{-1}$ be an approximate guess for the inverse
 - Transform $Ac = b$ into $\hat{A}^{-1}Ac = \hat{A}^{-1}b$ or $\hat{I}c = \tilde{b}$
 - Typically, a bit more involved than this (but conceptually similar)

• \hat{I} is not the identity, so more computation is required to find c

• But, \hat{I} has similar magnitude eigenvalues (clusters work too), making $\hat{I}c = \tilde{b}$ far easier to solve than a poorly conditioned $Ac = b$

Preconditioning works GREAT!

• It is best to re-scale stretched ellipsoids along eigenvector axes, but scaling along coordinate axes (diagonal/Jacobi preconditioning) can work well too
Rectangular Matrices (Rank)

• An $m \times n$ rectangular matrix has m rows and n columns
 (Note: these comments also hold for square matrices with $m = n$)

• The columns span a space, and the unknowns are weights on each column (recall $Ac = \sum_k c_k a_k$)
• A matrix with n columns has maximum rank n
• The actual rank depends on how many of the columns are linearly independent from one another

• Each column has length m (the number of rows)
• Since the columns live in an m dimensional space, they can at best span that whole space
• Thus, there is a maximum of m independent columns (that could exist)

• Overall, a matrix at most has rank equal to the minimum of m and n
• Both considerations are based on looking at the columns (which are scaled by the unknowns)
Rows vs. Columns

• One can find discussions on rows, row spaces, etc. that are used for various purposes

• Although these are fine discussions about matrices/mathematics, they are unnecessary for an intuitive understanding of high dimensional vector spaces (so, we’ll ignore them)

• The number of columns is equal to the number of variables, which depends on the parameters of the problem
 • E.g. the unknown parameters that govern a neural network architecture

• The number of rows depends on the amount of data used, and adding/removing data does not intrinsically affect the nature of the problem
 • E.g. it does not change the network architecture, but merely perturbs the ascertained values of the unknown parameters
Singular Value Decomposition (SVD)

• Factorization of any size $m \times n$ matrix: $A = U\Sigma V^T$

• Σ is $m \times n$ diagonal with non-negative diagonal entries (called singular values)

• U is $m \times m$ orthogonal, V is $n \times n$ orthogonal (their columns are called singular vectors)

 • Orthogonal matrices have orthonormal columns (an orthonormal basis), so their transpose is their inverse. They preserve inner products, and thus are rotations, reflections, and combinations thereof

 • If A has complex entries, then U and V are unitary (conjugate transpose is their inverse)

• Introduced and rediscovered many times: Beltrami 1873, Jordan 1875, Sylvester 1889, Autonne 1913, Eckart and Young 1936. Pearson introduced principal component analysis (PCA) in 1901, which uses SVD. Numerical methods by Chan, Businger, Golub, Kahan, etc.
(Rectangular) Diagonal Matrices

- All off-diagonal entries are 0
 - Diagonal entries are a_{kk}, and off diagonal entries are a_{ki} with $k \neq i$
 - E.g. $\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 10 \\ -1 \end{pmatrix}$ has $5c_1 = 10$ and $2c_2 = -1$, so $c_1 = 2$ and $c_2 = -0.5$
 - Note that $\alpha \neq 0$ imposes a “no solution” condition (even though c_1 and c_2 are well-specified)

- E.g. $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 10 \\ -1 \end{pmatrix}$ has $5c_1 = 10$ and $2c_2 = -1$, so $c_1 = 2$ and $c_2 = -0.5$
 - Note that there are “infinite solutions” for c_3 (even though c_1 and c_2 are well-specified)
- A zero on the diagonal indicates a singular system, which has either no solution (e.g. $0c_1 = 10$) or infinite solutions (e.g. $0c_1 = 0$)
Singular Value Decomposition (SVD)

- $A^T A = V \Sigma^T U^T U \Sigma V^T = V (\Sigma^T \Sigma) V^T$, so $(A^T A) \nu = \lambda \nu$ gives $(\Sigma^T \Sigma) (V^T \nu) = \lambda (V^T \nu)$
- $\Sigma^T \Sigma$ is $n \times n$ diagonal with eigenvectors \hat{e}_k, so $\hat{e}_k = V^T \nu$ and $\nu = V \hat{e}_k$
- That is, the columns of V are the eigenvectors of $A^T A$

- $A A^T = U \Sigma V^T V \Sigma^T U^T = U (\Sigma \Sigma^T) U^T$, so $(A A^T) \nu = \lambda \nu$ gives $(\Sigma \Sigma^T) (U^T \nu) = \lambda (U^T \nu)$
- $\Sigma \Sigma^T$ is $m \times m$ diagonal with eigenvectors \hat{e}_k, so $\hat{e}_k = U^T \nu$ and $\nu = U \hat{e}_k$
- That is, the columns of U are the eigenvectors of $A A^T$

- When $m \neq n$, either $\Sigma^T \Sigma$ or $\Sigma \Sigma^T$ is larger and contains extra zeros on the diagonal
- Their other diagonal entries are the squares of the singular values
- That is, the singular values are the (non-negative) square roots of the non-extra eigenvalues of $A^T A$ and $A A^T$

- Both $A^T A$ and $A A^T$ are symmetric positive semi-definite, and thus easy to work with
- E.g. symmetry means their eigensystem (and thus the SVD) has no complex numbers when A doesn’t
Example (Tall Matrix)

• Consider size 4×3 matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}$

• Label the columns $a_1 = \begin{pmatrix} 1 \\ 4 \\ 7 \\ 10 \end{pmatrix}, a_2 = \begin{pmatrix} 2 \\ 5 \\ 8 \\ 11 \end{pmatrix}, a_3 = \begin{pmatrix} 3 \\ 6 \\ 9 \\ 12 \end{pmatrix}$

• Since a_1 and a_2 point in different directions, A is at least rank 2
• Since $a_3 = 2a_2 - a_1$, the third column is in the span of the first two columns
• Thus, A is only rank 2 (not rank 3)
Example (SVD)

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{pmatrix} = \begin{pmatrix}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .028 & .644 & -.509 \\
.750 & -.371 & -.542 & .079
\end{pmatrix} \begin{pmatrix}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{pmatrix}
\]

- Singular values are 25.5, 1.29, and 0
- Singular value of 0 indicates that the matrix is rank deficient
- The rank of a matrix is equal to its number of nonzero singular values
Derivation from $A^T A$ and AA^T

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{pmatrix}$$

- $A^T A$ is size 3×3 and has 3 eigenvectors (seen in V)
- The square roots of the 3 eigenvalues of $A^T A$ are seen in Σ (color coded to the eigenvectors)
- AA^T is size 4×4 and has 4 eigenvectors (seen in U)
- The square roots of 3 of the eigenvalues of AA^T are seen in Σ
 - The 4th eigenvalue of AA^T is an extra eigenvalue of 0
Understanding Ac

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{pmatrix}$$

- A maps from \mathbb{R}^3 to \mathbb{R}^4
- Ac first projects $c \in \mathbb{R}^3$ onto the 3 basis vectors in V
- Then, the associated singular values (diagonally) scale the results
- Lastly, those scaled results are used as weights on the basis vectors in U
Understanding Ac

$$Ac = \begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$= \begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \sigma_1 v_1^T c \\ \sigma_2 v_2^T c \\ \sigma_3 v_3^T c \end{pmatrix}$$

$$= u_1 \sigma_1 v_1^T c + u_2 \sigma_2 v_2^T c + u_3 \sigma_3 v_3^T c + u_4 0$$

- Ac projects c onto the basis vectors in V, scales by the associated singular values, and uses those results as weights on the basis vectors in U
The 3D space of vector inputs can only span a 3D subspace of R^4.

The last (green) column of U represents the unreachable dimension, orthogonal to the range of A, and is always multiplied by 0.

One can delete this column and the associated portion of Σ (and still obtain a valid factorization).
Zero Singular Values

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \begin{pmatrix} .141 & .825 & -.410 & -.351 \\ .344 & .426 & .213 & .787 \\ .547 & .028 & .640 & -.599 \\ .750 & -.371 & -.512 & .099 \end{pmatrix} \begin{pmatrix} 25.5 & 0 \ 0 & 1.29 \ 0 & 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \end{pmatrix} \]

- The 3rd singular value is 0, so \(A \) has a 1D null space that reduces the 3D input vectors to only 2 dimensions.
- The associated (pink) terms make no contribution to the final result, and can also be deleted (still obtaining a valid factorization).
- The first 2 columns of \(U \) span the 2D subset of \(R^4 \) that comprises the range of \(A \).
Approximating A

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \approx \begin{pmatrix} .141 & .344 & .547 & .750 \\ .815 & .415 & .073 & -.311 \\ -.410 & .218 & .642 & -.512 \\ -.351 & .785 & -.509 & .099 \end{pmatrix} \begin{pmatrix} 25.5 \\ 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \end{pmatrix}$$

- The first singular value is much bigger than the second, and so represents the vast majority of what A does (note, the vectors in U and V are unit length)
- Thus, one could approximate A quite well by only using the terms associated with the largest singular value
- This is not a valid factorization, but an approximation (and the idea behind PCA)
Summary

• The columns of V that do not correspond to “nonzero” singular values form an orthonormal basis for the null space of A

• The remaining columns of V form an orthonormal basis for the space perpendicular to the null space of A (parameterizing meaningful inputs)

• The columns of U corresponding to “nonzero” singular values form an orthonormal basis for the range of A

• The remaining columns of U form an orthonormal basis for the (unattainable) space perpendicular to the range of A

• One can drop the columns of U and V that do not correspond to “nonzero” singular values and still obtain a valid factorization of A

• One can drop the columns of U and V that correspond to “smaller” singular values and still obtain a reasonable approximation of A
Example (Wide Matrix)

\[
A = \begin{pmatrix}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
.504 & -.761 & .408 \\
.574 & -.057 & -.816 \\
.644 & .646 & .408 \\
\end{pmatrix}
\begin{pmatrix}
25.5 & 0 & 0 & 0 \\
0 & 1.29 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
.141 & .344 & .547 & .750 \\
.825 & .426 & .028 & -.371 \\
-.420 & .298 & .644 & -.542 \\
-.351 & .782 & -.509 & .079 \\
\end{pmatrix}
\]

- \(A\) maps from \(R^4\) to \(R^3\) and so has at least a 1D null space (green)
- The 3\(^{rd}\) singular value is 0, and the associated (pink) terms make no contribution to the final result (so the null space is 2D)
Example (Wide Matrix)

\[A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix} = \]

\[\begin{pmatrix} .504 & -.761 & .493 \\ .574 & -.057 & -.816 \\ .644 & .646 & .493 \end{pmatrix} \begin{pmatrix} 25.5 \\ 0 \\ 1.29 \end{pmatrix} = \begin{pmatrix} .141 & .344 & .547 & .750 \\ .825 & .426 & .028 & -.371 \\ .582 & .328 & .414 & .519 \end{pmatrix} \]

• Only a 2D subspace of \(R^4 \) matters, with the rest of \(R^4 \) in the null space of \(A \)
• Only a 2D subspace of \(R^3 \) is in the range of \(A \)
Notes

• The SVD is often unwieldy for computational purposes
• However, replacing matrices by their SVD can be quite useful/enlightening for theoretical pursuits
• Moreover, its theoretical underpinnings are often used to devise computational algorithms

• The SVD is unique under certain assumptions, such as all $\sigma_k \geq 0$ and in descending order
• However, one can make both a σ_k and its associated column in U negative for a "polar SVD" (see e.g. "Invertible Finite Elements For Robust Simulation of Large Deformation", Irving et al. 2004)
SVD Construction (an important detail)

- Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ so that $A^T A = AA^T = I$, and thus $U = V = \Sigma = I$
- But $A \neq U\Sigma V^T = I$ What’s wrong?
- Given a column vector v_k of V, $Av_k = U\Sigma V^T v_k = U\Sigma \hat{e}_k = U\sigma_k \hat{e}_k = \sigma_k u_k$ where u_k is the corresponding column of U
 - $Av_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = u_1$ but $Av_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 1 \end{pmatrix} = u_2$
- Since U and V are orthonormal, their columns are unit length
- However, there are still two choices for the direction of each column
- Multiplying u_2 by -1 to get $u_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ makes $U = A$, and thus $A = U\Sigma V^T$ as desired
SVD Construction (an important detail)

• An orthogonal matrix has determinant equal to ± 1, where -1 indicates a reflection of the coordinate system

• If $\det V = -1$, flip the direction of any column to make $\det V = 1$ (so V does not contain a reflection)

• Then, for each v_k, compare Av_k to $\sigma_k u_k$ and flip the direction of u_k when necessary in order to make $Av_k = \sigma_k u_k$

• $\det U = \pm 1$ and may contain a reflection

• When $\det U = -1$, one can flip the sign of the smallest singular value in Σ to be negative, whilst also flipping the direction of the corresponding column in U so that $\det U = 1$

• This embeds the reflection into Σ and is called the polar-SVD (Irving et al. 2004)
Solving Linear Systems

• $Ac = b$ becomes $U\Sigma V^T c = b$ or $\Sigma (V^T c) = (U^T b)$ or $\Sigma \hat{c} = \hat{b}$

• The unknowns c are remapped into the space spanned by V, and the right hand side b is remapped into the space spanned by U

• Every matrix is a diagonal matrix, when viewed in the right space

• Solve the diagonal system $\Sigma \hat{c} = \hat{b}$ by dividing the entries of \hat{b} by the singular values σ_k; then, $c = V\hat{c}$

• The SVD transforms the problem into an inherently diagonal space with eigenvectors along the coordinate axes

• Circles becoming ellipses (discussed earlier) is still problematic
 • Eccentricity is caused by ratios of singular values (since U and V are orthogonal matrices)
Condition Number

• The condition number of A is $\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$ and measures closeness to being singular
• For a square matrix, it measures the difficulty in solving $Ac = b$
• For a rectangular (and square) matrix, it measures how close the columns are to being linearly dependent
 • For a wide (rectangular) matrix, it ignores the extra columns that are guaranteed to be linearly dependent (which is fine, because the associated variables lack any data)

• The condition number does not depend on the right hand side
• The condition number is always bigger than 1, and approaches ∞ for nearly singular matrices
• Singular matrices have condition number equal to ∞, since $\sigma_{\text{min}} = 0$
Thinking Carefully about Singular Matrices

• Diagonalize $Ac = b$ to $\Sigma(V^Tc) = (U^Tb)$, e.g. \[
\begin{pmatrix}
\sigma_1 & 0 \\
0 & \sigma_2 \\
0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\hat{c}_1 \\
\hat{c}_2 \\
\hat{c}_3 \\
\end{pmatrix}
= \begin{pmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\hat{b}_3 \\
\end{pmatrix}
\] with $\hat{c}_1 = \frac{\hat{b}_1}{\sigma_1}, \hat{c}_2 = \frac{\hat{b}_2}{\sigma_2}$.

• Suppose $\sigma_1 \neq 0$ and $\sigma_2 = 0$; then, there is no unique solution:
 • When $\hat{b}_2 = 0$, there are infinite solutions for \hat{c}_2 (but \hat{c}_1 is still uniquely determined)
 • When $\hat{b}_2 \neq 0$, there is no solution for \hat{c}_2, and b is not in the range of A (but \hat{c}_1 is still uniquely determined)

• Consider:
\[
\begin{pmatrix}
\sigma_1 & 0 \\
0 & \sigma_2 \\
0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\hat{c}_1 \\
\hat{c}_2 \\
\hat{c}_3 \\
\end{pmatrix}
= \begin{pmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\hat{b}_3 \\
\end{pmatrix}
\] with $\hat{c}_1 = \frac{\hat{b}_1}{\sigma_1}, \hat{c}_2 = \frac{\hat{b}_2}{\sigma_2}$.
 • When $\hat{b}_3 = 0$, the last row adds no new information (one has extra redundant data)
 • When $\hat{b}_3 \neq 0$, the last row is false and there is no solution (but \hat{c}_1 and \hat{c}_2 are still uniquely determined)

• Consider:
\[
\begin{pmatrix}
\sigma_1 & 0 & 0 \\
0 & \sigma_2 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\hat{c}_1 \\
\hat{c}_2 \\
\hat{c}_3 \\
\end{pmatrix}
= \begin{pmatrix}
\hat{b}_1 \\
\hat{b}_2 \\
\hat{b}_3 \\
\end{pmatrix}
\] with $\hat{c}_1 = \frac{\hat{b}_1}{\sigma_1}, \hat{c}_2 = \frac{\hat{b}_2}{\sigma_2}$.
 • Infinite solutions work for \hat{c}_3 (but \hat{c}_1 and \hat{c}_2 are still uniquely determined)
Understanding Variables

• Consider any column k of Σ
• When $\sigma_k \neq 0$, a unique value can be determined for \hat{c}_k
• When $\sigma_k = 0$ or there is no σ_k, then there is no information in the data for \hat{c}_k
 • This does not mean that other parameters cannot be adequately determined!

• Consider a row i of Σ that is identically zero
• When $\hat{b}_i = 0$, this row indicates that there is extra redundant data
• When $\hat{b}_i \neq 0$, this row indicates that there is conflicting information in the data
• Conflicting information doesn’t necessarily imply that all is lost, i.e. “no solution”; rather, it might merely mean that the data contains a bit of noise
• Regardless, in spite of any conflicting information, the determinable \hat{c}_k represent the “best” that one can do
Norms

- Common norms: \(\|c\|_1 = \sum_k |c_k|, \quad \|c\|_2 = \sqrt{\sum_k c_k^2}, \quad \|c\|_{\infty} = \max_k |c_k| \)

- "All norms are interchangeable" is a theoretically valid statement (only)

- In practice, the "worst case scenario" \((L^\infty) \) and the "average" \((L^1, L^2, \text{etc.}) \) are not interchangeable

- E.g. \((100 \text{ people} \times 98.6^\circ + 1 \text{ person} \times 105^\circ)/(101 \text{ people}) = 98.66^\circ \)

- Their average temperature is \(98.66^\circ \), but everything is not "ok"
Matrix Norms

• Define the norm of a matrix \(\|A\| = \max_{c \neq 0} \frac{\|Ac\|}{\|c\|} \), so:
 - \(\|A\|_1 \) is the maximum absolute value column sum
 - \(\|A\|_{\infty} \) is the maximum absolute value row sum
 - \(\|A\|_2 \) is the square root of the maximum eigenvalue of \(A^T A \), i.e. the maximum singular value of \(A \)

• The condition number for solving (square matrix) \(Ac = b \) is \(\|A\|_2 \|A^{-1}\|_2 \)
• Since \(A^{-1} = V \Sigma^{-1} U^T \) where \(\Sigma^{-1} \) has diagonal entries \(\frac{1}{\sigma_k} \), \(\|A^{-1}\|_2 = \frac{1}{\sigma_{\min}} \)
• Thus, \(\|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_{\max}}{\sigma_{\min}} \)
Unit 4
Special Matrices
(Strict) Diagonal Dominance

• The magnitude of each diagonal element is (either):
 • strictly larger than the sum of the magnitudes of all the other elements in its row
 • strictly larger than the sum of the magnitudes of all the other elements in its column

• One may row/column scale and permute rows/columns to achieve diagonal dominance (since it’s just a rewriting of the equations)
 • Recall: choosing the form of the equations wisely is important

• E.g. consider \[
\begin{pmatrix}
 3 & -2 \\
 5 & 1 \\
\end{pmatrix}
\begin{pmatrix}
 c_1 \\
 c_2 \\
\end{pmatrix} = \begin{pmatrix}
 9 \\
 4 \\
\end{pmatrix}
\]

• Switch rows \[
\begin{pmatrix}
 5 & 1 \\
 3 & -2 \\
\end{pmatrix}
\begin{pmatrix}
 c_1 \\
 c_2 \\
\end{pmatrix} = \begin{pmatrix}
 4 \\
 9 \\
\end{pmatrix}
\]

 and column scale \[
\begin{pmatrix}
 5 & -2 \\
 4 & -\frac{1}{2}c_2 \\
\end{pmatrix}
\begin{pmatrix}
 c_1 \\
 c_2 \\
\end{pmatrix} = \begin{pmatrix}
 4 \\
 9 \\
\end{pmatrix}\]
(Strict) Diagonal Dominance

• **Strictly** diagonally dominant (square) matrices are guaranteed to be non-singular

• Since $\det(A) = \det(A^T)$, either row or column diagonal dominance is enough

• Column diagonal dominance guarantees that pivoting is not required during LU factorization

• However, pivoting still improves robustness

• E.g. consider $\begin{pmatrix} 4 & 3 \\ -2 & 50 \end{pmatrix}$ where 50 is more desirable than 4 for a_{11}
Recall: SVD Construction (Unit 3)

• Let \(A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) so that \(A^T A = A A^T = I \), and thus \(U = V = \Sigma = I \)

• But \(A \neq U \Sigma V^T = I \) What’s wrong?

• Given a column vector \(v_k \) of \(V \), \(A v_k = U \Sigma V^T v_k = U \Sigma \hat{e}_k = U \sigma_k \hat{e}_k = \sigma_k u_k \) where \(u_k \) is the corresponding column of \(U \)

• \(A v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = u_1 \) but \(A v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 1 \end{pmatrix} = u_2 \)

• Since \(U \) and \(V \) are orthonormal, their columns are unit length

• However, there are still two choices for the direction of each column

• Multiplying \(u_2 \) by \(-1\) to get \(u_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \) makes \(U = A \), and thus \(A = U \Sigma V^T \) as desired
Symmetric Matrices

• Since $A^T A = AA^T = A^2$, both the columns of U and the columns of V are eigenvectors of A^2

• They have identical (but potentially opposite) directions: $u_k = \pm v_k$

• Thus, $A v_k = \sigma_k u_k$ implies $A v_k = \pm \sigma_k v_k$

• That is, the v_k (and u_k) are eigenvectors of A with eigenvalues $\pm \sigma_k$

• Similar to the polar SVD, can pull negative signs out of the columns of U into the σ_k to obtain $U = V$ and $A = V \Lambda V^T$ as a modified SVD

• $A = V \Lambda V^T$ implies $A V = V \Lambda$ which is the matrix form of the eigensystem of A

• Here, Λ contains the positive and negative eigenvalues of A
Making/Breaking Symmetry

• Row/column scaling can make or break symmetry:
 • Row scaling $\begin{pmatrix} 5 & 3 \\ 3 & -4 \end{pmatrix}$ by -2 gives a non-symmetric $\begin{pmatrix} 5 & 3 \\ -6 & 8 \end{pmatrix}$
 • Additional column scaling by -2 gives a symmetric $\begin{pmatrix} 5 & -6 \\ -6 & -16 \end{pmatrix}$
• Scaling the same row/column together in the same way preserves symmetry

• Important: a nonsymmetric matrix might be inherently symmetric when properly rescaled/rearranged
Symmetric Approximation

• A non-symmetric A can be approximated by a symmetric $\hat{A} = \frac{1}{2}(A + A^T)$ by averaging off-diagonal components
• Solving the symmetric $\hat{A}c = b$ instead of the non-symmetric $Ac = b$ gives a faster/easier (but erroneous) approximation to a problem that might not require too much accuracy
• The inverse of the symmetric \hat{A} (or the notion thereof) may be used to devise a preconditioner for $Ac = b$
Inner Product

- Consider the space of all vectors with length m
- The **dot/inner product** of two vectors is $u \cdot v = \sum_i u_i v_i$
- The **magnitude** of a vector is $\|v\|_2 = \sqrt{v \cdot v} \geq 0$
- Alternative notations: $\langle u, v \rangle = u \cdot v = u^T v$

- **Weighted inner product** defined via an nxn matrix A
 - $\langle u, v \rangle_A = u \cdot Av = u^T Av$
 - Since $\langle v, u \rangle_A = v^T Au = u^T A^T v$, weighted inner products commute when A is symmetric
 - The standard dot product uses identity matrix weighting: $\langle u, v \rangle = \langle u, v \rangle_I$
Definiteness

• Assume A is **symmetric** so that $\langle u, v \rangle_A = \langle v, u \rangle_A$

• A is **positive definite** if and only if $\langle v, v \rangle_A = v^T A v > 0$ for $\forall v \neq 0$
• A is **positive semi-definite** if and only if $\langle v, v \rangle_A = v^T A v \geq 0$ for $\forall v \neq 0$
• We abbreviate with SPD and SP(S)D

• A is **negative definite** if and only if $\langle v, v \rangle_A = v^T A v < 0$ for $\forall v \neq 0$
• A is **negative semi-definite** if and only if $\langle v, v \rangle_A = v^T A v \leq 0$ for $\forall v \neq 0$
• If A is negative (semi) definite, then $-A$ is positive (semi) definite (and vice versa)
• Thus, can convert such problems to SPD or SP(S)D

• A is considered **indefinite** when it is neither positive/negative semi-definite
Eigenvalues

- SPD matrices have all eigenvalues > 0
- SP(S)D matrices have all eigenvalues ≥ 0
- Symmetric negative definite matrices have all eigenvalues < 0
- Symmetric negative semi-definite matrices have all eigenvalues ≤ 0
- Indefinite matrices have both positive and negative eigenvalues
SPD Matrices

• When A is SP(S)D, $\Lambda = \Sigma$ and the standard SVD is $A = V\Sigma V^T$ (i.e. $U = V$)

• The singular values are the (all positive) eigenvalues of A

• Construct V with $\det V = 1$ (as usual), and all $\sigma_k > 0$ implies that there are no reflections

• Since all $\sigma_k > 0$, SPD matrices have full rank and are invertible

• SP(S)D (and not SPD) has at least one $\sigma_k = 0$ and a null space

• Often, one can slightly modify SPD techniques for SP(S)D matrices

• Unfortunately, indefinite matrices are significantly more challenging
Cholesky Factorization

- SPD matrices have an LU factorization of LL^T and don’t require elimination to find it

- Consider $\begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{pmatrix} = \begin{pmatrix} l_{11}^2 & l_{11}l_{21} \\ l_{21}^2 + l_{22}^2 & l_{22}^2 \end{pmatrix}$

- So $l_{11} = \sqrt{a_{11}}$ and $l_{21} = \frac{a_{21}}{l_{11}}$ and $l_{22} = \sqrt{a_{22} - l_{21}^2}$

```c
for(j=1,n){
    for(k=1,j-1) for(i=j,n) a_{i,j} -= a_{i,k} a_{j,k};
    a_{j,j} = \sqrt{a_{j,j}}; for(k=j+1,n) a_{k,j} /= a_{j,j};
}
```

- This factors the matrix “in place” replacing A with L
Incomplete Cholesky Preconditioner

• Cholesky factorization can be used to construct a preconditioner for a sparse matrix.
• The full Cholesky factorization would fill in too many non-zero entries.
• So, *incomplete* Cholesky preconditioning uses Cholesky factorization with the *caveat* that only the nonzero entries are modified (all zeros remain zeros).
Rules Galore

• There are many rules/theorems regarding special matrices (especially for SPD)
• It is important to be aware of reference material (and to look things up)

Examples:
• SPD matrices don’t require pivoting during LU factorization
• A symmetric (strictly) diagonally dominant matrix with positive diagonal entries is positive definite
• Jacobi and Gauss-Seidel iteration converge when a matrix is strictly (or irreducibly) diagonally dominant
• Etc.
Unit 5
Iterative Solvers
Iterative vs. Direct Solvers

- **Direct Solver/Method** – closed form strategy, e.g. quadratic/Cardano formula, Gaussian Elimination for LU factorization, Cholesky factorization, etc.

- **Iterative Solver/Method**
 - start with an initial guess c^1
 - use a recursive approach to improve that guess: $c^2, c^3, c^4, ...$
 - terminate based on a stopping criterion, e.g. when error is small $\|c^q - c^{\text{exact}}\| \leq \varepsilon$

- A direct method can be used to obtain an initial guess
- Iterative methods are great for sparse matrices, as they often can ignore 0 entries
 - E.g. by formulating the method via the matrix’s action (multiplication) on a vector
- Direct solvers are more commonly used on dense matrices
- Iterative solvers are used for training Neural Networks!
Issues with Direct Methods

• (Recall) Quadratic formula loses precision, and can fail, when $-b \pm \sqrt{b^2 - 4ac}$ has catastrophic cancellation
 • The de-rationalized quadratic formula instead uses $-b \mp \sqrt{b^2 - 4ac}$
 • Using one formula for each root avoids catastrophic cancellation

• Cardano’s formula for the roots of a cubic equation suffers from similar issues, but there is no straightforward fix

• The computed roots too often have unacceptably high error

• To highlight why one might need accurate cubic roots, consider collision detection...
Hit Box

- In order to detect interactions between objects in video games, objects were assigned a hit box
- Anything inside an object’s hit box can potentially interact with (i.e. hit) it
Better Hit Boxes

• These evolved over time to more complicated shapes in both 2D and 3D
 • e.g. spheres, ellipsoids, capsules, etc.
• Anything **inside** any of an object’s hit boxes can potentially interact with it
Accurate Collision Detection

- More complex objects are often modeled by a triangulated surface mesh
- The interior can be filled with tetrahedra, or approximated with other objects
- Anything inside any of an object’s interior structures can potentially interact with it
Objects Without Interiors

- Very thin objects, such as cloth/shells, do not have an interior region.
- One cannot use the same concept of inside to detect potential interactions.
Continuous Collision Detection (CCD)

- Model the time varying trajectories of surface triangle vertices to see if/when they collide with each other
- Doesn’t depend on the existence of an interior region
- There are two cases to consider: (1) Point-Face, (2) Edge-Edge
Continuous Collision Detection (CCD)

• In both cases, the 4 relevant points need to become coplanar in order to (potentially) collide
• Once deemed coplanar, a second check determines whether: the lone point is inside the triangle (for Point-Face) or the two edges intersect (for Edge-Edge)
Continuous Collision Detection (CCD)

- Consider time t_o to time t_f and assume that the points have constant velocities during that time interval: $V_i(t_o)$ for $i = 1, 2, 3, 4$

- The time evolving positions are: $X_i(t) = X_i(t_o) + V_i(t_o)(t - t_o)$ for $t \in [t_o, t_f]$

- Although their paths are (generally) curved, considering piecewise linear increments is sufficient for preventing self-intersecting states
Continuous Collision Detection (CCD)

• Coplanarity occurs when $X_4(t) - X_1(t)$, $X_3(t) - X_1(t)$, and $X_2(t) - X_1(t)$ are not a basis for \mathbb{R}^3, which can be checked by making them the columns of a 3x3 matrix and setting the determinant to zero (obtaining a cubic equation in t)

• Find the first root of this cubic equation in the interval $[t_o, t_f]$

• Cubic equation solvers are so error prone that collisions are (very) often missed, and the cloth/shell ends up in a spurious self-intersecting state

• A very carefully devised/implemented iterative solver for cubic equations was able to detect all collisions:
 • It requires double precision (and fails too often in single precision)
 • See Bridson et al. “Robust Treatment of Collisions, Contact, and Friction for Cloth Animation” (2002)
Residual and Solution Error

• When solving $Ac = b$, a current guess c^q has residual $r^q = b - Ac^q$

• The residual measures the errors in the equations, not the error in the solution.

• The error in the solution $e^q = c^q - c^{exact}$ relates to the residual via:

$$r^q = b - Ac^q = Ac^{exact} - Ac^q = A(c^{exact} - c^q) = -Ae^q$$

• That is, the residual is the solution error transformed into the space that b lives in (the range of A)
1D example

- Consider a simple size 1x1 matrix, i.e. \([a]c = b\) with exact solution \(c = \frac{b}{a}\)
- Since \(r^q = -ae^q\), smaller \(a\) values lead to deceivingly small residuals even when the error is large
Diagonalizing the Residual/Error Equation

• "All matrices are diagonal matrices"
• And, diagonal matrices represent decoupled 1D scalar problems

• Using the SVD, \(r^q = -Ae^q \) becomes \((U^T r^q) = -\Sigma (V^T e^q) \) which is a decoupled set of diagonal equations

• Each decoupled equation has the form \(\hat{r}_k^q = -\sigma_k \hat{e}_k^q \) (seen on the previous slide)
• Small \(\sigma_k \) lead to deceivingly small residuals even when the error is large

• A small residual indicates a small error for larger singular values, but not for smaller singular values
Line Search

- Choose a search direction \(s^q \) and move some distance \(\alpha^q \) in that direction to update the current guess to the next guess:
 \[c^{q+1} = c^q + \alpha^q s^q \]

 - There are various strategies for choosing \(\alpha^q \), including the notion of safe sets that clamp its maximum magnitude.

 - Subtract \(c^{\text{exact}} \) from both sides of this recursion to get
 \[e^{q+1} = e^q + \alpha^q s^q \]

 - Multiply through by \(-A\) to get
 \[r^{q+1} = r^q - \alpha^q A s^q \]

- Optimally, one would follow \(s^q \) until all the error in that direction was eliminated

 - That is, until the remaining error is orthogonal to \(s^q \), i.e. \(e^{q+1} \cdot s^q = 0 \)

 - However, the error is unknown (otherwise, the solution would be known)

- Instead, follow \(s^q \) until the residual is orthogonal to \(s^q \), i.e.
 \[r^{q+1} \cdot s^q = 0 \]

 - Plugging in the recursion for \(r^{q+1} \) gives
 \[\alpha^q = \frac{s^q \cdot r^q}{s^q \cdot A s^q} \]
Steepest Descent

- Steepest Descent chooses the steepest downhill direction as the search direction
 - That turns out to be the residual, i.e. choose $s^q = r^q$

- Iterate: $r^q = b - Ac^q$, $\alpha^q = \frac{r^q \cdot r^q}{r^q \cdot Ar^q}$, $c^{q+1} = c^q + \alpha^q r^q$, until r^q is considered small enough

- Note: can replace $r^q = b - Ac^q$ with $r^q = r^{q-1} - \alpha^{q-1} Ar^{q-1}$
 - Since Ar^{q-1} had already been computed to find α^{q-1}, this eliminates one of the (possibly expensive) multiplications by A

- Drawback: Steepest Descent repeatedly searches in overlapping (non-orthogonal) directions, especially for higher condition number matrices (more on this later)
Conjugate Gradients (CG)

• A very efficient and robust method for SPD systems
• Converges (theoretically) in at most n-steps for an nxn matrix
 • Theoretically, only need one step for each distinct eigenvalue
 • Almost converged when taking one step for each eigenvalue cluster
 • Thus, preconditioning makes a big difference (assuming it clusters eigenvalues)
• Motivation: choosing orthogonal search directions precludes repeatedly searching in overlapping directions (in contrast to Steepest Descent)
 • But, it is difficult to implement this orthogonality
• Instead: choose A-orthogonal search directions
 • Instead of $\langle s^q, s^{\hat{q}} \rangle = 0$, choose $\langle s^q, s^{\hat{q}} \rangle_A = 0$ for $q \neq \hat{q}$
Error Analysis for CG

• In the A-orthogonal basis of search directions, the initial error is \(e^1 = \sum_{\hat{q}=1}^{n} \beta^{\hat{q}} s^{\hat{q}} \); so, \(< s^q, e^1 >_A = \beta^q < s^q, s^q >_A \)

• Error recursion gives \(e^q = e^1 + \sum_{\hat{q}=1}^{q-1} \alpha^{\hat{q}} s^{\hat{q}} \); so, \(< s^q, e^q >_A = < s^q, e^1 >_A \)

• Progressing until \(r^{q+1} \cdot s^q = 0 \) gives \(\alpha^q = \frac{s^q \cdot r^q}{s^q \cdot As^q} = -\frac{<s^q,e^q>_A}{<s^q,s^q>_A} = -\beta^q \)

• Thus, \(e^1 = \sum_{\hat{q}=1}^{n} (-\alpha^{\hat{q}}) s^{\hat{q}} \) and \(e^q = \sum_{\hat{q}=q}^{n} (-\alpha^{\hat{q}}) s^{\hat{q}} \)
 • This proves that the error is indeed cancelled out in \(n \) steps, i.e. \(e^{q+1} = 0 \)

• Aside: If \(\tilde{q} < q \), then \(s^{\tilde{q}} \cdot r^q = -< s^{\tilde{q}}, e^q >_A = 0 \); so, the residual is orthogonal to all previous search directions (not just the previous one)
Gram-Schmidt

• Orthogonalizes a set of vectors
• For each new vector, subtract its (weighted) dot product overlap with all prior vectors, making it orthogonal to them
• A-orthogonal Gram-Schmidt simply uses an A-weighted dot/inner product
• Given vector \tilde{S}^q, subtract out the A-overlap with s^1 to s^{q-1} so that the resulting vector s^q has $<s^q, s^{\hat{q}}>_A = 0$ for $\hat{q} \in \{1, 2, \ldots, q-1\}$
• That is, $s^q = \tilde{S}^q - \sum_{\hat{q}=1}^{q-1} \frac{<\tilde{S}^q, s^{\hat{q}}>_A}{<s^q, s^q>_A} s^{\hat{q}}$ where the two non-normalized $s^{\hat{q}}$ both require division by their norm (and $<s^{\hat{q}}, s^{\hat{q}}>_A = \|s^{\hat{q}}\|_A^2$)
• Proof: $<s^q, s^{\hat{q}}>_A = <\tilde{S}^q, s^{\hat{q}}>_A - \frac{<\tilde{S}^q, s^{\hat{q}}>_A}{<s^q, s^q>_A} <s^{\hat{q}}, s^{\hat{q}}>_A = 0$
Gram-Schmidt for CG

- Choose candidate search directions $\tilde{S}^q = r^q$, and make A-orthogonal via Gram-Schmidt

- That is, $s^q = r^q - \sum_{\tilde{q}=1}^{q-1} \frac{\langle r^q, s^\tilde{q}\rangle_A}{\langle s^\tilde{q}, s^\tilde{q}\rangle_A} s^\tilde{q}$

- Dot product with $r^{\tilde{q}}$ to get: $s^q \cdot r^{\tilde{q}} = r^q \cdot r^{\tilde{q}} - \sum_{\tilde{q}=1}^{q-1} \frac{\langle r^q, s^\tilde{q}\rangle_A}{\langle s^\tilde{q}, s^\tilde{q}\rangle_A} s^\tilde{q} \cdot r^{\tilde{q}}$
 - If $\tilde{q} > q$, then $0 = r^q \cdot r^{\tilde{q}} + 0$ implies that all the residuals are orthogonal
 - If $\tilde{q} = q$, then $s^q \cdot r^q = r^q \cdot r^q + 0$ implies $\alpha^q = \frac{r^q \cdot r^q}{\langle s^q, s^q\rangle_A}$

- Dot product $r^q = r^{q-1} - \alpha^{q-1} A s^{q-1}$ with $r^{\tilde{q}}$ to get
 - $r^{\tilde{q}} \cdot r^q = r^{\tilde{q}} \cdot r^{q-1} - \alpha^{q-1} \langle r^{\tilde{q}}, s^{q-1}\rangle_A$
 - If $\tilde{q} > q$, then $0 = 0 - \alpha^{q-1} \langle r^{\tilde{q}}, s^{q-1}\rangle_A$ implies that only the last term in the sum is nonzero
 - If $\tilde{q} = q$, then $r^q \cdot r^q = 0 - \alpha^{q-1} \langle r^q, s^{q-1}\rangle_A$ for the last term in the sum

- Finally, $s^q = r^q + \frac{r^q \cdot r^q}{\alpha^{q-1} \langle s^{q-1}, s^{q-1}\rangle_A} s^{q-1} = r^q + \frac{r^q \cdot r^q}{r^{q-1} \cdot r^{q-1}} s^{q-1}$
Conjugate Gradients Method

• Start with: \(s^1 = r^1 = b - Ac^1 \)

• Iterate:
 - \(\alpha^q = \frac{r^q \cdot r^q}{\langle s^q, s^q \rangle_A} \)
 - \(c^{q+1} = c^q + \alpha^q s^q \) and \(r^{q+1} = r^q - \alpha^q As^q \) (both as usual for line search)
 - \(s^{q+1} = r^{q+1} + \frac{r^{q+1} \cdot r^{q+1}}{r^q \cdot r^q} s^q \)

• Note: Gram-Schmidt drifts, making search directions less A-orthogonal over time; thus, occasionally throw out all search directions and start over with \(s^1 = r^1 = b - Ac^1 \)
Non-Symmetric and/or Indefinite

- GMRES, MINRES, BiCGSTAB, etc...
- Generally speaking, iterative methods for non-symmetric and/or indefinite matrices are less stable, more error prone, and slower than CG on an SPD matrix
Unit 6
Local Approximations
Sampling

• Accurate approximation of a function is often limited by the amount of available data
• Given too few samples (left), one may “hallucinate” an incorrect function
• Adding more data allows for better/proper feature resolution (right)
• Given “enough” sample points, a function tends to not vary too much in between them

under-resolved
resolved better with more data
Taylor Expansion

\[f(x + h) = \sum_{p=0}^{\infty} \frac{h^p}{p!} f^{(p)}(x) = \sum_{p=0}^{p} \frac{h^p}{p!} f^{(p)}(x) + O(h^{p+1}) \]

• Bounded derivatives would indicate that \(O(h^{p+1}) \to 0 \) as \(h \to 0 \)

• Examples:
 - \(f(x + h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + O(h^4) \) looking forward
 - \(f(x - h) = f(x) - h f'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(x) + O(h^4) \) looking backward

- **Truncated Taylor expansions** become more valid approximations as \(h \to 0 \)
 - \(f(x + h) \approx f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) \) looking forward
 - \(f(x - h) \approx f(x) - h f'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(x) \) looking backward
Well-Resolved Functions

• The Taylor expansion approximates a function \(f \) at a new location \(x + h \) based on known information at a nearby point \(x \)

• When the sample points are “closely” spaced, new locations are “close” to known sample points making \(h \) “small” enough

• However, large derivatives can overwhelm even a small \(h \)

• Thus, functions with more variation need higher sampling rates
 • Similarly, smoother functions can utilize lower sampling rates

• Well-resolved functions have vanishing high order terms in their Taylor expansion making truncated Taylor expansions more valid
Well-Resolved Functions

- Regions of a function with less/more variation require lower/higher sampling rates
Piecewise Approximation

• Piecewise approximation enables the use of simpler models to approximate (potentially disjoint) subsets of data
 • In ML/DL, “sub-manifold” often refers to a coherent subset
Piecewise Constant Interpolation

• Use the first term in the Taylor expansion (only): \(f(x + h) \approx f(x) \)
• Errors are \(O(h) \), since \(f(x + h) = f(x) + O(h) \)
• Recall: nearest neighbor is piecewise constant
Piecewise Linear Interpolation

- Use the first two terms in the Taylor expansion: \(f(x + h) \approx f(x) + hf'(x) \)
- Errors are \(O(h^2) \), since \(f(x + h) = f(x) + hf'(x) + O(h^2) \)
Higher Order Piecewise Interpolation

- Piecewise quadratic interpolation uses the first three terms in the Taylor expansion and has $O(h^3)$ errors.

- Piecewise cubic interpolation uses the first four terms in the Taylor expansion and has $O(h^4)$ errors.

- Recall: higher order interpolation becomes more oscillatory (i.e. overfitting).
 - These oscillations are sometimes referred to as Gibbs phenomena.
Piecewise Cubic Interpolation (B-Splines)

- Piecewise cubic splines are quite popular because of their ability to match derivatives across approximation boundaries.
- B-splines – hierarchical family: ϕ_i^p is a piecewise polynomial of degree p
 - Piecewise constant: $\phi_i^0(x) = 1$ for $x \in [x_i, x_{i+1}]$ and 0 otherwise.
 - A linear $w_i^p(x) = \frac{x-x_i}{x_{i+p+1}-x_i}$ increases the polynomial degree of ϕ^p to ϕ^{p+1}.
 - Recursively: $\phi_{i}^{p+1}(x) = w_i^p(x)\phi_i^p(x) + \left(1 - w_i^{p+1}(x)\right)\phi_{i+1}^p(x)$.
 - Piecewise linear ϕ_i^1, piecewise quadratic ϕ_i^2, piecewise cubic ϕ_i^3, etc.
Image Segmentation

- Divide image pixels into separate regions, each representing separate objects or groups of objects
- Before neural networks: various methods relied on clustering in color and/or space, graph-cuts, edge detection, etc.
- Since humans do well on this problem, use neural networks to hopefully mimic human perception/semantics
- Training examples:
 - Input: an image (all the pixel RGB values)
 - Output: labels on all the pixels, indicating what group each pixel is in
Bool Output Labels

- Binary segmentation of an image
- E.g. true = dog, false = not dog
Integer Output Labels

- Multi-object segmentation with an integer for each object
- E.g. 1=cat, 2=dog, 3=human, 4=mug, 5=couch, 6=everything else
Real Number Output Labels

- Probabilistic segmentation with real number values in $[0,1]$
- E.g. $1=$ tree branch, $.8=$ probably a branch, $.2=$ probably not a branch, etc.
Segmenting Botanical Trees

Difficult Problem:

- Trees are large-scale and geometrically-complex structures
- Branches severely occlude each other
- The images have limited pixel resolution of individual branches

- Even humans have a hard time ascertaining the correct topological structure from a single image/view
- Can we train a neural network to help?
Constructing Training Data

• Begin with a dataset of labels (tediously) created by hand
• Draw lines and thicknesses on top of branches; then, use this information to create a binary mask for the image
Constructing More Training Data

- Artificially increase the amount of training data by taking various image subsets
- This also helps to avoid down-sampling (networks use low-resolution images)
Training the Neural Network

• Find function parameters c such that the network function $f_c(x)$ gives minimal error on the training data (i.e. minimize network “loss”)

• The network should predict the known target labels (or close to it) from the input images
Network Inference/Prediction

• After training, use the resulting network function $f_{c_{trained}}(x)$ to infer/predict labels for new images (not previously hand-labeled)
Local Approximations

• Roughly speaking, input images mostly seem to be of two different types: either (1) branches over grass or (2) clusters of branches
Train 2 Neural Networks

- Divide the training data into these two disparate groups
- Train a separate network on each group: separate architecture, separate trainable parameters, etc.

- k-means clustering on hue/saturation was used to divide the training images into 2 separate clusters
- Then, each cluster was used to train a network
Combining Inference Outputs

• Given an input image, inference it (separately) on both networks
• Then combine the two predictions, using the network that makes the most sense locally in each part of the image (blending predictions when appropriate)

To inference each pixel:
• Compute hue/saturation values on a small patch around the pixel
• Find the distances from the patch hue/saturation values to the 2 cluster centers
• Interpolate the outputs from the 2 networks using those distances
• The closer a pixel is to a k-means cluster, the more weight is given to that cluster’s network inference/prediction
Example

Input
Network 1
Network 2
Combine
Final Result
Branch Estimation
Unit 7
Curse of Dimensionality
Numerical Integration (Quadrature)

• Approximate \(\int_{x_L}^{x_R} f(x)dx \) numerically

• Break up \([x_L, x_R]\) into subintervals, and consider each subinterval separately

• On each subinterval:
 • Reconstruct the function
 • Analytically find the area under the reconstructed curve

• These two steps can be combined in various ways (for efficiency)

• \(f \) is often not explicitly known

• I.e., often only have access to output values \(f(x_i) \) given input values \(x_i \)

• In addition, it could be “expensive” to evaluate \(f(x_i) \), especially when it requires running code
Newton-Cotes Quadrature

• On each subinterval, choose p equally spaced points and use $p - 1$ degree polynomial interpolation to reconstruct the function and approximate the area under the curve

• Obtains the exact solution when f is a degree $p - 1$ polynomial (as expected)

• When the number of points p is odd, symmetric cancellation gives the exact solution on a degree p polynomial (1 degree higher than expected)
Symmetric Cancellation

- When $p = 2$ points, the 1st degree piecewise linear approximation integrates piecewise linear functions exactly.
- When $p = 1$ point, the 0th degree piecewise constant approximation (also) integrates piecewise linear functions exactly.
 - Note the cancellation of under/over approximations in the figure.
Newton-Cotes Quadrature

• Consider a total of m subintervals

• Piecewise constant approximation ($p = 1$ point) uses m points to integrate piecewise linear functions exactly

• Piecewise linear approximation ($p = 2$ points) uses $m + 1$ points to integrate piecewise linear functions exactly
 • points on the boundary between intervals are used for both intervals

• Piecewise quadratic approximation ($p = 3$ points) uses $2m + 1$ points to integrate piecewise cubic functions exactly

• Piecewise cubic approximation ($p = 4$ points) uses $3m + 1$ points to integrate piecewise cubic functions exactly
Local and Global Error

• Degree p polynomial reconstruction captures the Taylor expansion terms up to and including $\frac{h^p}{p!} f^{(p)}(x)$, with $O(h^{p+1})$ errors.

• This $O(h^{p+1})$ error in the height of the function multiplied times the $O(h)$ width of the interval gives a per interval area error (local error) of $O(h^{p+2})$.

• The total number of intervals is $\frac{x_R-x_L}{O(h)} = O\left(\frac{1}{h}\right)$, so the total error (global error) is $O\left(\frac{1}{h}\right) O(h^{p+2}) = O(h^{p+1})$.

• Doubling the number of intervals halves their size leading to $\left(\frac{1}{2}\right)^{p+1}$ as much error, which is denoted by an order of accuracy of $p + 1$.
Newton-Cotes Quadrature (Examples)

• **Midpoint Rule**: $\sum_i h_i f(x_i^{mid})$
 - 1 point, piecewise constant, exact for piecewise linear, 2nd order accurate, $O(h^2)$ error

• **Trapezoidal Rule**: $\sum_i h_i \frac{f(x_i^{left})+f(x_i^{right})}{2}$
 - 2 points, piecewise linear, exact for piecewise linear, 2nd order accurate, $O(h^2)$ error

• **Simpson’s Rule**: $\sum_i h_i \frac{f(x_i^{left})+4f(x_i^{mid})+f(x_i^{right})}{6}$
 - 3 points, piecewise quadratic, exact for piecewise cubic, 4th order accurate, $O(h^4)$ error
Gaussian Quadrature

- Use \(p \) optimally chosen points to obtain a method that is exact on degree \(2p - 1 \) polynomials, and thus has an order of accuracy of \(2p \)

- For example:
 \[
 \sum_i h_i \left(f\left(x_{i\text{mid}} - \frac{h_i}{2\sqrt{3}} \right) + f\left(x_{i\text{mid}} + \frac{h_i}{2\sqrt{3}} \right) \right)
 \]

- 2 points, piecewise cubic, exact for piecewise cubic, 4\(^{th}\) order accurate, \(O(h^4) \) error

- Same accuracy as the 3 point Simpson’s Rule
 - Simpson has 1 point on shared boundaries, so only \(2m + 1 \) total points are required
 - That is, Gaussian quadrature only saves 1 point in total (\(2m \) total points)
Two Dimensions

• $\iint_A f(x, y)dA$ where sub-regions dA of area A are considered separately

• When A is rectangular, it can be broken into sub-rectangles and addressed dimension-by-dimension using 1D techniques

• When A is more interesting, triangle sub-regions can be used to approximate it

• The difference between A and its approximation leads to a new source of error not seen in 1D (where the interval boundaries were merely points)
Domain Approximation Errors

• The difference between A and its approximation (via triangles here) leads to a new source of error in the integral (missing/extra area)
Integrating over Sub-regions

• Each triangle sub-region utilizes optimally chosen Gaussian quadrature points to compute sub-volumes
Three Dimensions

\[\iiint_V f(x, y, z) \, dV \] where tetrahedral sub-regions \(dV \) of volume \(V \) are each considered separately (with Gaussian quadrature points)
Curse of Dimensionality

• Consider a 1st order accurate method
• 1D: doubling the number of intervals cuts the error in half (2x work = ½ error)
• 2D: halving interval size requires 4 times the rectangles/triangles (4x work = ½ error)
• 3D: halving interval size requires 8 times the cubes/boxes/tets (8x work = ½ error)
• 4D: 16x work = ½ error, 5D: 32x work = ½ error, etc.
• Cutting error by a factor of 4 in 5D takes $32^2 = 1024x$ work
• Cutting error by a factor of 8 in 5D takes $32^3 = 32,768x$ work
• If the original code took 1 sec to run in 5D, cutting error by a factor of 8 takes 9 hours
• And cutting error by a factor of 16 takes 12 days
• And cutting the error by a factor of 32 takes over a year….

Yep, you’re cursed
Curse of Dimensionality

• Consider a 2nd order accurate method
• In 1D/2D/3D/4D/5D/etc. halving the interval size gives 4 times less error
• Cutting error by a factor of 4 in 5D takes 32x work
• If the original code took 1 sec to run in 5D, cutting error by a factor of 16 takes only 17 min (much faster than the 12 days for the 1st order accurate method)
• Cutting error by a factor of 1024 (3 decimal places more accuracy) takes over a year...
• In 10D, cutting error by a factor of 4 takes 1024x work
• Second order is better than first, but still intractable in higher dimensions
• Moreover, it’s difficult (or impossible) to construct higher order methods in higher dimensions (and overfitting is a concern too)
Conclusion

- Newton-Cotes style approaches are only practical for 1D/2D/3D
 - or 1D/2D/3D + time
- Sometimes they can work ok in 4D
A Simple Example

• Consider approximating $\pi = 3.1415926535 \ldots$
• Use a compass to construct a circle with radius $= 1$
• Since $A = \pi r^2$, the area of this unit circle is π
• Integrate $f(x, y) = 1$ over the unit circle to obtain $\iint_A f(x, y)dA = \pi$

$\text{Area} = \pi$
Newton-Cotes Approach

• Inscribe triangles inside the circle
• Sum the area of all the triangles (no need to trivially multiply by the height = 1)
• The difference between the area A and its approximation with triangles leads to errors

\[\pi \approx 2 \]

\[\pi \approx 2.8284 \]
Monte Carlo Approach

• Construct a square with side length 4 containing the circle
• Randomly generate N points in the square (color points inside the circle blue)
• Since $\frac{A_{\text{circle}}}{A_{\text{box}}} = \frac{\pi}{16}$, can approximate $\pi \approx 16 \left(\frac{N_{\text{blue}}}{N_{\text{blue}} + N_{\text{red}}} \right)$

$\pi \approx 3.136$

$\pi \approx 3.1440$
Monte Carlo Methods

• Typically used in higher dimensions (5D or more)
• Random (pseudo-random) numbers generate sample points that are multiplied by “element size” (e.g. length, area, volume, etc.)
• Error decreases like $\frac{1}{\sqrt{N}}$ where N is the number of samples (only $\frac{1}{2}$ order accurate)
 • E.g. 100 times more sample points are needed to gain one more digit of accuracy
• Very slow convergence, but independent of the number of dimensions!
• Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only tractable approach for high dimensional problems
Machine Learning Implications

• Consider $y = f(x)$ where $x \in R^n$ with large n

• Newton-Cotes style approaches would first do polynomial interpolation, and then analytically integrate the result

• An enormous number of points (and control volumes) is required to construct polynomial functions in higher dimensions (curse of dimensionality)

• The same is true when constructing $y = f(x)$ for function interpolation (in order to inference), i.e. a high dimensional x is intractable

• Thus, Monte Carlo approaches are far more efficient!

• This is a major reason for the close collaborations between ML/DL and Statistics departments
 • as compared to classical engineering, which operates in a lower dimensional 3D model of the physical world (and thus has closer ties to Applied Mathematics)
Unit 8
Least Squares
Recall: Polynomial Interpolation (Unit 1)

- Given m data points, one can (at best) draw a unique $m - 1$ degree polynomial that goes through all of them
 - As long as they are not degenerate, like 3 points on a line
Recall: Basis Functions (Unit 1)

- Given basis functions ϕ and unknows c: \[y = c_1 \phi_1 + c_2 \phi_2 + \cdots + c_n \phi_n \]

- Monomial basis: $\phi_k(x) = x^{k-1}$

- Lagrange basis: $\phi_k(x) = \frac{\prod_{i \neq k} x - x_i}{\prod_{i \neq k} x_k - x_i}$

- Newton basis: $\phi_k(x) = \prod_{i=1}^{k-1} x - x_i$

- Write a (linear) equation for each point, and put into matrix form: $Ac = y$
- Monomial/Lagrange/Newton basis all give the same polynomial, but different matrices
Recall: Overfitting (Unit 1)

• Given a new input \hat{x}, the interpolating polynomial infers/predicts an output \hat{y} that may be far from what one may expect

• Interpolating polynomials are smooth (continuous function and derivatives)
• Thus, they wiggle/overshoot in between data points (so that they can smoothly turn back and hit the next point)
• Overly forcing polynomials to exactly hit every data point is called overfitting (overly fitting to the data)
• It results in inference/predictions that can vary wildly from the training data
Recall: Regularization (Unit 1)

• Using a lower order polynomial that doesn’t (can’t) exactly fit the data points provides some degree of regularization

• A regularized interpolant contains intentional errors in the interpolation, missing some/all of the data points
• However, this hopefully makes the function more predictable/smooth in between the data points

• The data points themselves may contain noise/error, so it is not clear whether they should be interpolated exactly anyways
Recall: Regularization (Unit 1)

• Given \hat{x}, the regularized interpolant infers/predicts a more reasonable \hat{y}

• There is a trade-off between sacrificing accuracy on fitting the original input data, and obtaining better accuracy on inference/prediction for new inputs.
Eliminating Basis Functions

• Consider $Ac = y$:
 • Each row of A evaluates all n basis functions ϕ_k on a single data point x_i
 • Each column of A evaluates all m points x_i on a single basis function ϕ_k
 • Regularize by reducing the number of basis functions (and thus the degree of the polynomial)
 • Then, write an equation for each point, and put into matrix form $Ac = y$ (as usual)
 • When there are more points than basis functions, there are more rows than columns (and the matrix is tall/rectangular)
 • This tall matrix has full (column) rank when the basis functions are linearly independent (and the data isn’t degenerate)
Recall: Underfitting (Unit 1)

• Using **too low** of an order polynomial causes one to miss the data by too much

• A linear function doesn’t capture the essence of this data as well as a quadratic function does
• Choosing too simple of a model function or regularizing too much prevents one from properly representing the data
Tall (Full Rank) Matrices

• Let A be a size $m \times n$ tall (i.e. $m > n$) matrix with full (column) rank (i.e. rank n)
• Since there are n entries in each row, the rows span at most an n dimensional space; thus, at least $m - n$ rows are linear combinations of others
• That is, A contains (at least) $m - n$ extra unnecessary equations (that are linear combinations of others)
• Thus, A could be reduced to n equations (and size $n \times n$) without losing any information
• The SVD ($A = U\Sigma V^T$) illustrates this: the last $m - n$ rows of Σ are all zeros
• The last $m - n$ columns in U are hit by these zeros, and thus not in the range of A
Recall: Example (Unit 3)

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \]

\[\begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{pmatrix} \]

- Singular values are 25.5, 1.29, and 0
- Singular value of 0 indicates that the matrix is rank deficient
- The rank of a matrix is equal to its number of nonzero singular values
Recall: Extra Dimensions (Unit 3)

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \begin{pmatrix} .141 & .825 & -.420 & -.51 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.599 \\ .750 & -.371 & -.542 & .09 \end{pmatrix} \begin{pmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{pmatrix} \]

- The 3D space of vector inputs can only span a 3D subspace of \(R^4 \)
- The last (green) column of \(U \) represents the unreachable dimension, orthogonal to the range of \(A \), and is always multiplied by 0
- One can delete this column and the associated portion of \(\Sigma \) (and still obtain a valid factorization)
Solving Tall (Full Rank) Linear Systems

- $Ac = b$ becomes $U \Sigma V^T c = b$ or $\Sigma (V^T c) = (U^T b)$ or $\Sigma \hat{c} = \hat{b}$
- Solve $\Sigma \hat{c} = \hat{b}$ by dividing the entries of \hat{b} by the singular values σ_k, then $c = V \hat{c}$

- The last $m - n$ equations are identically zero on the left, and need to be identically zero on the right as well in order for a solution to exist
 - E.g. \[
 \begin{pmatrix}
 \sigma_1 & 0 \\
 0 & \sigma_2 \\
 0 & 0
 \end{pmatrix}
 \begin{pmatrix}
 \hat{c}_1 \\
 \hat{c}_2 \\
 \hat{c}_3
 \end{pmatrix}
 =
 \begin{pmatrix}
 \hat{b}_1 \\
 \hat{b}_2 \\
 \hat{b}_3
 \end{pmatrix}
\]
 requies $\hat{b}_3 = 0$ in order to have a solution

- The last $m - n$ columns in U are not in the range of A, so b must be in the span of the first n columns of U in order for a solution to exist
False Statements

• Reasoning with a false statement leads to infinitely more false statements:

\[
\begin{align*}
 a &= b \\
 a^2 &= ab \\
 a^2 - b^2 &= ab - b^2 \\
 (a + b)(a - b) &= b(a - b) \\
 a + b &= b \\
 b + b &= b \\
 b(1 + 1) &= b(1) \\
 2 &= 1
\end{align*}
\]

• Don’t make false statements!
False Statements

• Reasoning with a false statement leads to infinitely more false statements:

\[
Ac = b
\]
\[
A^T Ac = A^T b
\]
\[
c = (A^T A)^{-1} (A^T b)
\]

• Don’t make false statements!

• A mix of false/true statements makes it difficult to keep track of what is and what is not true
False Statements

• Consider a very simple $Ac = b$ given by: \[\begin{pmatrix} 1 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \]

• This contains the equations $c = 3$ and $c = 4$, and as such is a false statement

• Solve via \[\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \] so $2c = 7$ or $c = 3.5$

• Row scale the first equation by 10 to obtain: \[\begin{pmatrix} 10 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 30 \\ 4 \end{pmatrix} \]

• Solve via \[\begin{pmatrix} 10 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 10 & 1 \end{pmatrix} \begin{pmatrix} 30 \\ 4 \end{pmatrix}, \] so $101c = 304$ or $c = 3 \frac{1}{101}$

• Perfectly valid row scaling leads to a different answer
False Statements

• Again, starting with the same: \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \)

• Subtract 2*(row 1) from row 2 to obtain \(\begin{pmatrix} 1 \\ -1 \end{pmatrix} (c) = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \)

• Solve via \((1 \quad -1) \begin{pmatrix} 1 \\ -1 \end{pmatrix} (c) = (1 \quad -1) \begin{pmatrix} 3 \\ -2 \end{pmatrix} \), so \(2c = 5 \) or \(c = 2.5 \)

• A perfectly valid row operation again leads to a different answer

• Note that \(2.5 \notin [3,4] \) either!

• Problem: \(\begin{pmatrix} 3 \\ 4 \end{pmatrix} \) is not in the range of \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \), so \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} (c) \neq \begin{pmatrix} 3 \\ 4 \end{pmatrix} \) for \(\forall c \in \mathbb{R} \)
False Statements

- Consider \(y = c_1 \phi_1 \) with monomial \(\phi_1 = 1 \), and data points \((1,3)\) and \((2,4)\).
- This leads to the same \(\binom{1}{1}(c_1) = \binom{3}{4} \).
True Statements

• Consider $y = c_1 \phi_1$ with monomial $\phi_1 = 1$, and data points (1,3) and (2,3).

• This leads instead to $\binom{1}{1}(c_1) = \binom{3}{3}$ which is valid and has solution $c_1 = 3$.

![Graph with data points and solution]
True Statements

• When b is in the range of A, then $Ac = b$ is a true statement
 • There exists at least one c (by definition) constrained by this statement
• When b is in not the range of A, then $Ac \neq b$ is the true statement
 • In this case, $Ac \neq b$ is true for all c

• The equation for the residual $r = b - Ac$ is always true (it’s a definition)
 • When b is in the range of A, there exists a c with $Ac = b$ and $r = 0$
 • When b is not in the range of A, then $Ac \neq b$ and $r \neq 0$ for all c
• The goal in both cases is to minimize the residual $r = b - Ac$
Norm Matters

• Consider $y = c_1 \phi_1$ where $\phi_1 = 1$ along with data points (1,3), (2,3), and (3,4)

• This leads to $r = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} (c_1)$

• Setting $c_1 = 3.5$ minimizes $\|r\|_\infty$ with $r = \begin{pmatrix} -.5 \\ -.5 \\ .5 \end{pmatrix}$, $\|r\|_\infty = .5$, $\|r\|_2 = \frac{\sqrt{3}}{2}$

• Setting $c_1 = 3 \frac{1}{3}$ minimizes $\|r\|_2$ with $r = \begin{pmatrix} -1/3 \\ -1/3 \\ 2/3 \end{pmatrix}$, $\|r\|_\infty = \frac{2}{3}$, $\|r\|_2 = \frac{\sqrt{6}}{3}$
Row Operations Matter

• Given a set of equations, they can be manipulated in various ways
• These manipulations often change the answer

• Thus, one should carefully choose the residual they want minimized

• Equivalent sets of equations lead to different answers when minimizing the corresponding residuals
Weighted Minimization

• Given \(r = b - Ac \), some equations may be deemed more important than others
• Scaling entries in the residual (before taking the norm) changes the relative importance of various equations
• This is accomplished by minimizing \(\|Dr\| \) for a diagonal matrix \(D \) with non-zero diagonal entries
• This is equivalent to row scaling: \(Dr = Db - DAc \)

• Column scaling doesn’t effect the residual, e.g. \(Dr = Db - DA\hat{D}^{-1}(\hat{D}c) \)
• So, it can be used to preserve symmetry: \(Dr = Db - (DAD^T)(D^{-T}c) \)
 • when \(A \) is square and symmetric
Least Squares

• Minimizing $\|r\|_2$ is referred to as least squares, and the resulting solution is referred to as the least squares solution (it’s really a least squares solution)
 • A least squares solution is the unique solution when $\|r\|_2 = 0$
• Minimizing $\|Dr\|_2$ is referred to as weighted least squares

• $\|r\|_2$ is minimized when $\|r\|_2^2$ is minimized
• And $\|r\|_2^2 = r \cdot r = (b - Ac) \cdot (b - Ac) = c^T A^T Ac - 2b^T Ac + b^T b$ is minimized when $c^T A^T Ac - 2b^T Ac$ is minimized
 • Thus, minimize $c^T A^T Ac - 2b^T Ac$
• For weighted least squares, minimize $c^T A^T D^2 Ac - 2b^T D^2 Ac$
Unit 9
Basic Optimization
The Jacobian of $F(c) = \left(F_1(c), F_2(c), \ldots, F_m(c) \right)$ has entries $J_{ik} = \frac{\partial F_i}{\partial c_k}(c)$.

Thus, the Jacobian $J(c) = F'(c) = \left(\frac{\partial F_1}{\partial c_1}(c), \frac{\partial F_1}{\partial c_2}(c), \ldots, \frac{\partial F_1}{\partial c_n}(c) \right)$.

Jacobian
Gradient

- Consider the scalar (output) function $f(c)$ with multi-dimensional input c.
- The Jacobian of $f(c)$ is $J(c) = \left(\frac{\partial f}{\partial c_1}(c) \quad \frac{\partial f}{\partial c_2}(c) \quad \ldots \quad \frac{\partial f}{\partial c_n}(c) \right)$
- The gradient of $f(c)$ is $\nabla f(c) = J^T(c) = \begin{pmatrix} \frac{\partial f}{\partial c_1}(c) \\ \frac{\partial f}{\partial c_2}(c) \\ \vdots \\ \frac{\partial f}{\partial c_n}(c) \end{pmatrix}$
- In 1D, both $J(c)$ and $\nabla f(c) = J^T(c)$ are the usual $f'(c)$.
Critical Points

- To identify critical points of $f(c)$, set the gradient to zero: $\nabla f(c) = 0$

$$\begin{pmatrix}
\frac{\partial f}{\partial c_1}(c) \\
\frac{\partial f}{\partial c_2}(c) \\
\vdots \\
\frac{\partial f}{\partial c_n}(c)
\end{pmatrix} = 0 \text{ or } \begin{pmatrix}
\frac{\partial f}{\partial c_1}(c) = 0 \\
\frac{\partial f}{\partial c_2}(c) = 0 \\
\vdots \\
\frac{\partial f}{\partial c_n}(c) = 0
\end{pmatrix}$$

- This is a system of equations:

- Any c that simultaneously solves all the equations is a critical point

- In 1D, this is the usual $f''(c) = 0$
Jacobian of the Gradient

• Taking the Jacobian of the column vector gradient gives:

\[
\begin{bmatrix}
\frac{\partial^2 f}{\partial c_1 \partial c_1}(c) & \frac{\partial^2 f}{\partial c_2 \partial c_1}(c) & \cdots & \frac{\partial^2 f}{\partial c_n \partial c_1}(c) \\
\frac{\partial^2 f}{\partial c_1 \partial c_2}(c) & \frac{\partial^2 f}{\partial c_2 \partial c_2}(c) & \cdots & \frac{\partial^2 f}{\partial c_n \partial c_2}(c) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial c_1 \partial c_n}(c) & \frac{\partial^2 f}{\partial c_2 \partial c_n}(c) & \cdots & \frac{\partial^2 f}{\partial c_n \partial c_n}(c)
\end{bmatrix}
\]

• The \(J(\nabla f(c)) \) =

• Note: \(\frac{\partial^2 f}{\partial c_2 \partial c_1} = \frac{\partial}{\partial c_2} \left(\frac{\partial f}{\partial c_1} \right) = f_{c_1 c_2} \)
The Hessian of $f(c)$ is $H(c) = J(\nabla f(c))^T$ and has entries $H_{ik} = \frac{\partial^2 f}{\partial c_i \partial c_k}(c)$.

The Hessian is $H(c) = \begin{pmatrix} \frac{\partial^2 f}{\partial c_1^2}(c) & \frac{\partial^2 f}{\partial c_1 \partial c_2}(c) & \cdots & \frac{\partial^2 f}{\partial c_1 \partial c_n}(c) \\ \frac{\partial^2 f}{\partial c_2 \partial c_1}(c) & \frac{\partial^2 f}{\partial c_2^2}(c) & \cdots & \frac{\partial^2 f}{\partial c_2 \partial c_n}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial c_n \partial c_1}(c) & \frac{\partial^2 f}{\partial c_n \partial c_2}(c) & \cdots & \frac{\partial^2 f}{\partial c_n^2}(c) \end{pmatrix}$.

$H(c)$ is symmetric, when the order of differentiation doesn’t matter.

In 1D, this is the usual $f''''(c)$.
Differential Forms

- Vector valued function: $dF(c) = J(F(c))\, dc$
- Substitute ∇f for F to get: $d\nabla f(c) = J(\nabla f(c))\, dc = H^T(c)\, dc$
- Scalar valued function: $df(c) = J(f(c))\, dc$
- Take the transpose: $df(c) = dc^T \nabla f(c)$
- Take (another) differential: $d^2 f(c) = J(dc^T \nabla f(c))\, dc$
- Some hand waving: $d^2 f(c) = dc^T H^T(c)\, dc = dc \cdot H^T(c)\, dc$
Classifying Critical Points

- Given a critical point c^*, i.e. with $\nabla f(c^*) = 0$, the Hessian is used to classify it.
- If $H(c^*)$ is positive definite, then c^* is a local minimum.
- If $H(c^*)$ is negative definite, then c^* is a local maximum.
- Otherwise, $H(c^*)$ is indefinite, and c^* is a saddle point.
Classifying Critical Points (in 1D)

- In 1D, given critical point c^*, i.e. with $\nabla f(c^*) = f'(c^*) = 0$, the Hessian is used to classify it.
- In 1D, $H(c^*) = (f''(c^*))$ is a size 1x1 diagonal matrix with eigenvalue $f''(c^*)$.

- If $H(c^*)$ is **positive definite** with eigenvalue $f''(c^*) > 0$, then c^* is a local minimum.
 - As usual, $f''(c^*) > 0$ implies concave up and a local min.
- If $H(c^*)$ is **negative definite** with eigenvalue $f''(c^*) < 0$, then c^* is a local maximum.
 - As usual, $f''(c^*) < 0$ implies concave down and a local max.
- Otherwise, $H(c^*)$ is indefinite with eigenvalue $f''(c^*) = 0$, and c^* is a saddle point.
 - As usual, $f''(c^*) = 0$ implies an inflection point (not a local extrema).
Quadratic Form

• The quadratic form of a square matrix \tilde{A} is
 \[f(c) = \frac{1}{2} c^T \tilde{A} c - \tilde{b}^T c + \tilde{c} \]
 • In 1D, $f(c) = \frac{1}{2} \tilde{a} c^2 - \tilde{b} c + \tilde{c}$

• Minimize $f(c)$ by (first) finding critical points where $\nabla f(c) = 0$

• Note $\nabla f(c) = \frac{1}{2} \tilde{A} c + \frac{1}{2} \tilde{A}^T c - \tilde{b}$, since $J(c^T v) = J(v^T c) = v^T$ (the gradient is v)
 • Solve the symmetric system $\frac{1}{2}(\tilde{A} + \tilde{A}^T)c = \tilde{b}$ to find critical points

• When \tilde{A} is symmetric, $\nabla f(c) = \tilde{A} c - \tilde{b} = 0$ is satisfied when $\tilde{A} c = \tilde{b}$
 • In 1D, the critical point is on the line of symmetry $\tilde{c} = \frac{\tilde{b}}{\tilde{a}}$
 • That is, solve $\tilde{A} c = \tilde{b}$ to find the critical point
Quadratic Form

- The Hessian of $f(c)$ is $H = \frac{1}{2} (\tilde{A}^T + \tilde{A})$ or just \tilde{A} when \tilde{A} is symmetric.
- When \tilde{A} is SPD, the solution to $\tilde{A}c = \tilde{b}$ is a minimum.
- When \tilde{A} is symmetric negative definite, the solution to $\tilde{A}c = \tilde{b}$ is a maximum.
- When \tilde{A} is indefinite, the solution to $\tilde{A}c = \tilde{b}$ is a saddle point.

- In 1D, $H = (\tilde{a})$ is a size 1×1 diagonal matrix with eigenvalue \tilde{a}.
- As usual, $\tilde{a} > 0$ implies concave up and a local min.
- As usual, $\tilde{a} < 0$ implies concave down and a local max.
- As usual, $\tilde{a} = 0$ implies an inflection point (not a local extrema).
Recall: Least Squares (Unit 8)

- Minimizing $\|r\|_2$ is referred to as least squares, and the resulting solution is referred to as the least squares solution (it’s really a least squares solution)
 - A least squares solution is the unique solution when $\|r\|_2 = 0$
- Minimizing $\|Dr\|_2$ is referred to as weighted least squares

- $\|r\|_2$ is minimized when $\|r\|^2_2$ is minimized
- And $\|r\|^2_2 = r \cdot r = (b - Ac) \cdot (b - Ac) = c^T A^T Ac - 2b^T Ac + b^T b$ is minimized when $c^T A^T Ac - 2b^T Ac$ is minimized
- Thus, minimize $c^T A^T Ac - 2b^T Ac$
- For weighted least squares, minimize $c^T A^T D^2 Ac - 2b^T D^2 Ac$
Normal Equations

• $c^T A^T D^2 A c - 2 b^T D^2 A c$ has the same minimum as $\frac{1}{2} c^T A^T D^2 A c - b^T D^2 A c$

• This is a quadratic form with symmetric $\tilde{A} = A^T D^2 A$ and $\tilde{b} = A^T D^2 b$

• The critical point is found from solving $\tilde{A} c = \tilde{b}$ or $A^T D^2 A c = A^T D^2 b$

• Weighted least squares defaults to ordinary least squares when $D = I$

• For (unweighted) least squares, solve $A^T A c = A^T b$

• These are called the normal equations
Hessian

• Recall: A is a tall (or square) full rank matrix with size $m \times n$ where $m \geq n$

• The Hessian $H = \tilde{A} = A^T A = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T = V \Lambda V^T$

 • where $\Lambda = \Sigma^T \Sigma$ is a size $n \times n$ matrix of (nonzero) singular values squared

• $HV = V \Lambda$ illustrates that H has all positive eigenvalues (and so is SPD)

• That is, the critical point is indeed a minimum (as desired)

For weighted least squares:

• Nonzero diagonal elements in D implies that $DAc = 0$ if and only if $Ac = 0$

 • That is, a full column rank A implies a full column rank DA

• Then, the SVD of DA can be used to prove that $H = (DA)^T (DA)$ is SPD
Unit 10
Solving Least Squares
Normal Equations

• Let \tilde{A} have full column rank, and be size mxn with $m \geq n$

• Diagonal (nonzero) weighting $A = D\tilde{A}$ does not change the rank/size
 • but changes the answer when $D \neq I$ and $m \neq n$

• Minimizing $||r||_2 = ||b - Ac||_2$ leads to the normal equations $A^T Ac = A^T b$ for the critical point

• Since $A^T A$ is SPD, $A^T Ac = A^T b$ has a unique solution obtainable via fast/efficient SPD solvers

• When b is in the range of A, the unique solution to $A^T Ac = A^T b$ makes $r = 0$, and thus is also the unique solution to $Ac = b$
 • When A is square ($m = n$), and full rank, b is always in the range of A
Condition Number for the Normal Equations

• Compare \(A = U \Sigma V^T \) and \(A^T A = V \Sigma^T \Sigma V^T = V \Lambda V^T \) where \(\Lambda = \Sigma^T \Sigma \) is a diagonal size \(n \times n \) matrix of singular values squared.

• Since the singular values of \(A^T A \) are the square of those in \(A \), the condition number \(\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} \) of \(A^T A \) is also squared (compared to \(A \)).
 • Thus, solving the normal equations requires twice the precision (e.g. \((10^7)^2 = 10^{14} \)).
 • It takes twice as much precision to get the same number of significant digits!

• The normal equations are not the preferred approach (unless \(A \) is extremely well conditioned).

• However, (like the SVD) it is a great tool for theoretical purposes
 • Can transform any full rank matrix into an SPD system.
Understanding Least Squares

• When $A = U\Sigma V^T$ has full column rank, $\Sigma = \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix}$ with $\hat{\Sigma}$ a size nxn diagonal matrix of (strictly) positive singular values
 • The 0 submatrix is size $(m-n)xn$ and doesn't exist when $m = n$

• Note: $A^TA = V(\hat{\Sigma} 0) \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} V^T = V\hat{\Sigma}^2 V^T$ and $(A^TA)^{-1} = V\hat{\Sigma}^{-2} V^T$

• $c = (A^TA)^{-1}A^Tb = V\hat{\Sigma}^{-2} V^T V(\hat{\Sigma} 0) U^T b = V(\hat{\Sigma}^{-1} 0) U^T b$

• $Ac = U \begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} V^T V(\hat{\Sigma}^{-1} 0) U^T b = U \begin{pmatrix} I_{nxn} & 0 \\ 0 & 0 \end{pmatrix} U^T b$

• $r = b - Ac = UI_{mxm} U^T b - U \begin{pmatrix} I_{nxn} & 0 \\ 0 & 0 \end{pmatrix} U^T b = U \begin{pmatrix} 0 & 0 \\ 0 & I_{(m-n)x(m-n)} \end{pmatrix} U^T b$
Recall: Summary (Unit 3)

- The columns of V that do not correspond to “nonzero” singular values form an orthonormal basis for the null space of A.
- The remaining columns of V form an orthonormal basis for the space perpendicular to the null space of A (parameterizing meaningful inputs).

- The columns of U corresponding to “nonzero” singular values form an orthonormal basis for the range of A.
- The remaining columns of U form an orthonormal basis for the (unattainable) space perpendicular to the range of A.

- One can drop the columns of U and V that do not correspond to “nonzero” singular values and still obtain a valid factorization of A.
- One can drop the columns of U and V that correspond to “smaller” singular values and still obtain a reasonable approximation of A.
Understanding Least Squares

- A has only n singular values
- So, only the first n columns of U (which has m columns) span the range of A
- Write \(\begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} = U^T b \)
- \hat{b}_r (which is size $n \times 1$) represents the part of b in the range of A
- \hat{b}_z (which is size $(m - n) \times 1$) represents the part of b which is orthogonal to the range of A
- Then: $c = V \hat{\Sigma}^{-1} \hat{b}_r$, $Ac = U \begin{pmatrix} \hat{b}_r \\ 0 \end{pmatrix}$, and $r = U \begin{pmatrix} 0 \\ \hat{b}_z \end{pmatrix}$
Recall: Singular Value Decomposition (Unit 3)

• Factorization of any size $m \times n$ matrix: $A = U \Sigma V^T$

• Σ is $m \times n$ diagonal with non-negative diagonal entries (called singular values)

• U is $m \times m$ orthogonal, V is $n \times n$ orthogonal (their columns are called singular vectors)

 • Orthogonal matrices have orthonormal columns (an orthonormal basis), so their transpose is their inverse. They preserve inner products, and thus are rotations, reflections, and combinations thereof

 • If A has complex entries, then U and V are unitary (conjugate transpose is their inverse)

• Introduced and rediscovered many times: Beltrami 1873, Jordan 1875, Sylvester 1889, Autonne 1913, Eckart and Young 1936. Pearson introduced principal component analysis (PCA) in 1901, which uses SVD. Numerical methods by Chan, Businger, Golub, Kahan, etc.
Orthogonal Matrices and the L2 norm

• An orthogonal \(\hat{Q} \) has \(\hat{Q} \hat{Q}^T = \hat{Q}^T \hat{Q} = I \)

\[
\|\hat{Q}r\|_2 = \sqrt{\hat{Q}r \cdot \hat{Q}r} = \sqrt{r^T \hat{Q}^T \hat{Q}r} = \sqrt{r^T r} = \|r\|_2
\]

\[
\|\hat{Q}^T r\|_2 = \sqrt{\hat{Q}^T r \cdot \hat{Q}^T r} = \sqrt{r^T \hat{Q} \hat{Q}^T r} = \sqrt{r^T r} = \|r\|_2
\]

• That is, orthogonal transformations preserve Euclidean distance
Understanding Least Squares

• Since U is orthogonal, $\|r\|_2 = \left\| U \begin{pmatrix} 0 \\ \hat{b}_z \end{pmatrix} \right\|_2 = \|\hat{b}_z\|_2$

• Consider the diagonalized SVD view of $Ac = b$ (for a full rank A):

 $U\Sigma V^T c = b$ or $\begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} \hat{c} = \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix}$

• The first block row gives $c = V\hat{\Sigma}^{-1}\hat{b}_r$, identical to the least squares solution

• The norm of the residual is $\left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} - \begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} \hat{c} \right\|_2 = \left\| \begin{pmatrix} 0 \\ \hat{b}_z \end{pmatrix} \right\|_2 = \|\hat{b}_z\|_2$, identical to the norm of the residual for the least squares solution

• The SVD approach gives the same (minimum residual) least squares solution
Recall: Gram-Schmidt (Unit 5)

• Orthogonalizes a set of vectors
• For each new vector, subtract its (weighted) dot product overlap with all prior vectors, making it orthogonal to them
• A-orthogonal Gram-Schmidt simply uses an A-weighted dot/inner product
• Given vector \vec{S}^q, subtract out the A-overlap with s^1 to s^{q-1} so that the resulting vector s^q has $< s^q, s^{\hat{q}} >_A = 0$ for $\hat{q} \in \{1, 2, \ldots, q - 1\}$
• That is, $s^q = \vec{S}^q - \sum_{\hat{q}=1}^{q-1} \frac{< \vec{S}^q, s^{\hat{q}} >_A}{< s^{\hat{q}}, s^{\hat{q}} >_A} s^{\hat{q}}$ where the two non-normalized $s^{\hat{q}}$ both require division by their norm (and $< s^{\hat{q}}, s^{\hat{q}} >_A = \| s^{\hat{q}} \|^2_A$)
• Proof: $< s^q, s^{\bar{q}} >_A = < \vec{S}^q, s^{\bar{q}} >_A - \frac{< \vec{S}^q, s^{\hat{q}} >_A}{< s^{\hat{q}}, s^{\hat{q}} >_A} < s^{\hat{q}}, s^{\hat{q}} >_A = 0$
Gram-Schmidt for QR Factorization

• From A, create a full rank Q with orthonormal columns
• For each column a_k, subtract the overlap with all prior columns in Q and make the result unit length:

$$q_k = \frac{a_k - \sum_{\hat{k}=1}^{k-1} <a_k, q_{\hat{k}}> q_{\hat{k}}}{\left\|a_k - \sum_{\hat{k}=1}^{k-1} <a_k, q_{\hat{k}}> q_{\hat{k}}\right\|_2}$$

• Define $r_{\hat{k}k} = <a_k, q_{\hat{k}}> \text{ for } k > \hat{k}$, and $r_{kk} = \left\|a_k - \sum_{\hat{k}=1}^{k-1} <a_k, q_{\hat{k}}> q_{\hat{k}}\right\|_2$
• Then $q_k = \frac{a_k - \sum_{\hat{k}=1}^{k-1} r_{\hat{k}k} q_{\hat{k}}}{r_{kk}}$, and thus $a_k = r_{kk} q_k + \sum_{\hat{k}=1}^{k-1} r_{\hat{k}k} q_{\hat{k}} = \sum_{\hat{k}=1}^{k} r_{\hat{k}k} q_{\hat{k}}$
• This gives $A = QR$ where R is upper triangular and $Q^T Q = I$
Gram-Schmidt for QR (an example)

• Example: $A = QR$ with upper triangular R

$\begin{pmatrix} 3 & -3 & 3 \\ 2 & -1 & 1 \\ 2 & -3 & 3 \end{pmatrix} = \begin{pmatrix} 3/5 & 0 & 0 \\ 2/5 & 1/2 & 1/2 \\ 2/5 & -1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 5 & -5 & 5 \\ 0 & 2 & -4 \\ 0 & 0 & 2 \end{pmatrix}$

• Note that $Q^TQ = I_{3x3}$ since the columns of Q are orthonormal

• However, $QQ^T \neq I_{5x5}$ since Q is only a subset of an orthogonal matrix
Not Good for Large Matrices

• Gram-Schmidt has too much numerical drift, when used on a large number of vectors
• Don’t use Gram-Schmidt to find $A = QR$
• But it does provide a good conceptual way to think about $A = QR$
QR Factorization

• Consider $A = QR$ with upper triangular R and $Q^T Q = I$

• Q is size mxn (just like A) with n orthonormal columns

• Let \bar{Q} be the matrix with $m - n$ orthonormal columns that span the space perpendicular to the range of Q

• Then, the size mxm matrix $\hat{Q} = (Q \quad \bar{Q})$ is orthogonal

• $\|r\|_2 = \|\bar{Q}^T r\|_2 = \left\| \begin{pmatrix} Q^T \\ \bar{Q}^T \end{pmatrix} (b - QRC) \right\|_2 = \left\| \begin{pmatrix} Q^T b - Rc \\ \bar{Q}^T b \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} \hat{b}_Q - Rc \\ \hat{\bar{b}}_Q \end{pmatrix} \right\|_2$

• Only the first (block) row varies with c, so $\|r\|_2$ is minimized by solving $Rc = Q^T b$
 • Then, $\|r\|_2 = \|\bar{Q}^T b\|_2 = \|\hat{\bar{b}}_Q\|_2$

• Since R is upper triangular, $Rc = \hat{b}_Q$ can be solved via back-substitution
Householder Transform

• A unit normal \hat{v} implicitly defines a plane orthogonal to it
• $H = I - 2\hat{v}\hat{v}^T$ reflects vectors across that plane
• $Ha = a - 2(\hat{v}^T a) \hat{v}$
• H is orthogonal with $H = H^T = H^{-1}$
• Don’t form the size $m \times m$ matrix H
• Instead, apply it using only \hat{v}
Householder Transform for QR

• Choose the directions $v_k = a - Ha$ in order to zero out elements

• E.g. $v_k = \begin{pmatrix} a_1 \\ \vdots \\ a_{k-1} \\ a_k \\ a_{k+1} \\ \vdots \\ a_n \end{pmatrix} - \begin{pmatrix} a_1 \\ \vdots \\ a_{k-1} \\ \gamma \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \hat{a}_k - \gamma \hat{e}_k$ where $\hat{a}_k = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_k \\ a_{k+1} \\ \vdots \\ a_n \end{pmatrix}$

• Ha (as a reflection) should be the same length as a, so $\gamma = \pm \|\hat{a}_k\|_2$

• Then, $v_k = \hat{a}_k \pm \|\hat{a}_k\|_2 \hat{e}_k$, which is normalized to $\hat{v}_k = \frac{v_k}{\|v_k\|_2}$

• For robustness, $v_k = \hat{a}_k + S(a_k)\|\hat{a}_k\|_2 \hat{e}_k$ where $S(a_k) = \pm 1$ is the sign function
Householder Transform (an example)

- Let \(a_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \) and consider \(v_k = \hat{a}_k + S(a_k)\|\hat{a}_k\|_2 \hat{e}_k \)

- Then, \(\hat{a}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \), \(v_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + S(2)\sqrt{9} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} \), \(\hat{v}_1 = \frac{1}{\sqrt{30}} \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} \)

- Then, \(H_1 a_1 = a_1 - 2(\hat{v}_1^T a_1) \hat{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} - 2 \frac{15}{\sqrt{30}} \frac{1}{\sqrt{30}} \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} \)
Householder Transform (another example)

• Let \(a_2 = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix} \) and consider \(v_k = \hat{a}_k + S(a_k)\|\hat{a}_k\|_2 \hat{e}_k \)

• Then, \(\hat{a}_2 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \), \(v_2 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} + S(3)\sqrt{25} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix} \), \(\hat{v}_2 = \frac{1}{\sqrt{20}} \begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix} \)

• Then, \(H_2 a_2 = a_2 - 2 (\hat{v}_2^T a_2) \hat{v}_2 = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix} - 2 \frac{10}{\sqrt{20}} \frac{1}{\sqrt{20}} \begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 0 \end{pmatrix} \)
Householder Transform for QR

• For each column of A, construct the Householder transform that zeroes out entries below the diagonal

• Then $H_n H_{n-1} \cdots H_2 H_1 A = \begin{pmatrix} R \\ 0 \end{pmatrix}$ and $H_n H_{n-1} \cdots H_2 H_1 b = \begin{pmatrix} \hat{b}_Q \\ \hat{b}_{\tilde{Q}} \end{pmatrix}$

• Apply each H_k efficiently using \hat{v}_k, and remember to apply it to all columns $\geq k$
 • It doesn’t affect columns $< k$ (because of all the zeros at the top of \hat{v}_k)

• Note: H_n is required to get zeroes at the bottom of the last column

• Letting $\hat{Q}^T = H_n H_{n-1} \cdots H_2 H_1$ gives $\hat{Q}^T A = \begin{pmatrix} R \\ 0 \end{pmatrix}$ or $A = \hat{Q} \begin{pmatrix} R \\ 0 \end{pmatrix}$

• $\|r\|_2 = \|\hat{Q}^T r\|_2 = \|\hat{Q}^T \left(b - \hat{Q} \begin{pmatrix} R \\ 0 \end{pmatrix} c \right)\|_2 = \|\left(\hat{b}_Q \right) - \begin{pmatrix} Rc \\ 0 \end{pmatrix}\|_2$

• Solve $Rc = \hat{b}_Q$ via back-substitution to minimize $\|r\|_2$ to a value of $\|\hat{b}_Q\|_2$
Unit 11
Zero Singular Values
Underdetermined Systems

• Consider drawing a line \(y = c_1 + c_2 x \) through 3 data points
• When the points are colinear, there is a unique solution
• When the points are not colinear, there is a least squares solution
• When the points are co-located (i.e. identical), there are infinite solutions
Underdetermined Systems

- The Vandermonde matrix equation is
 \[
 \begin{pmatrix}
 1 & x_1 \\
 1 & x_2 \\
 1 & x_3 \\
 \end{pmatrix}
 \begin{pmatrix}
 c_1 \\
 c_2 \\
 \end{pmatrix} =
 \begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 \end{pmatrix}
 \]

- Let \(x_1 = x_2 = x_3 \), so that the columns are multiples of each other (and the matrix is rank 1)

- If \(y_1 = y_2 = y_3 \), the right hand side is in the range of the rank 1 columns implying infinite solutions

- Otherwise, the right hand side is not in the range of the columns implying no solutions (toss away the second column and \(c_2 \), then do least squares on \(c_1 \))
(Careful) Variable Classification

Consider \[
\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix}
= \begin{pmatrix}
1 \\
2 \\
3 \\
0
\end{pmatrix}
\]

• The first two rows, \(c_1 = 1\) and \(c_1 = 2\), overdetermine \(c_1\)
• The third row, \(c_2 = 3\), uniquely determines \(c_2\)
• The last row, \(0c_3 = 0\), leaves \(c_3\) underdetermined with infinite possibilities

• It’s often misleading to classify an entire system (as either having a unique solution, no solution, or infinite solutions)
• Rather, one should do the best they can with what has been given
 • E.g. Shouldn’t skip dinner because of uncertainties about what time the sun will go down
Understanding Underdetermined Systems

• Transform $A c = b$ into $\Sigma \hat{c} = \hat{b}$ (as usual)
• For each $\sigma_k \neq 0$, compute $\hat{c}_k = \frac{\hat{b}_k}{\sigma_k}$ (as usual)
• When $\sigma_k = 0$, \hat{c}_k is undefined (moreover, division by a small σ_k is dubious)
• Tall matrices have extra rows with $0 = \hat{b}_k$ ($\sigma_k = 0$ rows contribute to this too), and nonzero \hat{b}_k imply a nonzero residual
• Wide matrices have extra columns of zeros, leaving some \hat{c}_k undetermined (just like $\sigma_k = 0$ columns)
Understanding Underdetermined Systems

• Can write $U (\hat{\Sigma} \ 0)V^T$ for wide matrices, similar to $A = U \left(\hat{\Sigma} \right) V^T$ for tall matrices
 - In general, $\hat{\Sigma}$ may contain zeros on the diagonal (for tall matrices too, if not full rank)
• For any matrix, can write $A = U \left(\hat{\Sigma} \ 0 \ 0 \right)V^T$ with $\hat{\Sigma}$ diagonal and full rank
• Then, $\Sigma \hat{c} = \hat{b}$ has the form $\left(\hat{\Sigma} \ 0 \right) \left(\hat{c}_r \right) = \left(\hat{b}_r \right)$

- $\|r\|_2 = \|U^T (b - Ac)\|_2 = \left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} - \begin{pmatrix} \hat{\Sigma} \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} - \begin{pmatrix} \hat{\Sigma} \hat{c}_r \\ 0 \end{pmatrix} \right\|_2$
• Thus, solving $\hat{\Sigma} \hat{c}_r = \hat{b}_r$ for \hat{c}_r minimizes the residual to $\|r\|_2 = \|\hat{b}_z\|_2$
• Meanwhile, any values are acceptable for the non-determined \hat{c}_z
Minimum Norm Solution

• Setting $\hat{c}_z = 0$ stresses that these parameters have no bearing on the solution.
• This is more sensical than setting \hat{c}_z to some nonzero value as if those values mattered.
• Example:
 • Consider a variable related to how a hat is worn while driving, which could matter when the hat blocks the sun or keeps longer hair away from the eyes.
 • Someone with short hair driving at night would likely have no driving dependence on a hat; in this case, reporting information about hats is misleading.

So, $c = V\hat{c} = V \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = V \begin{pmatrix} \hat{\Sigma}^{-1} \hat{b}_r \\ 0 \end{pmatrix} = \sum_{\sigma_k \neq 0} \nu_k \frac{\hat{b}_k}{\sigma_k} = \sum_{\sigma_k \neq 0} \nu_k \frac{u_k^T b}{\sigma_k}$
Pseudo-Inverse

• The minimum norm solution is \[c = \left(\sum_{\sigma_k \neq 0} \frac{v_k u_k^T}{\sigma_k} \right) b = A^+ b \]
 where the pseudo-inverse is \[A^+ = \sum_{\sigma_k \neq 0} \frac{v_k u_k^T}{\sigma_k} \]

• When A is square and full rank \[A^+ = A^{-1} \]

• Each term is an outer product between corresponding columns of U and V, weighted by one over their corresponding singular value.

• Each term is a size nxm matrix, so this a sum of matrices.
Sum of Rank One Matrices

\[A c = U \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} V^T c = U \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} (\hat{c}_r) = U (\hat{\Sigma} \hat{c}_r) = \sum_{\sigma_k \neq 0} u_k \sigma_k \hat{c}_k = \sum_{\sigma_k \neq 0} u_k \sigma_k v^T_k c = (\sum_{\sigma_k \neq 0} \sigma_k u_k v^T_k) c \]

Thus, \[A = \sum_{\sigma_k \neq 0} \sigma_k u_k v^T_k \]

Each term is an outer product between corresponding columns of \(U \) and \(V \), weighted by their corresponding singular value.

Each term is a size \(m \times n \) matrix (the same size as \(A \)).

Each term is rank 1, since every column in the term is a multiple of \(u_k \).
Recall: Understanding Ac (unit 3)

\[
Ac = \begin{pmatrix}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .028 & .644 & -.509 \\
.750 & -.371 & -.542 & .079
\end{pmatrix}
\begin{pmatrix}
25.5 \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix}
\]

\[
= \begin{pmatrix}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .028 & .644 & -.509 \\
.750 & -.371 & -.542 & .079
\end{pmatrix}
\begin{pmatrix}
25.5 \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
\sigma_1 v_1^T c \\
\sigma_2 v_2^T c \\
\sigma_3 v_3^T c
\end{pmatrix}
\]

\[
= u_1 \sigma_1 v_1^T c + u_2 \sigma_2 v_2^T c + u_3 \sigma_3 v_3^T c + u_4 0
\]

- Ac projects c onto the basis vectors in V, scales by the associated singular values, and uses those results as weights on the basis vectors in U
Matrix Approximation

- Use the p largest singular values: $A \approx \sum_{k=1}^{p} \sigma_k u_k v_k^T$

- The pseudo-inverse is approximated similarly: $A^+ \approx \sum_{k=1}^{p} \frac{1}{\sigma_k} v_k u_k^T$

- This is the best rank p approximation to A, and the main idea behind principle component analysis (PCA)
 - Often, thousands/millions of terms can be thrown away keeping only 10 to 100 terms

- Can also drop small singular values: $A \approx \sum_{\sigma_k > \epsilon} \sigma_k u_k v_k^T$

- This makes the pseudo-inverse better conditioned: $A^+ \approx \sum_{\sigma_k > \epsilon} \frac{1}{\sigma_k} v_k u_k^T$
 - This relies on a good choice of $\epsilon > 0$
Recall: Approximating A (unit 3)

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{pmatrix}
\approx
\begin{pmatrix}
.141 & .855 & -.400 & -.851 \\
.344 & .456 & .278 & .780 \\
.547 & .083 & .640 & -.549 \\
.750 & -.371 & -.542 & .049
\end{pmatrix}
\begin{pmatrix}
25.5 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
.504 & .574 & .644
\end{pmatrix}
\]

- The first singular value is much bigger than the second, and so represents the vast majority of what A does (note, the vectors in U and V are unit length)
- Thus, one could approximate A quite well by only using the terms associated with the largest singular value
- This is not a valid factorization, but an approximation (and the idea behind PCA)
Rank One Updates

• For real time applications (real time decision making, etc.), iteratively add one term at a time (slowly improving the estimate)

\[c = A^+ b \approx \frac{u_1^T b}{\sigma_1} v_1 + \frac{u_2^T b}{\sigma_2} v_2 + \frac{u_3^T b}{\sigma_3} v_3 + \cdots \]

• Note the efficient ordering of the operations:
 • \(u_k^T b \) is \(m \) multiplies, and the result times \(v_k \) is \(n \) multiplies (for a total of \(m + n \) multiplies)
 • Don’t form the size \(nxm \) matrix!
 • Multiplying the size \(mxn \) matrix \(v_k u_k^T \) times \(b \) is \(m \cdot n \) multiplies
Computing the SVD

- $A^T A = V \Sigma^T \Sigma V^T$ so $(A^T A)V = V(\Sigma^T \Sigma)$
- $AA^T = U \Sigma \Sigma^T U^T$ so $(AA^T)U = U(\Sigma \Sigma^T)$

- If $\sigma_k \neq 0$, then σ_k^2 is an eigenvalue of both $A^T A$ and AA^T (with eigenvectors v_k and u_k respectively)

- Work with the smaller of $A^T A$ and AA^T (which are both SP(S)D) to find the eigenvalues σ_k^2
- Then, σ_k^2 can be used in both $A^T A$ and AA^T to find the corresponding eigenvectors
Finding Eigenvectors from Eigenvalues

• Given an eigenvalue \(\lambda \), form the matrix \(\hat{A} - \lambda I \)

• If \(\hat{A} \) is symmetric, then \(\hat{A} - \lambda I \) is symmetric

• \(\hat{A} - \lambda I \) has (at least) a rank 1 null space (from the definition of eigenvalues)

• Solve the linear system \((\hat{A} - \lambda I)v = 0 \) to find the eigenvector \(v \)
Condition Number of Eigenproblems

- The condition number for finding an eigenvalue is different than the condition number for solving a linear system.

- The condition number for finding an eigenvalue/eigenvector pair is $\frac{1}{\nu_L^T \nu_R}$ where ν_L and ν_R are the normalized left and right eigenvectors.

- Symmetric (Hermitian) matrices have identical left and right eigenvectors; so, $\nu_L^T \nu_R = 1$ and the condition number is 1.
The eigenvalue problem is typically written as \(\hat{A}v = \lambda v \).

Alternatively, \((\hat{A} - \lambda I)v = 0 \) implying that \(\hat{A} - \lambda I \) is singular.

Setting \(\det(\hat{A} - \lambda I) = 0 \) leads to a degree \(n \) characteristic polynomial equation in \(\lambda \) (for a size \(nxn \) matrix \(\hat{A} \)).

Finding the roots of this polynomial equation can be quite difficult.

- Recall how difficult it was to find roots for a mere cubic equation.
- Finding roots for degree \(n > 3 \) polynomials is undesirable!
Similarity Transforms

• Similarity transforms, which look like $T^{-1} \hat{A} T$, preserve the eigenstructure
 - $T^{-1} \hat{A} Tv = \lambda v$ or $\hat{A}(Tv) = \lambda(Tv)$ still has eigenvalue λ with a modified eigenvector Tv

• When \hat{A} is real and symmetric (complex and Hermitian), there exists an orthogonal (unitary) T that makes $T^{-1} \hat{A} T$ diagonal with real eigenvalues
 - e.g. $T = V$ for $A^T A = V \Sigma^T \Sigma V^T$ and $T = U$ for $AA^T = U \Sigma \Sigma^T U^T$

• Other interesting facts:
 - When \hat{A} has distinct eigenvalues, a T exists to make $T^{-1} \hat{A} T$ diagonal
 - Schur form: For any (square) matrix, a unitary T exists to make $T^{-1} \hat{A} T$ upper triangular with eigenvalues on the diagonal
 - Jordan form: Any (square) matrix can be put into a form with eigenvalues on the diagonal and nonzero off-diagonal elements only occurring on the band above the diagonal and only for defective eigenvalues (which are repeated eigenvalues that don’t possess a full set of eigenvectors)
Similarity Transforms via QR Iteration

- Starting with $\hat{A}^0 = \hat{A}$
- Compute the factorization $\hat{A}^q = Q^q R^q$ with orthogonal Q^q
- Then define $\hat{A}^{q+1} = R^q Q^q$

Note: $R^q Q^q = (Q^q)^T Q^q R^q Q^q = (Q^q)^T \hat{A}^q Q^q$ is a similarity transform of \hat{A}^q

- When the eigenvalues are distinct, \hat{A}^q converges to a triangular matrix
- When \hat{A} is symmetric, \hat{A}^q converges to a diagonal matrix
Power Method

- Computes the largest eigenvalue (great for rank 1 updates)
- Start with a $c^0 \neq 0$, and iterate $c^{q+1} = \hat{A}c^q$
- Suppose c^0 is a linear combination of eigenvectors: $c^0 = \sum_k \alpha_k v_k$
- Then $c^q = \hat{A}^q c^0 = \sum_k \alpha_k \hat{A}^q v_k = \sum_k \alpha_k \lambda_k^q v_k = \lambda_{\text{max}}^q \sum_k \alpha_k \left(\frac{\lambda_k}{\lambda_{\text{max}}} \right)^q v_k$
- As $q \to \infty$, $\left(\frac{\lambda_k}{\lambda_{\text{max}}} \right)^q \to 0$ for $\lambda_k < \lambda_{\text{max}}$; so, $c^q \to \lambda_{\text{max}}^q \alpha_{\text{max}} v_{\text{max}}$
- As $q \to \infty$, $\frac{(c^{q+1})_i}{(c^q)_i} \to \frac{\lambda_{\text{max}}^q \alpha_{\text{max}} (v_{\text{max}})_i}{\lambda_{\text{max}}^q \alpha_{\text{max}} (v_{\text{max}})_i} = \lambda_{\text{max}}$ for every component i of c
- **Deflation** removes an eigenvalue from \hat{A} by subtracting off its rank 1 update
 - The deflated $A^T A - \sigma_k^2 v_k v_k^T$ or $AA^T - \sigma_k^2 u_k u_k^T$ can then be used to compute the next largest eigenvalue (repeatedly)
Power Method

• If $c^0 = \sum_k \alpha_k v_k$ happens to have $\alpha_{max} = 0$, the method might fail (but roundoff errors can help)

• c^q needs to be periodically renormalized to stop it from growing too large

• When c^0 and \hat{A} are real valued, cannot obtain complex numbers

• When the largest eigenvalue is repeated, one needs to determine a basis for the multiple associated eigenvectors

• **Inverse Iteration** can be used to find the smallest eigenvalue of \hat{A}, since the largest eigenvalue of \hat{A}^{-1} is the smallest eigenvalue of \hat{A}
 • $c^{q+1} = \hat{A}^{-1} c^q$ is updated by solving $\hat{A} c^{q+1} = c^q$ to find c^{q+1}
 • Useful for finding the condition number $\frac{\sigma_{max}}{\sigma_{min}}$
Unit 12
Regularization
Adding the Identity

- Add $Ic = 0$ to drive components related to small/zero singular values to zero
 - Motivated by minimal norm solution
- Combine with the original system $(\begin{pmatrix} A \\ I \end{pmatrix}) c = \begin{pmatrix} b \\ 0 \end{pmatrix}$ so that $(\begin{pmatrix} A \\ I \end{pmatrix})$ has full column rank
 - Can be solved with Householder, etc.
- Normal equations: $(A^T \quad I) \begin{pmatrix} A \\ I \end{pmatrix} c = (A^T \quad I) \begin{pmatrix} b \\ 0 \end{pmatrix}$ or $(A^T A + I)c = A^T b$
- Use $A = U\Sigma V^T$ to get $(V\Sigma^T \Sigma V^T + I)c = V\Sigma^T \hat{b}$ or $(\Sigma^T \Sigma + I)\hat{c} = \Sigma^T \hat{b}$
- Use $\Sigma = \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix}$ to get $\begin{pmatrix} \hat{\Sigma}^T & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} + I) \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = \begin{pmatrix} \hat{\Sigma}^T & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix}$
- Then $\begin{pmatrix} \hat{\Sigma}^2 & 0 \\ 0 & 0 \end{pmatrix} + I) \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = \begin{pmatrix} \hat{\Sigma} \hat{b}_r \\ \hat{b}_z \end{pmatrix}$, which gives $\hat{c}_z = 0$ as desired
Perturbation

• However, \(\begin{pmatrix} \hat{\Sigma}^2 & 0 \\ 0 & 0 \end{pmatrix} + I \) \(\begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} \) = \(\begin{pmatrix} \hat{\Sigma} \hat{b}_r \\ 0 \end{pmatrix} \) perturbs the equations for the \(\hat{c}_r \) terms as well.

• Instead of the usual \(\hat{c}_k = \frac{1}{\sigma_k} \hat{b}_k \), the new solution is \(\hat{c}_k = \frac{\sigma_k}{\sigma_k^2 + 1} \hat{b}_k \):

 - This perturbs these \(\hat{c}_k \) away from their correct (unique or least squares) solution.
 - Adding \(Ic = 0 \) interferes with \(Ac = b \) for the \(\hat{c}_k \) with \(\sigma_k \neq 0 \).

• For larger \(\sigma_k \gg 1 \), \(\frac{\sigma_k}{\sigma_k^2 + 1} \approx \frac{1}{\sigma_k} \) and the perturbation of the (unique or least squares) solution is negligible.

• For \(\sigma_k \approx 1 \), the perturbation is quite large.

• For \(\sigma_k \ll 1 \), \(\frac{\sigma_k}{\sigma_k^2 + 1} \approx 0 \) drives the associated \(\hat{c}_k \) towards zero.
Regularization

• Adding $\epsilon I c = 0$ (with $\epsilon > 0$) instead of $I c = 0$, that is $\left(\begin{array}{c} A \\ \epsilon I \end{array} \right) c = \left(\begin{array}{c} b \\ 0 \end{array} \right)$

• Normal equations: $(A^T \epsilon I) \left(\begin{array}{c} A \\ \epsilon I \end{array} \right) c = (A^T \epsilon I) \left(\begin{array}{c} b \\ 0 \end{array} \right)$ or $(A^T A + \epsilon^2 I)c = A^T b$

• This results in a modified

$$
\left(\begin{array}{cc} \Sigma^2 & 0 \\ 0 & 0 \end{array} \right) + \epsilon^2 I \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = \begin{pmatrix} \Sigma \hat{b}_r \\ 0 \end{pmatrix}
$$

• Instead of the usual $\hat{c}_k = \frac{1}{\sigma_k} \hat{b}_k$, the new solution is $\hat{c}_k = \frac{\sigma_k}{\sigma_k^2 + \epsilon^2} \hat{b}_k$

• This has limited effect on $\sigma_k \gg \epsilon$

• This helps to stabilize/regularize the solution for $\sigma_k \approx \epsilon$ and $\sigma_k < \epsilon$
 • driving the associated \hat{c}_k towards zero
A Nonzero Initial Guess

• Can view setting $Ic = 0$ as guessing a solution of $c = 0$
• Instead, suppose one had an initial guess of $c = c^*$
• Add $Ic = c^*$ to the equations to get: $\begin{pmatrix} A \\ I \end{pmatrix} c = \begin{pmatrix} b \\ c^* \end{pmatrix}$
• Normal equations: $(A^TA + I)c = A^Tb + c^*$
• This leads to $(\Sigma^T \Sigma + I)\hat{c} = \Sigma^T \hat{b} + V^T c^* = \Sigma^T \hat{b} + \hat{c}^*$
• Then, $\hat{c}_k = \frac{\sigma_k}{\sigma_k^2 + 1} \hat{b}_k + \frac{1}{\sigma_k^2 + 1} \hat{c}_k^*$ tends towards \hat{b}_k for larger σ_k (as desired) but tends towards \hat{c}_k^* for smaller σ_k (with $\hat{c}_k = \hat{c}_k^*$ for any $\sigma_k = 0$)
• Adding $\epsilon Ic = \epsilon c^*$ gives $\hat{c}_k = \frac{\sigma_k}{\sigma_k^2 + \epsilon^2} \hat{b}_k + \frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \hat{c}_k^*$
A Nonzero Initial Guess

• Rewrite this as \(\hat{c}_k = \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \hat{c}_k^* \)

 • Note the convex weights: \(\left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) = 1 \)

• This is a convex combination of the (unique or least squares) solution \(\frac{\hat{b}_k}{\sigma_k} \) and the initial guess \(\hat{c}_k^* \)

 • Also valid for an initial guess of \(\hat{c}_k^* = 0 \)

• Large \(\sigma_k \) (\(\sigma_k \gg \epsilon \)) tend toward the usual solution: \(\hat{c}_k = \frac{\hat{b}_k}{\sigma_k} \)

• Small \(\sigma_k \) (\(\sigma_k \ll \epsilon \)) tend toward the initial guess: \(\hat{c}_k = \hat{c}_k^* \)
An Iterative Approach

• First, solve with $\epsilon I c = 0$ to get $\hat{c}_k = \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k$

• Then, use this solution as an initial guess and solve again to get:

$\hat{c}_k = \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k = \left(1 + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \right) \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k$

• Then, use this solution as an initial guess and solve again to get:

$\hat{c}_k = \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \left(1 + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \right) \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k$

$= \left(1 + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \right) + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k \frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2}$
Convergence

• Continuing leads to \(\hat{c}_k = \left(1 + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right) + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right)^2 + \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \right)^3 + \cdots \right) \left(\frac{\sigma_k^2}{\sigma_k^2 + \epsilon^2} \right) \hat{b}_k / \sigma_k \)

• The geometric series in parenthesis has \(r = \frac{\epsilon^2}{\sigma_k^2 + \epsilon^2} \)

• It converges to \(\frac{1}{1-r} = \frac{\sigma_k^2 + \epsilon^2}{\sigma_k^2} \) giving \(\hat{c}_k = \frac{\hat{b}_k}{\sigma_k} \) in the limit (as desired)

• When \(\sigma_k = 0 \), the convex weights are 0 and 1, so \(\hat{c}_k = 0 \) identically at every step
 • This is the desired minimum norm solution for these \(\sigma_k \)
Convergence Rate

- After q iterations, the geometric series sums to
 \[
 \frac{1-r^q}{1-r} = \frac{\sigma_k^2 + \epsilon^2}{\sigma_k^2} \left(1 - \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2}\right)^q\right)
 \]

- This gives
 \[
 \hat{c}_k = \left(1 - \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2}\right)^q\right) \frac{\hat{b}_k}{\sigma_k}
 \]
 implying monotonic convergence to
 \[
 \hat{c}_k = \frac{\hat{b}_k}{\sigma_k}
 \]

 - since $r = \left(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2}\right) < 1$ implies $r^q \to 0$ monotonically as $q \to \infty$

- The convergence is quick for large σ_k (as desired)

- Smaller σ_k have \(\frac{\epsilon^2}{\sigma_k^2 + \epsilon^2}\) closer to 1, so their \hat{c}_k increase more slowly from zero towards $\frac{\hat{b}_k}{\sigma_k}$ (smaller σ_k are thus regularized)
Comparison with PCA

• After \(q \) iterations, PCA incorporates the \(q \) largest \(\sigma_k \) components into the solution

• PCA does not include any contribution (at all) for the other components
 • Smaller \(\sigma_k \) components are Heaviside thresholded to be identically zero

• After \(q \) iterations, this iterative approach does not include the full contribution of the \(q \) largest \(\sigma_k \) components
 • It includes \(1 - r_k^q \) times those components, but \(1 - r_k^q \approx 1 \) when \(\sigma_k \) is large

• This iterative approach includes contributions from all components
 • The contribution from smaller \(\sigma_k \) components is smaller, since their \(1 - r_k^q \) is not as close to 1 when \(\sigma_k \) is small
 • This iterative approach has a significantly smoother fall-off as \(\sigma_k \) decreases
Aside

• This iterative method and the analysis via a geometric series (slides 7-10) were derived in preparation for the Winter 2019 offering of this course

• The non-iterative version of the method is a version of Levenberg-Marquardt
Adding a Diagonal Matrix

• Adding $Dc = 0$ to obtain: $\begin{pmatrix} A \\ D \end{pmatrix} c = \begin{pmatrix} b \\ 0 \end{pmatrix}$ drives some variables more strongly towards zero than others.

• The normal equations are $(A^T A + D^2) c = A^T b$.

• Equivalently $(V \Sigma^T \Sigma V^T + D^2)c = V \Sigma^T \hat{b}$ or $(\Sigma^T \Sigma + V^T D^2 V)\hat{c} = \Sigma^T \hat{b}$.

• These normal equations can also be derived starting from $\begin{pmatrix} \Sigma \\ DV \end{pmatrix} \hat{c} = \begin{pmatrix} \hat{b} \\ 0 \end{pmatrix}$.
 • Unfortunately, D shears the vectors in V creating issues.

• This motivates first column scaling $\begin{pmatrix} AD^{-1} \\ I \end{pmatrix} Dc = \begin{pmatrix} b \\ 0 \end{pmatrix}$ to obtain an $\begin{pmatrix} \tilde{A} \\ I \end{pmatrix} \tilde{c} = \begin{pmatrix} b \\ 0 \end{pmatrix}$ that can be treated in the original way (by adding $I \tilde{c} = 0$).
Recall: Matrix Columns as Vectors (unit 1)

• Let the k-th column of A be vector a_k, so $Ac = y$ is equivalent to $\sum_k c_k a_k = y$
• Find a linear combination of the columns of A that gives the right hand side vector y
An Example

• Determine c_1 and c_2 such that $c_1a_1 + c_2a_2 = b$ or $Ac = b$
Overshooting

• Since a_1 and a_2 are not parallel, there is a unique solution
• However, this solution overshoots b by quite a bit, and then backtracks
Regularization/Damping

• Adding regularization of $Ic = 0$ damps both components of the solution
Smarter Regularization

- Adding regularization of $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} c = 0$ only damps c_2 and allows $c_1 a_1$ to estimate b unhindered.
Coordinate Descent

- Coordinate Descent looks at one vector at a time
- After making good progress with a_1, there is little advantage to using a_2
Geometric Approaches

• Thinking geometrically avoids issues with the rank of A
• Other concerns may be more important:
 • **Use as few columns as possible** - Setting many c_k to zero gives a sparser solution (which is easier to glean semantic information from)
 • **Correlation** - Columns more parallel to b may be more relevant than those that are more perpendicular
 • **Gains** - Columns that have a large dot product with b’s direction make more progress towards b with smaller c_k values (more minimal solution norm)
Correlation vs. Gains

• Consider $a_k \cdot b = \|a_k\|_2 \|b\|_2 \cos \Theta$ where Θ measures how parallel a_k and b are.

• Correlation preference uses the columns a_k with a larger $\cos \Theta$, i.e. columns that point more closely in the same direction as b.

• When the c_k represent actions, the goal of minimizing action (gains) leads to a preference for smaller c_k.
 • similar in spirit to $Ic = 0$ or minimum norm solutions.

• Then, columns that make more progress in the direction of b are preferable.

• Progress in the direction of b is measured via $a_k \cdot \frac{b}{\|b\|_2}$ or $\|a_k\|_2 \cos \Theta$.
Facial Animation

- Create a procedural skinning model of a face, where (input) animation parameters θ lead to a 3D position (output) for every vertex of the face mesh $\varphi(\theta)$
- E.g. in blend shape systems, each component of θ corresponds to a different expression (or sub-expression), and setting multiple components to be nonzero mixes expressions
Facial Tracking

- On the 3D model, embed (red) curves around the eyes/mouth that move with the 3D surface as it deforms.
- Draw similar (blue) curves on a 2D RGB image of the actual face.
- Goal: projection of the red curves (onto the image plane) should overlap the blue curves (giving an estimate of θ for the 2D RGB image).
Facial Tracking

• The blue curves are data C^*
• The projection of the red curves C is a function of the 3D geometry φ, which in turn is a function of the animation parameters θ, i.e. $C(\varphi(\theta))$
• Determine θ that minimizes the difference $\|C(\varphi(\theta)) - C^*\|$ between the curves
Solving for the Animation Parameters

• This nonlinear problem can be solved via optimization
• At every step of optimization, the problem is linearized
• Solving the resulting linear system $Ac = b$ gives a search direction, which is used to make progress towards the solution

• The optimization performs poorly without regularization
• The resulting θ values are wild and arbitrary (as seen in the figure)
• The curves provide too little data for the optimization to work well
L2 Regularization

- Adding $Ic = 0$ to the linearized problem at every iteration has the expected result:
 - The regularized problem is much more solvable, and the results are less noisy
 - However, θ is overly damped (as seen in the figure)

- Also, a large number of animation parameters θ are nonzero, even for this is relatively simple expression
 - This hinders the interpretability (semantics) of θ
“Soft L1” Regularization

- There are many options for regularization.
- In particular, “soft L1” typically produces a sparser set of solution parameters than L2 regularization (see figure).
- A sparser solution allows one to better ascertain semantic meaning from the animation parameters θ.
- But, θ is still overly damped.
A Geometric Approach (Column Space Search)

- The column space search gives a **sparse** set of solution parameters with significantly **less damping**
- This allows one to better ascertain semantic meaning from the animation parameters θ
Unit 13
Optimization
Part II Roadmap

• Part I – Linear Algebra (units 1-12) \(Ac = b \)

• Part II – Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: “It’s an ODE!?" (adaptive learning rate and momentum)
Approximating Functions

• Consider the \((x_i, y_i)\) data shown below
• Here, \(y = \sqrt{1 - x^2}\) looks like a good approximation
Approximating Functions

• Consider the \((x_i, y_i)\) data shown below
• Here, \(x^2 + y^2 = 1\) looks like a good approximation (fails the vertical line test)
Approximating Functions

• A function does not need to be explicit in \(y \)
• Any relationship between \(x \) and \(y \) is fine, i.e. \(f(x, y) = 0 \)
• It is difficult to consider all possible functions at the same time; so, one typically chooses a parametric family of possible functions (a model for \(f \))
 • E.g., \(f \) could be all possible circles \((x - c_1)^2 + (y - c_2)^2 - c_3^2 = 0 \) where the center \((c_1, c_2)\) and radius \(c_3 \) are chosen to best fit the data
• \(f(x, y; c) = 0 \) could be a family of circles, or polynomials, or a network architecture, etc.
• Determine parameters \(c \) that make \(f(x, y; c) = 0 \) best fit the data, i.e. that make \(\|f(x_i, y_i; c)\| \) close to zero for all \(i \)
 • Don’t forget to be careful about overfitting/underfitting
Choosing a Norm

• \(f(x, y; c) \) may have scalar or vector output; for vectors, a norm needs to be chosen for \(\| f(x_i, y_i; c) \| \), e.g. \(L^1 \), \(L^2 \), \(L^\infty \), “soft” \(L^1 \), etc.
 - E.g., \(\| f(x_i, y_i; c) \|_2 = \sqrt{f(x_i, y_i; c)^T f(x_i, y_i; c)} \)

• There is an \(f(x_i, y_i; c) \) for each ordered pair \((x_i, y_i) \), so a norm needs to be chosen to combine all of these together as well
 - E.g., \(\sqrt{\sum_i \| f(x_i, y_i; c) \|_2^2} = \sqrt{\sum_i f(x_i, y_i; c)^T f(x_i, y_i; c)} \)

• Minimize \(\sqrt{\sum_i f(x_i, y_i; c)^T f(x_i, y_i; c)} \) or equivalently \(\sum_i f(x_i, y_i; c)^T f(x_i, y_i; c) \)

• Since all the \((x_i, y_i) \) are known, the cost function is only a function of \(c \)
 - Minimize \(\hat{f}(c) = \sum_i f(x_i, y_i; c)^T f(x_i, y_i; c) \), which is Nonlinear Least Squares
Optimization

• Minimize the **cost function** $\hat{f}(c)$

• Since maximizing $\hat{f}(c)$ is equivalent to minimizing $-\hat{f}(c)$, optimization is typically approached as a minimization problem

• Optimization algorithms often get stuck in and/or only guarantee the ability to find local minima (presumably one might prefer global minima)
 • Sometimes finding lots of local minima, and then choosing the smallest of those, is a good strategy

• When constraints are present, denoted **constrained** (as opposed **unconstrained**) optimization
 • Constraints can be equations or inequalities (e.g. $c_k > 0$ for all k)
 • Constraints can often be folded into the cost function, if one is willing to accept the consequences (more on this later)
Conditioning

• Recall: Minimizing the residual \(r = b - Ac \) with an \(L^2 \) norm led to the normal equations \(A^T Ac = A^T b \) that square the condition number.

• This is an issue for optimization as well:
 • Optimization considers critical points where \(\frac{\partial \hat{f}}{\partial c_k}(c) = 0 \) simultaneously for all \(k \)
 • Partial derivatives approaching zero (near critical points) makes the function locally flat, and thus algorithms struggle to find robust downhill search directions.
 • The condition number for minimizing \(\hat{f}(c) \) is typically the square of that for solving \(\hat{f}(c) = 0 \) (i.e. for finding the roots of \(\hat{f}(c) = 0 \))
 • Can only expect half as many significant digits of accuracy.
 • If an error tolerance of \(\epsilon \) would be used for solving \(\hat{f}(c) = 0 \), then a weaker (larger) \(\sqrt{\epsilon} \) error tolerance is more appropriate for minimizing \(\hat{f}(c) \).
Nonlinear Systems of Equations

- Critical points have \(\frac{\partial \hat{f}}{\partial c_k} (c) = 0 \) simultaneously for all \(k \)

- Stacking all the (potentially) nonlinear functions \(\frac{\partial \hat{f}}{\partial c_k} (c) \) into a single vector valued function, the critical points are solutions to

\[
F(c) = \frac{\partial \hat{f}}{\partial c_1} (c) = \frac{\partial \hat{f}}{\partial c_2} (c) = \cdots = \frac{\partial \hat{f}}{\partial c_n} (c) = 0
\]

- \(F(c) = J^T \hat{f} (c) = \nabla \hat{f} (c) = 0 \) is a nonlinear system of equations
 - It may have no solution, any finite number of solutions, or infinite solutions
(Equality) Constrained Optimization

• Constraints can be equalities, e.g. $\hat{g}(c) = 0$, or inequalities (see unit 17)

• Given a diagonal matrix D of (positive) weights indicating the relative importance of various constraints, add a penalty term $\hat{g}^T(c)D\hat{g}(c) \geq 0$ to the cost function and proceed via unconstrained optimization
 • I.e., minimize $\hat{f}(c) + \hat{g}^T(c)D\hat{g}(c)$ via unconstrained optimization

• Various other options also exist:
 • E.g. Add Lagrange multipliers η as new variables, and minimize $\hat{f}(c) + \eta^T\hat{g}(c)$
Lagrange Multipliers

- Minimize $\hat{f}(c) + \eta^T \hat{g}(c)$

- Critical Points: $\nabla \left(\hat{f}(c) + \eta^T \hat{g}(c) \right) = \left(J_f^T(c) + J_{\hat{g}}^T(c) \eta \right) \hat{g}(c) = 0$
 - Note how the $\hat{g}(c) = 0$ constraints are automatically satisfied at critical points

- Critical points satisfy $J_{\hat{f}}^T(c) = -J_{\hat{g}}^T(c) \eta$ instead of the usual $J_{\hat{f}}^T(c) = 0$

- In the simple case when $\hat{g}(c)$ is linear in c, the Hessian is $\begin{pmatrix} H_{\hat{f}}(c) & J_{\hat{g}}^T \\ J_{\hat{g}} & 0 \end{pmatrix}$ which is symmetric but not positive definite
 - However, positive definiteness is only required on the tangent space to the constraint surface (i.e., on the null space of $J_{\hat{g}}$)
Lagrange Multipliers (Example)

• Minimize $\hat{f}(c) = \frac{1}{2}c_1^2 + \frac{5}{2}c_2^2$ subject to $\hat{g}(c) = c_1 - c_2 - 1 = 0$

• Or, minimize $\frac{1}{2}c_1^2 + \frac{5}{2}c_2^2 + \eta_1(c_1 - c_2 - 1)$

• Critical Points: \[
\begin{pmatrix}
\frac{c_1}{5c_2} \\
\frac{c_1}{c_1 - c_2 - 1}
\end{pmatrix} + \begin{pmatrix}
1 \\
-1
\end{pmatrix} \eta_1 = \begin{pmatrix}
c_1 + \eta_1 \\
5c_2 - \eta_1
\end{pmatrix} = 0
\]

• Or, \[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 5 & -1 \\
1 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\eta_1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \text{ or } \begin{pmatrix}
c_1 \\
c_2 \\
\eta_1
\end{pmatrix} = \begin{pmatrix}
5/6 \\
-1/6 \\
-5/6
\end{pmatrix}
\]

• The Hessian is \[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 5 & -1 \\
1 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 1 \\
0 & 5 & -1 \\
1 & -1 & 0
\end{pmatrix}
\]
Lagrange Multipliers (Example)

- Isocontours of $\hat{f}(c)$ are ellipses, and the constraint is the line $c_2 = c_1 - 1$
- At critical point $\left(\frac{5}{6}, -\frac{1}{6}\right)$, the steepest descent direction $-\nabla \hat{f} = \left(-\frac{5}{6}, \frac{5}{6}\right)$ is perpendicular to the constraint surface (which has $(1,1)$ as the line direction)
Lagrange Multipliers (Example)

• Plug $c_2 = c_1 - 1$ into $\hat{f}(c)$ to get $\frac{1}{2}c_1^2 + \frac{5}{2}(c_1 - 1)^2 = 3c_1^2 - 5c_1 + \frac{5}{2}$, which is a parabola with minimum at $c_1 = \frac{5}{6}$ (as expected)
Unit 14
Nonlinear Systems
Part II Roadmap

- Part I – Linear Algebra (units 1-12) \(Ac = b \)
- Part II – Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: “It’s an ODE!??” (adaptive learning rate and momentum)
Recall: Jacobian (Unit 9)

• The Jacobian of $F(c) = \begin{pmatrix} F_1(c) \\ F_2(c) \\ \vdots \\ F_m(c) \end{pmatrix}$ has entries $J_{ik} = \frac{\partial F_i}{\partial c_k}(c)$

• Thus, the Jacobian $J(c) = F'(c) = \begin{pmatrix} \frac{\partial F_1}{\partial c_1}(c) & \frac{\partial F_1}{\partial c_2}(c) & \cdots & \frac{\partial F_1}{\partial c_n}(c) \\ \frac{\partial F_2}{\partial c_1}(c) & \frac{\partial F_2}{\partial c_2}(c) & \cdots & \frac{\partial F_2}{\partial c_n}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial c_1}(c) & \frac{\partial F_m}{\partial c_2}(c) & \cdots & \frac{\partial F_m}{\partial c_n}(c) \end{pmatrix}$
Linearization

- Solving a nonlinear system of equations $F(c) = 0$ is difficult.
- Linearize via the multidimensional version of the Taylor expansion:
 $$F(c) \approx F(c^*) + F'(c^*)(c - c^*)$$
 - More valid when $\Delta c = c - c^*$ is small (i.e. for c close enough to c^*).
 - Alternatively written as $F(c) - F(c^*) \approx F'(c^*)\Delta c$.
- The chain rule $\frac{dF(c)}{dt} = F'(c)\frac{dc}{dt}$ is valid for any variable t, and thus can be written in differential form as $dF(c) = F'(c)dc$.
 - Often referred to as the total derivative.
 - Using finite size differentials leads to the approximation: $\Delta F(c) \approx F'(c)\Delta c$.
- In 1D, $df = f'(c)dc$ and $\Delta f \approx f'(c)\Delta c$ are the usual $\frac{df}{dc} = f'(c)$ and $\frac{\Delta f}{\Delta c} \approx f'(c)$.
Newton’s Method

• An iterative method: start with \(c^0 \), recursively find: \(c^1, c^2, c^3, \ldots \)

• Based on \(\Delta F(c) \approx F'(c)\Delta c \), write \(F(c^{q+1}) - F(c^q) = F'(c^q)\Delta c^q \)
 • Aiming for \(F(c) = 0 \) motivates setting \(F(c^{q+1}) = 0 \)
 • Alternatively, set \(F(c^{q+1}) = \beta F(c^q) \) where \(0 \leq \beta < 1 \) aims to slowly shrink \(F(c^q) \) towards zero

• Solve the linear system \(F'(c^q)\Delta c^q = (\beta - 1)F(c^q) \) for \(\Delta c^q \)

• Use \(\Delta c^q = c^{q+1} - c^q \) to update \(c^{q+1} = c^q + \Delta c^q \)
Newton’s Method

• Requires repeatedly solving a linear system, making robustness and efficiency for linear system solvers quite important
 • Need to consider size, rank, conditioning, symmetry, etc. of \(F'(c_q) \)

• \(F'(c_q) \) may be difficult to compute, since it requires every first derivative
 • Newton’s Method contains linearization errors, so approximations of \(F'(c_q) \) are often valid/worthwhile (e.g. symmetric approximation, etc.)
 • More on this in units 17/18 on Computing/Avoiding Derivatives

• Generally speaking, there are no guarantees on convergence
 • May converge to any one of many roots when multiple roots exist, or not converge at all
Solving Linear Systems (Review)

- Theory, all matrices: *SVD* (units 3, 10, 11)
- Square, full rank, dense:
 - LU factorization with pivoting (unit 2)
 - Symmetric: *Cholesky* factorization (unit 4), *Symmetric approximation* (unit 4)
- Square, full rank, sparse (iterative solvers) (unit 5):
 - SPD (sometimes SPSD): *Conjugate Gradients*
 - Nonsymmetric/Indefinite: GMRES, MINRES, BiCGSTAB (not steepest descent)
- Tall, full rank (least squares to minimize residual) (unit 8):
 - normal equations (units 9, 10), *QR*, Gram-Schmidt, *Householder* (unit 10)
- Any size/rank (minimum norm solution) (unit 11):
 - *Levenberg-Marquardt* (iteration too), *Column Space Geometric Approach* (unit 12)
Line Search

• Given the linearization errors in $F'(c^q)\Delta c^q = (\beta - 1)F(c^q)$, the resulting Δc^q can lead to a poor estimate for c^{q+1} via $c^{q+1} = c^q + \Delta c^q$

• Instead, Δc^q is often just used as a search direction, i.e. $c^{q+1} = c^q + \alpha^q \Delta c^q$

• The 1D (parameterized) line $c^{q+1}(\alpha) = c^q + \alpha \Delta c^q$ is the new domain

• Find an α with $F(c^{q+1}(\alpha)) = 0$ simultaneously for all equations

• Safe Set methods restrict α in various ways, e.g. $0 \leq \alpha \leq 1$
Line Search

• Since F is vector valued, consider $g(\alpha) = F(c^{q+1}(\alpha))^T F(c^{q+1}(\alpha)) = 0$
• Since $g(\alpha) \geq 0$, solutions to $F(c^{q+1}(\alpha)) = 0$ are minima of $g(\alpha)$
• $g(\alpha)$ might be strictly positive (with no $g(\alpha) = 0$), but minimizing $g(\alpha)$ might still help to make progress towards an α with $F(c^{q+1}(\alpha)) = 0$

• Option 1: find simultaneous roots of the vector valued $F(c^{q+1}(\alpha)) = 0$
• Option 2: find roots of or minimize $g(\alpha) = \frac{1}{2} F^T(c^{q+1}(\alpha))F(c^{q+1}(\alpha))$, to find or make progress towards an α with $F(c^{q+1}(\alpha)) = 0$
Optimization Problems

• Minimize the scalar cost function $\hat{f}(c)$ by finding the critical points where $\nabla \hat{f}(c) = J_T^\hat{f}(c) = F(c) = 0$

• $F'(c^q)\Delta c^q = (\beta - 1)F(c^q)$ gives the search direction (as usual)

• Here, $F'(c) = J_F(c) = H_T^F(c)$

• So, solve $H_T^F(c^q)\Delta c^q = (\beta - 1)J^T_T(c^q)$ to find the search direction Δc^q

• **Option 1**: find simultaneous roots of the vector valued $J^T_T(c^{q+1}(\alpha)) = 0$, which are critical points of $\hat{f}(c)$

• **Option 2**: find roots of or minimize $g(\alpha) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(\alpha))J_T^T(\hat{c}^{q+1}(\alpha))$, to find or make progress towards critical points of $\hat{f}(\hat{c})$

• **Option 3**: minimize $\hat{f}(c^{q+1}(\alpha))$ directly
Unit 15
1D Root Finding
Part II Roadmap

• Part I – Linear Algebra (units 1-12) $Ac = b$

• Part II – Optimization (units 13-20)
 • (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 • (units 17-18) Computing/Avoiding Derivatives
 • (unit 19) Hack 1.0: “I give up” $H = I$ and J is mostly 0 (descent methods)
 • (unit 20) Hack 2.0: “It’s an ODE!?" (adaptive learning rate and momentum)
Fixed Point Iteration

• Find roots of \(g(t) \), i.e. where \(g(t) = 0 \)

• Let \(\hat{g}(t) = g(t) + t \) and iterate \(t^{q+1} = \hat{g}(t^q) \) until convergence

• A converged \(t^* \) satisfies \(t^* = \hat{g}(t^*) = g(t^*) + t^* \) implying that \(g(t^*) = 0 \)

• Converges when: \(|g'(t^*)| < 1 \), the initial guess is close enough to \(t^* \), and \(g \) is sufficiently smooth

• \(e^{q+1} = t^{q+1} - t^* = \hat{g}(t^q) - \hat{g}(t^*) = g'(\hat{t})(t^q - t^*) = g'(\hat{t})e^q \) for some \(\hat{t} \) between \(t^{q+1} \) and \(t^* \) (by the Mean Value Theorem)

• When all \(g'(\hat{t}) \) have \(|g'(\hat{t})| \leq C < 1 \), then \(|e^q| \leq C^q|e^0| \) proves convergence
Convergence Rate

• Consider $\|e^{q+1}\| \leq C \|e^q\|^p$ as $q \to \infty$ where $C \geq 0$
 • When $p = 1$, $C < 1$ is required and the convergence rate is linear
 • When $p > 1$, the convergence rate is superlinear
 • When $p = 2$, the convergence rate is quadratic

• Statements only apply asymptotically (once convergence is happening)
• Might converge to a different non-desired root (when other roots are present)

• Solving $g(t) = 0$ may only approximate the problem being solved, so it’s not clear how accurate the root finder needs to be anyways
1D Newton’s Method

- Solve $g'(t^q)\Delta t = -g(t^q)$ and update $t^{q+1} = t^q + \Delta t = t^q - \frac{g(t^q)}{g'(t^q)}$

- Stop when $|g(t^q)| < \epsilon$, which implies $|t^{q+1} - t^q| < \frac{\epsilon}{|g'(t^q)|}$
 - Thus, poorly conditioned when $g'(t^*)$ is small
 - Especially problematic for repeated roots where $g'(t^*) = 0$

- Quadratic convergence rate ($p = 2$), when not degenerate
- Requires computing g and g' every iteration; but, computing derivatives isn’t always straightforward/cheap (see units 17/18 on Computing/Avoiding Derivatives)
1D Newton’s Method

\[t^{q+1} = t^q - \frac{g(t^q)}{g'(t^q)} \]

or alternatively

\[g'(t^q) = \frac{g(t^q) - 0}{t^q - t^{q+1}} = \frac{\Delta g}{\Delta t} \]
Secant Method

- Replace $g'(t^q)$ in Newton’s method with an estimate (a few choices for this)
- The standard approach draws a line through previous iterates
- Estimate $g'(t^q) \approx \frac{g(t^q) - g(t^{q-1})}{t^q - t^{q-1}}$
- Then $t^{q+1} = t^q - g(t^q) \frac{t^q - t^{q-1}}{g(t^q) - g(t^{q-1})}$

- Superlinear convergence rate with $p \approx 1.618$, when not degenerate
- Typically/often faster than Newton, since g' is not needed and only a few extra iterations are required to obtain the same accuracy (for a reasonable accuracy)
Secant Method

\[t^{q+1} = t^q - g(t^q) \frac{t^q - t^{q-1}}{g(t^q) - g(t^{q-1})} \]

based on \(g'(t^q) \approx \frac{g(t^q) - g(t^{q-1})}{t^q - t^{q-1}} \)
Bisection Method

• If $g(t_L)g(t_R) < 0$, then (assuming continuity) the sign change indicates a root in the interval $[t_L, t_R]$

• Let $t_M = \frac{t_L + t_R}{2}$,
 • If $g(t_L)g(t_M) < 0$, set $t_R = t_M$
 • Otherwise, set $t_L = t_M$ knowing that $g(t_R)g(t_M) < 0$ is true

• Iterate until $t_R - t_L < \epsilon$

• Guaranteed to converge to a root in the interval (unlike Newton/Secant)

• The interval shrinks in size by a factor of two each iteration; so, linear convergence rate ($p = 1$) with $C = \frac{1}{2}$
Bisection Method

• If $g(t_L)g(t_M) < 0$, set $t_R = t_M$; otherwise, set $t_L = t_M$
Mixed Methods

• Given an interval with a root indicated by $g(t_L)g(t_R) < 0$
• Iterate with Newton/Secant as long as the iterates stay inside the interval
 • When iteration attempts to leave the interval, use prior iterates to shrink the interval as much as possible (while still guaranteeing a root)
• If Newton/Secant attempt to leave the current interval, instead use Bisection to continue shrinking the interval

• Leverages the speed of Newton/Secant, while still guaranteeing convergence via Bisection

• Many/various strategies exist
Function/Derivative Requirements

• All methods require evaluation of the function \(g \)

• Newton also requires the derivative \(g' \) (as do mixed methods using Newton)
Useful Derivatives

• $\frac{\partial}{\partial t} c^{q+1}(t) = \Delta c^q$, since $c^{q+1}(t) = c^q + t\Delta c^q$

• $\frac{\partial}{\partial t} F(c^{q+1}(t)) = J_F(c^{q+1}(t))\Delta c^q$ and $\frac{\partial}{\partial t} F^T(c^{q+1}(t)) = (\Delta c^q)^T J_F^T(c^{q+1}(t))$
 - $\frac{\partial}{\partial t} F_i(c^{q+1}(t)) = (J_F)_i(c^{q+1}(t)) \Delta c^q$ where the $F_i(c^{q+1}(t))$ are the scalar row entries of $F(c^{q+1}(t))$

• Scalar $\hat{f}(c^{q+1}(t))$ has system $J_{\hat{f}}^T(c^{q+1}(t)) = 0$ for critical points

• $\frac{\partial}{\partial t} J_{\hat{f}}^T(c^{q+1}(t)) = H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$ and $\frac{\partial}{\partial t} J_{\hat{f}}(c^{q+1}(t)) = (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t))$
 - $\frac{\partial}{\partial t} \left(J_{\hat{f}}^T \right)_i(c^{q+1}(t)) = \left(H_{\hat{f}}^T \right)_i(c^{q+1}(t)) \Delta c^q$
Recall: Line Search (Unit 14)

- Given the linearization errors in $F'(c^q)\Delta c^q = (\beta - 1)F(c^q)$, the resulting Δc^q can lead to a poor estimate for c^{q+1} via $c^{q+1} = c^q + \Delta c^q$

- Instead, Δc^q is often just used as a search direction, i.e. $c^{q+1} = c^q + \alpha^q \Delta c^q$

- The 1D (parameterized) line $c^{q+1}(\alpha) = c^q + \alpha \Delta c^q$ is the new domain

- Find an α with $F(c^{q+1}(\alpha)) = 0$ simultaneously for all equations

- **Safe Set** methods restrict α in various ways, e.g. $0 \leq \alpha \leq 1$
Recall: Line Search (Unit 14)

• Since F is vector valued, consider $g(\alpha) = F(c^{q+1}(\alpha))^T F(c^{q+1}(\alpha)) = 0$

• Since $g(\alpha) \geq 0$, solutions to $F(c^{q+1}(\alpha)) = 0$ are minima of $g(\alpha)$

• $g(\alpha)$ might be strictly positive (with no $g(\alpha) = 0$), but minimizing $g(\alpha)$ might still help to make progress towards an α with $F(c^{q+1}(\alpha)) = 0$

• **Option 1**: find simultaneous roots of the vector valued $F(c^{q+1}(\alpha)) = 0$

• **Option 2**: find roots of or minimize $g(\alpha) = \frac{1}{2} F^T(c^{q+1}(\alpha))F(c^{q+1}(\alpha))$, to find or make progress towards an α with $F(c^{q+1}(\alpha)) = 0$
Nonlinear Systems Problems

- Solve $J_F(c^q)\Delta c^q = (\beta - 1)F(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $F(c^{q+1}(t)) = 0$

- **Option 1:** find simultaneous (for all i) roots for all the $g_i(t) = F_i(c^{q+1}(t)) = 0$
 - Here, $g'_i(t) = (J_F)_i(c^{q+1}(t))\Delta c^q$

- **Option 2:** find roots of $g(t) = \frac{1}{2}F^T(c^{q+1}(t))F(c^{q+1}(t)) = 0$
 - Here, $g'(t) = \frac{1}{2}F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q + \frac{1}{2}(\Delta c^q)^TJ_F^T(c^{q+1}(t))F(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$
Recall: Optimization Problems (Unit 14)

• Minimize the scalar cost function $\hat{f}(c)$ by finding the critical points where
 \[\nabla \hat{f}(c) = J_{\hat{f}}^T(c) = F(c) = 0 \]
• $F'(c^q)\Delta c^q = (\beta - 1)F(c^q)$ gives the search direction (as usual)
• Here, $F'(c) = J_F(c) = H_{\hat{f}}^T(c)$
• So, solve $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta - 1)J_{\hat{f}}^T(c^q)$ to find the search direction Δc^q
• Option 1: find simultaneous roots of the vector valued $J_{\hat{f}}^T(c^{q+1}(\alpha)) = 0$, which are critical points of $\hat{f}(c)$
• Option 2: find roots of or minimize $g(\alpha) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(\alpha))J_{\hat{f}}^T(c^{q+1}(\alpha))$, to find or make progress towards critical points of $\hat{f}(c)$
• Option 3: minimize $\hat{f}(c^{q+1}(\alpha))$ directly
Optimization Problems

• Solve \(H_f^T(c^q) \Delta c^q = (\beta - 1)J_f^T(c^q) \) for \(\Delta c^q \) and use \(c^{q+1}(t) = c^q + t\Delta c^q \) in \(J_f^T(c^{q+1}(t)) = 0 \)

• **Option 1:** find simultaneous (for all \(i \)) roots for all the \(g_i(t) = (J_f^T)_i(c^{q+1}(t)) = 0 \) to find the critical points of \(\hat{f}(c) \)

 • Here, \(g'_i(t) = (H_f^T)_i(c^{q+1}(t)) \Delta c^q \)

• **Option 2:** find roots of \(g(t) = \frac{1}{2}J_f(c^{q+1}(t))J_f^T(c^{q+1}(t)) = 0 \) to find or make progress towards critical points of \(\hat{f}(c) \)

 • Here, \(g'(t) = \frac{1}{2}J_f(c^{q+1}(t))H_f^T(c^{q+1}(t)) \Delta c^q + \frac{1}{2}((\Delta c^q)^T H_f(c^{q+1}(t)))J_f^T(c^{q+1}(t)) \)

 • Since both terms are scalars, \(g'(t) = J_f(c^{q+1}(t))H_f^T(c^{q+1}(t)) \Delta c^q \)

• **Option 3:** minimize \(\hat{f}(c^{q+1}(t)) \) directly (see unit 16)
Unit 16
1D Optimization
Part II Roadmap

• Part I – Linear Algebra (units 1-12) \(Ac = b \)
• Part II – Optimization (units 13-20)
 • (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 • (units 17-18) Computing/Avoiding Derivatives
 • (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 • (unit 20) Hack 2.0: “It’s an ODE!?” (adaptive learning rate and momentum)
Leveraging Root Finding (from unit 15)

• Relative extrema of $g(t)$ occur at critical points where $g'(t) = 0$; thus, can use root finding on g' to identify relative extrema

• Newton:
 $$t^{q+1} = t^q - \frac{g'(t^q)}{g''(t^q)}$$
 (dividing by g'' is even worse than dividing by g')

• Secant:
 $$t^{q+1} = t^q - g'(t^q) \frac{t^q - t^{q-1}}{g'(t^q) - g'(t^{q-1})}$$
 (can replace g' with approximations too)

• Bisection:
 $$g'(t_L)g'(t_R) < 0$$
 is the new condition

• Mixed Methods: mixing the above (as in unit 15)
Unimodal

• Unimodal means one mode (bimodal means two modes)
• In 1D optimization, this means that the function has one relative minimum
• \(g(t) \) is unimodal in \([t_L, t_R]\) if and only if \(g \) is monotonically decreasing in \([t_L, t^*]\) and monotonically increasing in \([t^*, t_R]\)
Successive Parabolic Interpolation

• Motivated by Newton/Secant (which use lines to find candidates for roots), use parabolas to find candidates for minima

• Given interval \([t_L, t_R]\) with midpoint \(t_M = \frac{t_L + t_R}{2}\), create the unique parabola through \(t_L, t_R,\) and \(t_M\)
 • A unimodal \(g\) in \([t_L, t_R]\) makes this parabola concave up
 • Let \(t_{\text{min}}\) be the point where the parabola takes on its minimum value

• Assume \(t_{\text{min}} < t_M\) (otherwise, simply swap their names)

• If \(g(t_{\text{min}}) \leq g(t_M)\), discard \([t_M, t_R]\) which cannot contain the minimum
 • Then, set \(t_R = t_M\) and \(t_M = t_{\text{min}}\)

• If \(g(t_{\text{min}}) \geq g(t_M)\), discard \([t_L, t_{\text{min}}]\) which cannot contain the minimum
 • Then, set \(t_L = t_{\text{min}}\) and \(t_M = t_M\) (no change)

• Superlinear convergence rate with \(p \approx 1.325\)
Successive Parabolic Interpolation

- When $g(t_{min}) \leq g(t_M)$, discard $[t_M, t_R]$ and set $t_R = t_M$ and $t_M = t_{min}$
Discarding Intervals

• Bisection required only 3 points to be able to discard an interval during root finding

• Successive Parabolic Interpolation demonstrated that 4 points is enough during minimization

• Let $[t_L, t_R]$ have two intermediate points with $t_L < t_{M1} < t_{M2} < t_R$
 • If g is unimodal in $[t_L, t_R]$, one can safely discard either $[t_L, t_{M1}]$ or $[t_{M2}, t_R]$
 • If $g(t_{M1}) \leq g(t_{M2})$, discard $[t_{M2}, t_R]$ which cannot contain the minimum
 • If $g(t_{M1}) \geq g(t_{M2})$, discard $[t_L, t_{M1}]$ which cannot contain the minimum
Golden Section Search

• After discarding an interval, either t_{M1} or t_{M2} becomes an endpoint, and keeping the other as an interior point (efficiently) reduces evaluations of g

• Let $\delta = t_R - t_L$ be the interval size and $\lambda \in (0, .5)$ be the fraction inward of t_{M1}

• Then $t_{M1} = t_L + \lambda \delta$, and symmetric placement gives $t_{M2} = (t_L + \delta) - \lambda \delta$

• Discard the left interval (discarding the right gives the same math) to obtain

\[t_{L}^{\text{new}} = t_{M1} \text{ and } \delta_{L}^{\text{new}} = (1 - \lambda)\delta \]

• Then $t_{M2} = (t_{L}^{\text{new}} - \lambda \delta + \delta) - \lambda \delta = t_{L}^{\text{new}} + \frac{(1-2\lambda)}{1-\lambda} \delta_{L}^{\text{new}}$ can be designated as either t_{M1}^{new} or t_{M2}^{new} if $\frac{1-2\lambda}{1-\lambda}$ is equal to either λ or $1 - \lambda$ (those are both quadratic equations)

• Of the four solutions, only one has $\lambda \in (0, .5)$: $\lambda = \frac{3-\sqrt{5}}{2}$ with t_{M2} becoming t_{M1}^{new}
Golden Section Search

• Rewrite: $t_{M1} = (1 - \lambda)t_L + \lambda t_R$ and $t_{M2} = \lambda t_L + (1 - \lambda)t_R$

• Switch the parameter to the more typical $\tau = 1 - \lambda = \frac{\sqrt{5} - 1}{2}$

• Then, $t_{M1} = \tau t_L + (1 - \tau)t_R$ and $t_{M2} = (1 - \tau)t_L + \tau t_R$

• If $g(t_{M1}) \leq g(t_{M2})$, discard $[t_{M2}, t_R]$, set $t_R = t_{M2}$, $t_{M2} = t_{M1}$, and recompute t_{M1}

• If $g(t_{M1}) \geq g(t_{M2})$, discard $[t_L, t_{M1}]$, set $t_L = t_{M1}$, $t_{M1} = t_{M2}$, and recompute t_{M2}

• Stop when the interval size is small (as usual)

• Linear convergence rate ($p = 1$) with $C = \frac{(1-\lambda)\delta}{\delta} = \tau \approx .618$
Golden Section Search

If $g(t_{M1}) \geq g(t_{M2})$, discard $[t_L, t_{M1}]$, set $t_L = t_{M1}$, $t_{M1} = t_{M2}$, recompute t_{M2}.
Mixed Methods

• Given a unimodal $[t_L, t_R]$

• Iterate with Successive Parabolic Interpolation as long as the iterates stay inside the interval
 • When iteration attempts to leave the interval, use prior iterates to shrink the interval as much as possible (while still containing the minima)

• If Successive Parabolic Interpolation attempts to leave the current interval, instead use Golden Section Search to continue shrinking the interval

• Leverages the speed of Successive Parabolic Interpolation, while still guaranteeing convergence via Golden Section Search

• Many/various strategies exist
Function/Derivative Requirements

• All methods require evaluation of the function g

• Root finding approaches differentiate g and solve $g'(t) = 0$ to identify critical points
 • All root finding methods require evaluation of the function, which is g' here
 • Newton (and mixed methods using Newton) requires the derivative of the function, which is g'' here
Recall: Useful Derivatives (unit 15)

• \(\frac{\partial}{\partial t} c^{q+1}(t) = \Delta c^q \), since \(c^{q+1}(t) = c^q + t\Delta c^q \)

• \(\frac{\partial}{\partial t} F(c^{q+1}(t)) = J_F(c^{q+1}(t))\Delta c^q \) and \(\frac{\partial}{\partial t} F^T(c^{q+1}(t)) = (\Delta c^q)^T J_F^T(c^{q+1}(t)) \)

 • \(\frac{\partial}{\partial t} F_i(c^{q+1}(t)) = (J_F)_i(c^{q+1}(t)) \Delta c^q \) where the \(F_i(c^{q+1}(t)) \) are the scalar row entries of \(F(c^{q+1}(t)) \)

• Scalar \(\hat{f}(c^{q+1}(t)) \) has system \(J_{\hat{f}}^T(c^{q+1}(t)) = 0 \) for critical points

• \(\frac{\partial}{\partial t} J_{\hat{f}}^T(c^{q+1}(t)) = H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q \) and \(\frac{\partial}{\partial t} J_{\hat{f}}(c^{q+1}(t)) = (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t)) \)

 • \(\frac{\partial}{\partial t} \left(J_{\hat{f}}^T \right)_i(c^{q+1}(t)) = \left(H_{\hat{f}}^T \right)_i(c^{q+1}(t)) \Delta c^q \)
Additional Useful Derivatives

• \(\frac{\partial}{\partial t} J_F(c^{q+1}(t)) = (\Delta c^q)^T H_F(c^{q+1}(t)) \)
 - \(H_F \) is a rank 3 tensor of all 2nd derivatives of \(F \)

• \(\frac{\partial}{\partial t} (J_F)_i(c^{q+1}(t)) = (\Delta c^q)^T (H_F)_i(c^{q+1}(t)) \)

• \(\frac{\partial}{\partial t} H_f^T(c^{q+1}(t)) = (\Delta c^q)^T OMG_f^T(c^{q+1}(t)) \)
 - \(OMG_f^T \) is a rank 3 tensor of all 3rd derivatives of \(\hat{f} \)

• \(\frac{\partial}{\partial t} \left(H_f^T \right)_i(c^{q+1}(t)) = (\Delta c^q)^T \left(OMG_f^T \right)_i(c^{q+1}(t)) \)
Recall: Nonlinear Systems Problems (unit 15)

• Solve $J_F(c^q)\Delta c^q = (\beta - 1)F(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $F(c^{q+1}(t)) = 0$

• **Option 1**: find simultaneous (for all i) roots for all the $g_i(t) = F_i(c^{q+1}(t)) = 0$
 - Here, $g_i'(t) = (J_F)_i(c^{q+1}(t))\Delta c^q$

• **Option 2**: find roots of $g(t) = \frac{1}{2}F^T(c^{q+1}(t))F(c^{q+1}(t)) = 0$
 - Here, $g'(t) = \frac{1}{2}F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q + \frac{1}{2}(\Delta c^q)^TJ_F^T(c^{q+1}(t))F(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$
Nonlinear Systems Problems

• Solve $J_F(c^q)\Delta c^q = (\beta - 1)F(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $F(c^{q+1}(t)) = 0$

• Option 1: find simultaneous (for all i) minima for all the $g_i(t) = F_i(c^{q+1}(t))$ aiming for roots where all $F_i(c^{q+1}(t)) = 0$
 • Here, $g_i'(t) = (J_F)_i(c^{q+1}(t))\Delta c^q$ and $g_i''(t) = (\Delta c^q)^T(H_F)_i(c^{q+1}(t))\Delta c^q$

• Option 2: minimize $g(t) = \frac{1}{2}F^T(c^{q+1}(t))F(c^{q+1}(t))$ aiming for its roots
 • Here, $g'(t) = F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$
 • $g''(t) = F^T(c^{q+1}(t))(\Delta c^q)^TH_F(c^{q+1}(t))\Delta c^q + (\Delta c^q)^TJ_F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$
Recall: Optimization Problems (unit 15)

- Solve $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta - 1)J_{\hat{f}}^T(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $J_{\hat{f}}^T(c^{q+1}(t)) = 0$

- **Option 1**: find simultaneous (for all i) roots for all the $g_i(t) = (J_{\hat{f}}^T)_i(c^{q+1}(t)) = 0$ to find the critical points of $\hat{f}(c)$
 - Here, $g'_i(t) = (H_{\hat{f}}^T)_i(c^{q+1}(t))\Delta c^q$

- **Option 2**: find roots of $g(t) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(t))J_{\hat{f}}^T(c^{q+1}(t)) = 0$ to find or make progress towards critical points of $\hat{f}(c)$
 - Here, $g'(t) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(t))H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q + \frac{1}{2}(\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t))J_{\hat{f}}^T(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = J_{\hat{f}}(c^{q+1}(t))H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$

- **Option 3**: minimize $\hat{f}(c^{q+1}(t))$ directly (see unit 16)
Optimization Problems

- Solve $H^T_f(c^q)\Delta c^q = (\beta - 1)J^T_f(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $J^T_f(c^{q+1}(t)) = 0$

- **Option 1:** find simultaneous (for all i) minima for all the $g_i(t) = (J^T_f)_i(c^{q+1}(t))$ aiming for the roots which are critical points of $\hat{f}(c)$
 - Here, $g'_i(t) = (H^T_f)_i(c^{q+1}(t))\Delta c^q$ and $g''_i(t) = (\Delta c^q)^T (OMG_f^T)_i (c^{q+1}(t)) \Delta c^q$

- **Option 2:** minimize $g(t) = \frac{1}{2}J_f(c^{q+1}(t))J^T_f(c^{q+1}(t))$ aiming for the roots which are critical points of $\hat{f}(c)$
 - Here, $g'(t) = J_f(c^{q+1}(t))H^T_f(c^{q+1}(t))\Delta c^q$
 - $g''(t) = J_f(c^{q+1}(t))(\Delta c^q)^T OMG_f^T (c^{q+1}(t))\Delta c^q + (\Delta c^q)^T H_f(c^{q+1}(t)) H^T_f(c^{q+1}(t))\Delta c^q$

- **Option 3:** minimize $g(t) = \hat{f}(c^{q+1}(t))$ directly
 - $g'(t) = J_f(c^{q+1}(t))\Delta c^q$ and $g''(t) = (\Delta c^q)^T H_f(c^{q+1}(t))\Delta c^q$
Unit 17
Computing Derivatives
Part II Roadmap

• Part I – Linear Algebra (units 1-12) \(Ac = b \)

• Part II – Optimization (units 13-20)
 • (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 • (units 17-18) Computing/Avoiding Derivatives
 • (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 • (unit 20) Hack 2.0: “It’s an ODE!??” (adaptive learning rate and momentum)
Smoothness

- Discontinuous functions cannot be differentiated
 - Even methods that don’t require derivatives struggle when functions are discontinuous
- Continuous functions may have kinks (discontinuities in derivatives)
 - Discontinuous derivatives can cause methods that depend on derivatives to fail, since function behavior cannot be adequately predicted from one side of the kink to the other
- Typically, functions need to be “smooth enough”, which has varying meaning depending on the approach
- Specialty approaches exist for special classes of functions, e.g. linear algebra, linear programming, convex optimization, second order cone program (SOCP), etc.
 - Nonlinear Systems/Optimization are more difficult, and best practices/techniques often do not exist
Biological Neurons (towards “real” AI)

• The aim is to mimic biological (typically human) neural networks and learning

• Biological neurons are “all or none”, which motivates similar strategies in artificial neural networks
 • This leads to a discontinuous function, with an identically zero derivative everywhere else
 • Disastrous for optimization!

• Biological neurons fire with increased frequency for stronger signals
 • This leads to a piecewise constant and discontinuous derivative
 • Problematic for optimization!

• Smoothing allows optimization to “work”, i.e. allows one to minimize the loss to find the parameters/coefficients for the network architecture
Heaviside Function

- \(H(x) = 1 \) for \(x \geq 0 \), and \(H(x) = 0 \) for \(x < 0 \)
- Motivated by biological neurons being “all or none”
- Has a discontinuity at 0 and an identically zero derivative everywhere else

\[H(x) = \begin{cases} 1 & \text{for } x \geq 0 \\ 0 & \text{for } x < 0 \end{cases} \]
Sigmoid Function

- Any smoothed Heaviside function, e.g. $S(x) = \frac{1}{1+e^{-x}}$ (there are many options)
- Continuous and monotonically increasing, although the derivative is close to zero further away from $x = 0$
Rectifier Functions

- $R(x) = \max(x, 0)$ or similar functions which are continuous and have increasing values
- Motivated by biological neurons firing with increased frequency for stronger signals
- Piecewise constant and discontinuous derivative causes issues with optimization
Softplus Function

• Softplus function $SP(x) = \log(1 + e^x)$ smooths the discontinuous derivative typical of rectifier functions
Leaky Rectifier Function

• Modifies the negative part of a rectifier function to also have a positive slope instead of being set to zero
• Can be smoothed (as well)
Arg/Soft Max

- **Arg Max** returns 1 for the largest argument and 0 for the other arguments.
- E.g. (.99,1) → (0,1), (1,.99) → (1,0), etc.
- Highly discontinuous!

- **Soft Max** is a smoothed version, e.g. \((x_1, x_2) \rightarrow \left(\frac{e^{x_1}}{e^{x_1}+e^{x_2}}, \frac{e^{x_2}}{e^{x_1}+e^{x_2}}\right)\)
- This is a smooth function of the arguments, differentiable, etc.
- Variants/weightings exist to make it closer/further from Arg Max (while preserving differentiability)
Binary Classification

- Training data \((x_i, y_i)\) where the \(y_i = \pm 1\) are binary class labels

- Find plane \(\hat{n}^T (x - x_o) = 0\) that separates the data between the two class labels (\(\hat{n}\) is the unit normal and \(x_o\) is a point on the plane)

- The closest \(x_i\) on each side of the plane are called **support vectors**

- If the separating plane is equidistant between the support vectors, then they lie on parallel planes: \(\hat{n}^T (x - x_o) = \pm \epsilon\) (where \(\epsilon\) is the **margin**)

- Dividing by \(\epsilon\) to normalize gives \(c^T (x - x_o) = \pm 1\) where \(c\) points in the normal direction (but is not unit length); then, maximizing the margin \(\epsilon\) is equivalent to minimizing \(\|c\|_2\)
Binary Classification

• Minimize \(\hat{f}(c) = \frac{1}{2} c^T c \) subject to inequality constraints:

 - \(c^T (x_i - x_o) \geq 1 \) when \(y_i = 1 \), and \(c^T (x_i - x_o) \leq -1 \) when \(y_i = -1 \)

 - Can combine these into \(y_i c^T (x_i - x_o) \geq 1 \) for every data point

 - Alternatively, \(y_i (c^T x_i - b) \geq 1 \) with a scalar unknown \(b = c^T x_o \)

• When approached via unconstrained optimization, Heaviside functions can be used to incorporate the constraints into the cost function

 - Subsequently smoothing those Heaviside functions is called soft-margin

• Note: new data is classified (via inference) based on the sign of \(c^T x_{new} - b \)
(Inequality) Constrained Optimization

- Minimize $\hat{f}(c)$ subject to $\hat{g}(c) \geq 0$ (or $\hat{g}(c) > 0$)
- Create a penalty term $-H(-\hat{g}_i(c))\hat{g}_i(c)$, which is nonzero only when $\hat{g}_i(c) < 0$
 - This penalty term is minimized by forcing negative $\hat{g}_i(c)$ towards zero (as desired)
- Given a diagonal matrix D of (positive) weights indicating the relative importance of various constraints, unconstrained optimization can be used to minimize
 $$\hat{f}(c) - \sum_i H\left(-\hat{e}_i^T D \hat{g}(c)\right) \hat{e}_i^T D \hat{g}(c)$$
 - This requires differentiating the non-smooth Heaviside function
 - Smoothing the Heaviside function makes the modified cost function differentiable
Symbolic Differentiation

• When a function is known in closed form, it can be differentiated by hand
• Software packages such as Mathematica can aid in symbolic differentiation (and subsequent simplification)
• Some benefits of knowing the closed form derivative:
 • Provides a better understanding of the underlying problem
 • Enables well thought out smoothing/regularization
 • Allows one to implement more efficient code
 • Subsequently allows access to higher derivatives
 • Some of the aforementioned benefits enable the use of better solvers
 • Helps to write/maintain code with less bugs
 • Etc.
Example

• Suppose a code has the following functions:
 - $f(t) = t^2 - 4$ with $f'(t) = 2t$, and $g(t) = t - 2$ with $g'(t) = 1$

• Suppose another part of the code combines these functions:
 - $h(t) = \frac{f(t)}{g(t)}$ with $h'(t) = \frac{g(t)f'(t) - f(t)g'(t)}{(g(t))^2}$

• Then $h(2) = \frac{f(2)}{g(2)} = 0$ and $h'(2) = \frac{g(2)f'(2) - f(2)g'(2)}{(g(2))^2} = \frac{0.4 - 0.1}{0^2}$

• Adding a small $\epsilon > 0$ to the denominators (to avoid division by zero) gives $h(2) = 0$ and $h'(2) = 0$

• Adding a small $\epsilon > 0$ to denominators is often done whenever the denominators are small, making $h(t) \approx 0$ and $h'(t) \approx 0$ for $t \approx 2$ as well

• Of course, $h(t) = t + 2$ is a straight line with $h(2) = 4$ and $h'(t) = 1$ everywhere
Symbolic Differentiation of Code

• Sometimes a function is not analytically known and/or merely represents the output of some source code.

• But, parts of the code may have known derivatives, and those known derivatives can be utilized/leveraged via the mathematical rules for differentiation.

• Moreover, when parts of the code are always used consecutively, they can be merged; subsequently, merged code with known derivatives in each part can often have the derivative treatment simplified for accuracy/robustness/efficiency.
Differentiate the Right Thing

• Consider an iterative solver (e.g. CG, Minres, etc.) that solves $Ac = b$ to find c given b
• Sometimes the code is enormous, complicated, confusing, a black box, etc. (basically impenetrable)
• It is tempting to consider some of the code bases that claim to differentiate such chunks of code
 • Sometimes these approaches work, and the answers are reasonable
 • But, it is often difficult to know whether or not computational inaccuracies (as discussed in this class) are having an adverse effect on such a black box approach
• Alternatively, when invertible: $c = A^{-1}b$ and $\frac{\partial c_k}{\partial b_i} = \tilde{a}_{ki}$ where \tilde{a}_{ki} is an entry in A^{-1}
 • A similar approach can be taken for A^+, which can be estimated robustly via PCA, the Power Method, etc.
• The derivative is independent of the iterative solver (CG, Minres, etc.) and the errors that might accumulate within the iterative solver due to poor conditioning
 • More recently, this sort of approach is being referred to as an implicit layer
The Used Car Salesman

• Beware of the claim: it is good to be able to use something without understanding it

• The claim is often true, and many of us enjoy driving our cars without understanding much of what is under the hood

• However, those who design cars, manufacture cars, repair cars, etc. benefit greatly from understanding as much as possible about them (and the rest of us benefit enormously from their expertise)

• Though, admittedly, there are those in the car business, such as those who sell used cars, who legitimately don’t require any real knowledge/expertise

• The question is: what kind of computer scientist do you want to be?
Oversimplified Thinking

• Beware of claims that drastically oversimplify

• E.g., some say that code is very simple and merely consists of simple operations like add/subtract/multiply/divide that are easily differentiated

• However, in reality, even the simple \(z = x + y \) has subtleties that can matter
 • E.g. the computer actually executes \(z = \text{round}(x + y) \)

• Too many claim that issues they have not carefully considered don’t matter in practice; meanwhile, many state-of-the-art practices in ML/DL are not well understood in the first place (leaving one to question these sorts of claims)
Finite Differences

- Derivatives can be approximated by various formulas, similar to how the Secant method was derived from Newton’s method.
- Given a small perturbation \(h > 0 \), Taylor expansions can be manipulated to write:
 - **Forward Difference**: \(g'(t) = \frac{g(t+h)-g(t)}{h} + O(h) \), 1\(^{\text{st}}\) order accurate
 - **Backward Difference**: \(g'(t) = \frac{g(t)-g(t-h)}{h} + O(h) \), 1\(^{\text{st}}\) order accurate
 - **Central Difference**: \(g'(t) = \frac{g(t+h)-g(t-h)}{2h} + O(h^2) \), 2\(^{\text{nd}}\) order accurate
 - **Second Derivative**: \(g''(t) = \frac{g(t+h)-2g(t)+g(t-h)}{h^2} + O(h^2) \), 2\(^{\text{nd}}\) order accurate
- These approximations can be evaluated even when \(g(t) \) is not known precisely, but merely represents the output of some code with input \(t \).
Finite Differences (Drawbacks)

- Finite Differences only give an approximation to the derivative, and contain **truncation errors** related to the perturbation size h
- One has to reason about the effects that truncation error (and the size of h) have on other aspects of the code
- If the code is very long and complex, the overall effects of truncation errors may be unclear
- Still, finite difference methods have had a broad positive impact in computational science!
Automatic Differentiation

• In machine learning, this is often referred to as **Back Propagation**

• For every (potentially vector valued) function \(F(c_{\text{input}}) \) written into the code, an analytically correct companion function for the Jacobian matrix \(\frac{\partial F}{\partial c}(c_{\text{input}}) \) is also written

• Then when evaluating \(F(c_{\text{input}}) \), one can also evaluate \(\frac{\partial F}{\partial c}(c_{\text{input}}) \)
 - Of course, \(\frac{\partial F}{\partial c}(c_{\text{input}}) \) contains roundoff errors based on machine precision (and conditioning, etc.)
 - But it does not contain the much larger truncation errors present in finite differencing

• **Code can be considered in chunks**, which combine together various functions via arithmetic/compositional rules
 - Analytic differentiation has its own set of rules (linearity, product rule, quotient rule, chain rule, etc.) that can be used to assemble the derivative (evaluated at \(c_{\text{input}} \)) for the code chunk
 - Roundoff errors will accumulate, of course, and the resulting error has the potential to be catastrophic (this is typically even worse for the much larger truncation errors)
Second Derivatives

• If c_{input} is size n and $F(c_{\text{input}})$ is size m, the Jacobian matrix $\frac{\partial F}{\partial c}(c_{\text{input}})$ is size mxn

• The Hessian of second derivatives is size $mxnxn$
 • Recall: $m = 1$ for optimization, i.e. for $\hat{f}(c_{\text{input}})$

• Writing automatic differentiation functions for all possible second derivatives can be difficult/tedious

• Storing Hessians for all second derivatives can be unwieldy/intractable

• Roundoff error accumulation can be an even bigger problem for second derivatives, and the resulting errors are typically even more likely to lead to adverse effects

• Additional smoothness is required for second derivatives

• Some of these issues are problems for any method that considers second derivatives (not specific to an automatic differentiation approach)
Dropout

• One idea for combating overfitting is to train several different network architectures on the same data, inference them all, and average the result (model averaging)
 • This can be costly, especially if there are many networks
• Dropout is a “hacky” approach to achieving a function averaged over multiple network architectures (though Google did patent it*)
• The idea is to simply ignore parts of the code with some probability when training the network, mimicking a perturbed network architecture
• Although this can be seen as computing correct derivatives on perturbed functions/architectures, it can also equivalently be seen as adding uncertainty to the derivative computation
• That is, instead of regularization via model averaging, it can be seen as creating a network robust to errors in the derivatives

*Bard did so poorly, they renamed it Gemini; how is Gemini doing?
Function Layers

• Many complex processes work in a pipeline with many function layers
• Each layer completes a tasks on its inputs X_j to create outputs X_{j+1}
• Each layer may depend on parameters C_j
• There may be a known/desired output X_{target} to compare the final result to

$$
\hat{f}(X_4) = \|X_4 - X_{target}\|
$$
Function Layers (an example)

AYER 1

• **Input**: animation controls
• **Function**: linear blend shapes, nonlinear skinning, quasistatic physics simulation, etc. to deform a face
• **Parameters**: lots of hand tuned or known parameters including shape libraries, etc.
• **Output**: 3D vertex positions of a triangle mesh
Function Layers (an example)

LAYER 2
• **Input**: 3D vertex positions of a triangle mesh
• **Function**: scanline renderer or ray tracer
• **Parameters**: lots of hand tuned or known parameters for material models, lighting and shading, textures, etc.
• **Output**: RGB colors for pixels (a 2D image)
Function Layers (an example)

LAYER 3
• **Input**: RGB colors for pixels (a 2D image)
• **Function**: (neural) facial landmark detector
• **Parameters**: parameters for the neural network architecture, determined by training the network to match hand labeled data
• **Output**: 2D locations of landmarks on the image
Function Layers (an example)

TARGET

• Run a landmark detector on a photograph of the individual to obtain 2D landmark locations (alternatively, can label by hand)

• The goal is to have the 2D landmarks output from the complex multi-layered function (on the prior three slides) match the 2D landmarks on the photograph
Function Layers (Example)

- Modifying animation controls changes the triangulated surface which changes the rendered pixels in the 2D image which changes the network’s determination of the landmarks locations.
- When the two sets of landmarks agree, the animation controls give some indication of what the person in the photograph was doing.
Classical Optimization

• Find the input X_1 that minimizes $\hat{f}(X_4)$

• Chain rule:

$$\frac{\partial \hat{f}(X_4)}{\partial x_1} = \frac{\partial \hat{f}(X_4)}{\partial x_4} \frac{\partial x_4}{\partial x_3} \frac{\partial x_3}{\partial x_2} \frac{\partial x_2}{\partial x_1} = \frac{\partial f(X_4)}{\partial x_4} \frac{\partial f_3(x_3,c_3)}{\partial x_3} \frac{\partial f_2(x_2,c_2)}{\partial x_2} \frac{\partial f_1(x_1,c_1)}{\partial x_1}$$

• Parameters are considered fixed/constant

$$\hat{f}(X_4) = \|X_4 - X_{target}\|$$
Network Training

- Train network f_2 by finding parameters C_2 that minimize $\hat{f}(X_4)$
- Chain rule:
 \[
 \frac{\partial \hat{f}(X_4)}{\partial C_2} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial X_4}{\partial x_3} \frac{\partial x_3}{\partial C_2} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial f_3(X_3, C_3)}{\partial x_3} \frac{\partial f_2(X_2, C_2)}{\partial C_2}
 \]

\[
\hat{f}(X_4) = \|X_4 - X_{target}\|
\]
Network Training

- Any preprocess to the network does **not** require differentiability.
- The network itself **only** requires differentiability with respect to its parameters.
- Any postprocess to the network requires input/output differentiability, but does not require differentiability with respect to its parameters.

\[
\hat{f}(X_4) = \|X_4 - X_{\text{target}}\|
\]
Unit 18
Avoiding Derivatives
Part II Roadmap

- Part I – Linear Algebra (units 1-12) \(Ac = b \)

- Part II – Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: “It’s an ODE!?” (adaptive learning rate and momentum)
1D Root Finding (see Unit 15)

• Newton’s method requires g', as do mixed methods using Newton
• **Secant** method replaces g' with a secant line though two prior iterates
• **Finite differencing** (unit 17) may be used to approximate this derivative as well, although one needs to determine the size of the perturbation h
• **Automatic differentiation** (unit 17) may be used to find the value of g' at a particular point, if/when “backprop” code exists, even when g and g' are not known in closed form
• Convergence is only guaranteed under certain conditions, emphasizing the importance of safe set methods (such as mixed methods with bisection)
• Safe set methods (such as mixed methods with bisection) also help to guard against errors in derivative approximations
1D Optimization (see Unit 16)

- Root finding approaches search for critical points as the roots of g'
 - All root finding methods use the function itself (g' here)
 - Newton (and mixed methods using Newton) require the derivative of the function (g'' here)
- Can use secant lines for g' and interpolating parabolas for g'', using either prior iterates (unit 16) or finite differences (unit 17)
- Automatic differentiation (unit 17) may be leveraged as well
 - Although, not (typically) for approaches that require g''
- Safe set methods (such as mixed methods with bisection or golden section search) help to guard against errors in the approximation of various derivatives
Nonlinear Systems (see Unit 14)

- $J_F(c^q)\Delta c^q = (\beta - 1)F(c^q)$ is solved to find the search direction Δc^q
 - Then, line search utilizes various 1D approaches (unit 15/16)

- The Jacobian matrix of first derivatives $J_F(c^q)$ needs to be evaluated (given c^q)

- Each entry $\frac{\partial F_i}{\partial c_k}(c^q)$ can be approximated via finite differences (unit 17) or automatic differentiation (unit 17)

- Making various approximations to the Jacobian $J_F(c^q)$ perturbs the search direction, so robust/safe set approaches to the 1D line search are important for making “progress” towards solutions
Quasi-Newton Methods

- \(J_F(c^q)\Delta c^q = (\beta - 1)F(c^q) \) is solved to find the search direction \(\Delta c^q \)
- The Jacobian matrix of first derivatives \(J_F(c^q) \) needs to be evaluated (given \(c^q \))
- Quasi-Newton approaches make various aggressive approximations to the Jacobian \(J_F(c^q) \)
- Quasi-Newton can wildly perturb the search direction
 - So, robust/safe set approaches to the 1D line search become quite important for making “progress” towards solutions
Broyden’s Method

• An initial guess for the Jacobian is repeatedly corrected with rank one updates, similar in spirit to a secant approach

• Let $J^0 = I$

• Solve $J^q \Delta c^q = -F(c^q)$ to find search direction Δc^q
 • Use 1D line search to find c^{q+1} and thus $F(c^{q+1})$; then, update $\Delta c^q = c^{q+1} - c^q$

• Update $J^{q+1} = J^q + \frac{1}{(\Delta c^q)^T \Delta c^q} (F(c^{q+1}) - F(c^q) - J^q \Delta c^q)(\Delta c^q)^T$

• Note: $J^{q+1}(c^{q+1} - c^q) = F(c^{q+1}) - F(c^q)$
 • That is, J^{q+1} satisfies a secant type equation $J \Delta c = \Delta F$
Optimization (see Unit 13)

• Scalar cost function $\hat{f}(c)$ has critical points where $J^T_f(c) = 0$ (unit 13)

• $H^T_f(c^q)\Delta c^q = (\beta - 1)J^T_f(c^q)$ is solved to find a search direction Δc^q (unit 14)

• Then, line search utilizes various 1D approaches (unit 15/16)

• The Hessian matrix of second derivatives $H^T_f(c^q)$ and the Jacobian vector of first derivatives $J^T_f(c^q)$ both need to be evaluated (given c^q)

• The various entries can be evaluated via finite differences (unit 17) or automatic differentiation (unit 17)

• These approaches can struggle on the Hessian matrix of second partial derivatives
Quasi-Newton Methods (for optimization)

- \(H^T_f(c^q) \Delta c^q = (\beta - 1) J^T_f(c^q) \) is solved to find a search direction \(\Delta c^q \)
- The Hessian matrix of second derivatives \(H^T_f(c^q) \) and the Jacobian vector of first derivatives \(J^T_f(c^q) \) both need to be evaluated (given \(c^q \))
- Second derivatives pose even more issues than first derivatives
- This makes Quasi-Newton approaches quite popular for optimization
- When \(c \) is large, the \(O(n^2) \) Hessian \(H^T_f \) is unwieldy/intractable, so some approaches instead approximate the action of \(H_f^{-T} \) on a vector
 - i.e. the action of \(H_f^{-T} \) on the right hand side
Broyden’s Method (for Optimization)

- **Same** formulation as for nonlinear systems (3 slides prior)

- Solve for the search direction, and use 1D line search to find c^{q+1} and $J^T_f(c^{q+1})$

- Overwrite $\Delta c^q = c^{q+1} - c^q$ and compute $\Delta J^T_f = J^T_f(c^{q+1}) - J^T_f(c^q)$

- Update $(H^T_f)^{q+1} = (H^T_f)^q + \frac{1}{(\Delta c^q)^T\Delta c^q} \left(\Delta J^T_f - (H^T_f)^q \Delta c^q \right)(\Delta c^q)^T$

- So that $(H^T_f)^{q+1} \Delta c^q = \Delta J^T_f$ is satisfied (a secant type equation)
Broyden’s Method (for Optimization)

• For the inverse, using $\Delta c^q = c^{q+1} - c^q$ and $\Delta J_f^T = J_f^T(c^{q+1}) - J_f^T(c^q)$

• Update $(H_f^{-T})^{q+1} = (H_f^{-T})^q + \frac{\left(\Delta c^q - (H_f^{-T})^q \Delta J_f^T\right)(\Delta c^q)^T(H_f^{-T})^q}{(\Delta c^q)^T(H_f^{-T})^q \Delta J_f^T}$

• So that $(H_f^{-T})^{q+1} \Delta J_f^T = \Delta c^q$

• Solving $H_f^T(c^{q+1})\Delta c^{q+1} = -J_f^T(c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = - (H_f^{-T})^{q+1} J_f^T(c^{q+1})$
SR1 (Symmetric Rank 1)

- For the inverse, using $\Delta c^q = c^{q+1} - c^q$ and $\Delta J^T = J^T (c^{q+1}) - J^T (c^q)$

- Update $(H^T)^{q+1} = (H^T)^q + \frac{(\Delta c - (H^T)^q \Delta J^T)(\Delta c - (H^T)^q \Delta J^T)^T}{(\Delta c - (H^T)^q \Delta J^T)^T \Delta J^T}$

- So that $(H^T)^{q+1} \Delta J^T = \Delta c^q$

- Solving $H^T (c^{q+1}) \Delta c^{q+1} = -J^T (c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = -(H^T)^{q+1} J^T (c^{q+1})$
DFP (Davidon-Fletcher-Powell)

• For the inverse, using $\Delta c^q = c^{q+1} - c^q$ and $\Delta J^T_f = J^T_f (c^{q+1}) - J^T_f (c^q)$

• Update $(H_f^{-T})^{q+1} = (H_f^{-T})^q - \frac{(H_f^{-T})^q \Delta J_f^T \Delta J_f (H_f^{-T})^q}{\Delta J_f (H_f^{-T})^q \Delta J_f^T} + \frac{\Delta c^q (\Delta c^q)^T}{(\Delta c^q)^T \Delta J_f^T}$

• So that $(H_f^{-T})^{q+1} \Delta J_f^T = \Delta c^q$

• Solving $H_f^T (c^{q+1}) \Delta c^{q+1} = -J_f^T (c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = -(H_f^{-T})^{q+1} J_f^T (c^{q+1})$
BFGS (Broyden-Fletcher-Goldfarb-Shanno)

- For the inverse, using $\Delta c^q = c^{q+1} - c^q$ and $\Delta J_f^T = J_f^T(c^{q+1}) - J_f^T(c^q)$

- Update $(H_f^{-T})^{q+1} = \left(I - \frac{\Delta c^q \Delta J_f^T}{(\Delta c^q)^T \Delta J_f^T}\right)(H_f^{-T})^q \left(I - \frac{\Delta J_f^T(\Delta c^q)^T}{(\Delta c^q)^T \Delta J_f^T}\right) + \frac{\Delta c^q (\Delta c^q)^T}{(\Delta c^q)^T \Delta J_f^T}$

- So that $(H_f^{-T})^{q+1} \Delta J_f^T = \Delta c^q$

- Solving $H_f^T(c^{q+1}) \Delta c^{q+1} = -J_f^T(c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = - (H_f^{-T})^{q+1} J_f^T(c^{q+1})$
L-BFGS (Limited Memory BFGS)

• Storing an $n \times n$ approximation to the inverse Hessian can become unwieldy for large problems

• More efficient to instead store the vectors that describe the outer products; however, the number of vectors grows with q

• L-BFGS estimates the inverse Hessian using only a few of the prior vectors
 • often less than 10 vectors (vectors, vector spaces, not matrices)

• This makes it quite popular for machine learning

On optimization methods for deep learning, Andrew Ng et al., ICML 2011

• “we show that more sophisticated off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate gradient (CG) with line search can significantly simplify and speed up the process of pretraining deep algorithms”
Gradient/Steepest Descent

- Approximate H_f^T very crudely with the identity matrix
 - which is the first step of all the aforementioned methods
- That is, $H_f^T(c^q) \Delta c^q = -J_f^T(c^q)$ becomes $I \Delta c^q = -J_f^T(c^q)$
- So, the search direction is $\Delta c^q = -J_f^T(c^q) = -\nabla \hat{f}(c^q)$
 - This is the steepest descent direction

- See unit 19
Coordinate Descent

• Coordinate Descent ignores $H^T_f(c^q)\Delta c^q = -J^T_f(c^q)$ completely

• Instead, Δc^q is set to the various coordinate directions \hat{e}_k
Nonlinear Least Squares

- Recall from Unit 13:
 - Determine parameters c that make $f(x, y, c) = 0$ best fit the training data, i.e. that make $\|f(x_i, y_i, c)\|_2^2 = f(x_i, y_i, c)^T f(x_i, y_i, c)$ close to zero for all i
 - Combining all (x_i, y_i), minimize $\hat{f}(c) = \frac{1}{2} \sum_i f(x_i, y_i, c)^T f(x_i, y_i, c)$

- Let m be the number of data points and \hat{m} be the output size of $f(x, y, c)$
- Define $\tilde{f}(c)$ by stacking the \hat{m} outputs of $f(x, y, c)$ consecutively m times, so that the vector valued output of $\tilde{f}(c)$ is length $m \times \hat{m}$
- Then, $\hat{f}(c) = \frac{1}{2} \sum_i f(x_i, y_i, c)^T f(x_i, y_i, c) = \frac{1}{2} \tilde{f}^T(c) \tilde{f}(c)$
Nonlinear Least Squares

• Minimize \(\hat{f}(c) = \frac{1}{2} \tilde{f}^T(c) \tilde{f}(c) \)

• Jacobian matrix of \(\tilde{f} \) is \(J_{\tilde{f}}(c) = \begin{pmatrix} \frac{\partial \tilde{f}}{\partial c_1}(c) & \frac{\partial \tilde{f}}{\partial c_2}(c) & \cdots & \frac{\partial \tilde{f}}{\partial c_n}(c) \end{pmatrix} \)

• Critical points of \(\hat{f}(c) \) have \(J_{\tilde{f}}^T(c) \hat{f}(c) = \begin{pmatrix} \tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_1}(c) \\ \tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_2}(c) \\ \vdots \\ \tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_n}(c) \end{pmatrix} = J_{\tilde{f}}^T(c) \hat{f}(c) = 0 \)
Gauss Newton

\[J_f^T (c)f (c) = 0 \text{ becomes } J_f^T (c)(\tilde{f}(c^q) + J_f(c^q)\Delta c^q + \cdots) = 0 \]

• Using the Taylor series: \(\tilde{f}(c) = \tilde{f}(c^q) + J_f(c^q)\Delta c^q + \cdots \)

• Eliminating high order terms: \(J_f^T (c)(\tilde{f}(c^q) + J_f(c^q)\Delta c^q) \approx 0 \)

• Evaluating \(J_f^T \) at \(c^q \) gives \(J_f^T (c^q)J_f(c^q)\Delta c^q \approx -J_f^T (c^q)\tilde{f}(c^q) \)

• Compare to \(H_f^T (c^q)\Delta c^q = -J_f^T (c^q) \) and note that \(J_f^T (c) = J_f^T (c)\tilde{f}(c) \)

• Thus, Gauss Newton uses the estimate: \(H_f^T (c^q) \approx J_f^T (c^q)J_f(c^q) \)

• Removes the second derivatives!
Gauss Newton (QR approach)

- Gauss Newton equations $J_f^T (c^q) J_{\tilde{f}} (c^q) \Delta c^q = -J_f^T (c^q) \tilde{f} (c^q)$ are the normal equations for $J_{\tilde{f}} (c^q) \Delta c^q = -\tilde{f} (c^q)$

- So, (instead) solve $J_{\tilde{f}} (c^q) \Delta c^q = -\tilde{f} (c^q)$ via any least squares (QR) and minimum norm approach

- Note: setting the second factor in $J_f^T (c) (\tilde{f} (c^q) + J_{\tilde{f}} (c^q) \Delta c^q) \approx 0$ to zero also leads to $J_{\tilde{f}} (c^q) \Delta c^q = -\tilde{f} (c^q)$

- This is a linearization of the nonlinear system $\tilde{f} (c) = 0$, aiming to minimize $\hat{f} (c) = \frac{1}{2} \tilde{f}^T (c) \tilde{f} (c)$
Weighted Gauss Newton

• Given a diagonal matrix D indicating the importance of various equations:

$$DJ\tilde{f}(c^q)\Delta c^q = -DJ\tilde{\tilde{f}}(c^q)$$
$$J_f^T(c^q)D^2J_f(c^q)\Delta c^q = -J_f^T(c^q)D^2\tilde{\tilde{f}}(c^q)$$

• Recall: Row scaling changes the importance of the equations
 • It also changes the (unique) least squares solution for any overdetermined degrees of freedom
Regularized Gauss Newton

- When concerned about small singular values in \(J_f(c^q)\Delta c^q = -\tilde{f}(c^q) \), one can add \(\epsilon I = 0 \) as extra equations (unit 12 regularization)

- This results in

\[
\left(J_f(c^q)^TJ_f(c^q) + \epsilon^2 I \right) \Delta c^q = -J_f(c^q)^T\tilde{f}(c^q)
\]

- This is often called **Levenberg-Marquardt** or **Damped (Nonlinear) Least Squares**
Unit 19
Descent Methods
Part II Roadmap

- Part I – Linear Algebra (units 1-12) \(Ac = b \)
- Part II – Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: “It’s an ODE!?" (adaptive learning rate and momentum)
Recall: Gradient (Unit 9)

- Consider the scalar (output) function $f(c)$ with multi-dimensional input c
- The Jacobian of $f(c)$ is $J(c) = \left(\frac{\partial f}{\partial c_1}(c) \quad \frac{\partial f}{\partial c_2}(c) \quad \cdots \quad \frac{\partial f}{\partial c_n}(c) \right)$
- The gradient of $f(c)$ is $\nabla f(c) = J^T(c) = \begin{pmatrix} \frac{\partial f}{\partial c_1}(c) \\ \frac{\partial f}{\partial c_2}(c) \\ \vdots \\ \frac{\partial f}{\partial c_n}(c) \end{pmatrix}$
- In 1D, both $J(c)$ and $\nabla f(c) = J^T(c)$ are the usual $f'(c)$
Gradient/Steepest Descent

- Given a cost function $\hat{f}(c)$
 - $\nabla \hat{f}(c)$ is the direction in which $\hat{f}(c)$ increases the fastest
 - $-\nabla \hat{f}(c)$ is the direction in which $\hat{f}(c)$ decreases the fastest
- Thus, $-\nabla \hat{f}(c)$ is considered the direction of steepest descent
- Using $-\nabla \hat{f}(c)$ as the search direction is known as steepest descent
 - This can be thought of as always “walking in the steepest downhill direction”
 - However, never going uphill can lead to local minima
- Methods that use $-\nabla \hat{f}(c)$ in various ways are known as gradient descent methods
- Recall (Unit 18) approximating $H_{\hat{f}}^T \approx I$ in $H_{\hat{f}}^T(c^q)\Delta c^q = -J_{\hat{f}}^T(c^q)$ leads to steepest descent: $\Delta c^q = -J_{\hat{f}}^T(c^q) = -\nabla \hat{f}(c^q)$
Steepest Descent for Quadratic Forms

- Recall (Unit 9):
 - The Quadratic Form of a SPD \tilde{A} is $f(c) = \frac{1}{2}c^T \tilde{A}c - \tilde{b}^T c + \tilde{c}$
 - Minimize $f(c)$ by finding critical points where $\nabla f(c) = \tilde{A}c - \tilde{b} = 0$
 - That is, solve $\tilde{A}c = \tilde{b}$ to find the critical point

- Recall (Unit 5):
 - Steepest descent search direction: $-\nabla f(c) = \tilde{b} - \tilde{A}c = r$
 - $r^q = b - Ac^q$, $\alpha^q = \frac{r^q.r^q}{r^q.Ar^q}$, $c^{q+1} = c^q + \alpha^q r^q$ is iterated until r^q is small enough
 - The main drawback to steepest descent is that it repeatedly searches in the same directions too often, especially for higher condition number matrices
 - Because it takes far too long for steepest descent to converge, we instead advocated for Conjugate Gradients
Steepest Descent for Quadratic Forms

CG would (instead) solve this in 2 steps
Recall: Nonlinear Least Squares (Unit 18)

• Recall from Unit 13:
 • Determine parameters c that make $f(x, y, c) = 0$ best fit the training data, i.e. that make $\| f(x_i, y_i, c) \|_2^2 = f(x_i, y_i, c)^T f(x_i, y_i, c)$ close to zero for all i
 • Combining all (x_i, y_i), minimize $\hat{f}(c) = \frac{1}{2} \sum_i f(x_i, y_i, c)^T f(x_i, y_i, c)$

• Let m be the number of data points and \hat{m} be the output size of $f(x, y, c)$
• Define $\tilde{f}(c)$ by stacking the \hat{m} outputs of $f(x, y, c)$ consecutively m times, so that the vector valued output of $\tilde{f}(c)$ is length $m \times \hat{m}$
• Then, $\hat{f}(c) = \frac{1}{2} \sum_i f(x_i, y_i, c)^T f(x_i, y_i, c) = \frac{1}{2} \tilde{f}^T(c) \tilde{f}(c)$
Recall: Nonlinear Least Squares (Unit 18)

• Minimize \(\hat{f}(c) = \frac{1}{2} \tilde{f}^T(c) \tilde{f}(c) \)

• Jacobian matrix of \(\tilde{f} \) is
\[
J_{\tilde{f}}(c) = \begin{pmatrix}
\frac{\partial \tilde{f}}{\partial c_1}(c) & \frac{\partial \tilde{f}}{\partial c_2}(c) & \cdots & \frac{\partial \tilde{f}}{\partial c_n}(c)
\end{pmatrix}
\]

• Critical points of \(\hat{f}(c) \) have
\[
J_{\hat{f}}^T(c) \hat{f}(c) = 0
\]
Steepest Descent for Nonlinear Least Squares

• Search direction \(-\nabla \tilde{f}(c) = -J_{\tilde{f}}^T(c) = -J_{\tilde{f}}^T(c)\tilde{f}(c) = \begin{pmatrix} -\tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_1}(c) \\ -\tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_2}(c) \\ \vdots \\ -\tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_n}(c) \end{pmatrix}\)

• Recall that \(\tilde{f}(c)\) is constructed by stacking the \(\hat{m}\) outputs of \(f(x_i, y_i, c)\) consecutively \(m\) times, once for each data point \((x_i, y_i)\)

• Thus, each of the \(n\) terms of the form \(-\tilde{f}^T(c) \frac{\partial \tilde{f}}{\partial c_k}(c)\) is a (potentially expensive) sum through \(m \times \hat{m}\) terms (recall: \(m\) is the amount of training data)
Descent Options for Nonlinear Least Squares

• When there is a lot of data, m can be extremely large
 • This is exacerbated when the $\frac{\partial \tilde{f}}{\partial c_k}$ are expensive to compute

• Using all the data is called **Batch Gradient Descent**

• When only a (typically small) subset of the data is used to compute the search direction (ignoring the rest of the data), this is called **Mini-Batch Gradient Descent**

• When only a single data point is used to compute the search direction (chosen randomly/sequentially), this is called **Stochastic Gradient Descent (SGD)**
Unit 20
Momentum Methods
Part II Roadmap

• Part I – Linear Algebra (units 1-12) \(Ac = b \)
 - linearize
 - line search

• Part II – Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: “It’s an ODE!?” (adaptive learning rate and momentum)
Path through Parameter Space

• Optimization solvers iteratively update the state variable c at each iteration.
• For difficult problems (such as neural network training), this is typically done via a 1D line search at each iteration.
• The union of all such line searches can be thought of as a path through parameter space.
Continuous Path vs Discrete Path

• Each iteration is a discrete jump from one point to another, and connecting them with a 1D line segment is merely a visualization

• In the limit as the size of the segments goes to zero (and the number of iterations goes to infinity), one obtains a continuous path

• Can parameterize this path/curve with a scalar t (typically called time)

• Then $c(t)$ is a continuous path in parameter space ($c(t)$ is a position)
 • Changing the value of t moves the position $c(t)$ along the path

• Differentiating the continuous path gives a time varying velocity: $\frac{dc}{dt}(t)$ or $c'(t)$
Ordinary Differential Equations (ODEs)

- ODEs are equations that describe rates of change
 - For example, $\frac{dc}{dt}(t) = f(t, c(t))$ states that the parameter space velocity is $f(t, c(t))$
- “Solving” an ODE means finding a function with rates of change described by the ODE
 - Given the velocity along the curve $\frac{dc}{dt}(t) = f(t, c(t))$, find the curve $c(t)$ itself
- Consider a (greedy) steepest decent path which always follows the steepest downhill direction for a cost function $\hat{f}(c)$
 - A suitable velocity is any (positive) scalar multiple of $-\nabla \hat{f}(c(t))$
 - This leads to an ODE: $\frac{dc}{dt}(t) = -\nabla \hat{f}(c(t))$
Gradient Flow

- The ODE for gradient flow is: \(\frac{dc}{dt}(t) = -\nabla \hat{f}(c(t)) \)

- Or (in more detail):

\[
\begin{pmatrix}
\frac{dc_1}{dt}(t) \\
\frac{dc_2}{dt}(t) \\
\vdots \\
\frac{dc_n}{dt}(t)
\end{pmatrix}
= \begin{pmatrix}
- \frac{\partial \hat{f}}{\partial c_1}(c(t)) \\
- \frac{\partial \hat{f}}{\partial c_2}(c(t)) \\
\vdots \\
- \frac{\partial \hat{f}}{\partial c_n}(c(t))
\end{pmatrix}
\]

- \(c(t) \) is a function of time \(t \) that evolves/changes based on the local gradient of the cost function, \(-\nabla \hat{f}(c(t)) \)

- This path follows the direction of steepest descent
Families of Solutions

• ODEs are initial value problems: the solution depends on the initial (starting) condition

 • E.g. \(c' = c \) or \(\frac{dc}{dt} = c \) or \(\frac{dc}{c} = dt \)
 • \(\int_{c_o}^{c} \frac{1}{c} dc = \int_{t_o}^{t} dt \) or \(\ln c - \ln c_o = t - t_o \)
 • \(\ln \frac{c}{c_o} = t - t_o \) or \(\frac{c}{c_o} = e^{t-t_o} \) or \(c = c_o e^{t-t_o} \)
 • Solution \(c(t) = c_o e^{t-t_o} \) depends on the initial condition \(c(t_o) = c_o \)
 • The figure shows solutions for various values of \(c_o \) at \(t_o = 0 \)
Gradient Flow

• Ansatz: following the solution trajectory in gradient flow leads to a preferred minimum of $\hat{f}(c)$

• Numerical errors cause perturbations away from this desired trajectory, and on to nearby trajectories (perhaps in the same family of solutions)
 • Hopefully, the perturbed trajectories stay close to the desired trajectory
 • Hopefully, the perturbed trajectories lead to the same minima

• Sometimes, there are bifurcations of solution trajectories
 • In such regions, perturbations can lead to very different (presumably less preferred) minima
Posedness

- Consider $c' = \lambda c$ with solution family $c(t) = c_o e^{\lambda(t-t_o)}$

- $\lambda > 0$, exponential growth, ill-posed
 - Small changes in initial conditions (and small solver errors) result in large changes to the trajectory

- $\lambda < 0$, exponential decay, well-posed
 - Small changes in initial conditions (and small solver errors) are damped by converging trajectories

- $\lambda = 0$, constant solution, linearly stable, mildly ill-posed
 - Small changes in initial conditions (and small solver errors) result in (slow, but cumulative) trajectory drift
Posedness for Systems

• A system of ODEs $c' = F(t, c)$ has a Jacobian matrix $J_F(t, c) = \frac{\partial F}{\partial c}(t, c)$

• Since $c(t)$ is time varying, so is $J_F(t, c(t))$

• Whenever an eigenvalue of $J_F(t, c(t))$ is positive, the associated part of the solution becomes ill-posed and trajectories can (wildly) diverge
 • This typically pollutes the entire solution vector

• Thus, all eigenvalues of $J_F(t, c(t))$ must be non-positive for all t under consideration for the problem to be considered well-posed
 • Moreover, eigenvalues close to zero may be suspect due to numerical errors

• Ill-posedness can rapidly lead to solution family bifurcation and thus minima far from what one might otherwise expect
Stability and Accuracy

• For a well-posed ODE, a numerical approach is considered stable if it does not overflow and produce NaNs (i.e. shoot off to an ∞ in parameter space)

• Stability is typically guaranteed via restrictions on the size of the time step Δt
 • Larger time steps lead to the method going unstable

• For a well posed ODE, a stable numerical approach can be analyzed for accuracy to see how well it matches known solutions

• Hopefully, stability and reasonable accuracy keep the numerical solution of the ODE close to an ideal trajectory (leading to the preferred minimum)
Forward Euler Method

• Approximate $c' = f(t, c)$ with $\frac{c^{q+1} - c^q}{\Delta t} = f(t^q, c^q)$

• Recursively: $c^{q+1} = c^q + \Delta t f(t^q, c^q)$

• Recall: Taylor series $c^{q+1} = c^q + \Delta t f(t^q, c^q) + O(\Delta t^2)$

• So, there is an $O(\Delta t^2)$ local truncation error each time step (i.e., each iteration)

• Since $\frac{t_f - t_o}{\Delta t} = O\left(\frac{1}{\Delta t}\right)$ time steps are taken, the total error or global truncation error is $O(\Delta t^2)O\left(\frac{1}{\Delta t}\right) = O(\Delta t)$

• Thus, the method is 1st order accurate
 • Recall comments on accuracy and Newton-Cotes approaches in Unit 7 Curse of Dimensionality
Runge-Kutta (RK) Methods

• Taylor series can be used to (similarly) construct more accurate method:

 - **1st order:** \(\frac{c^{q+1} - c^q}{\Delta t} = f(t^q, c^q) \) which is the forward Euler method

 - **2nd order:** \(\frac{c^{q+1} - c^q}{\Delta t} = \frac{1}{2} k_1 + \frac{1}{2} k_2 \) where \(k_1 = f(t^q, c^q) \) is used in a forward Euler (predictor) update in order to compute \(k_2 = f(t^{q+1}, c^q + \Delta t k_1) \)

 - **4th order:** \(\frac{c^{q+1} - c^q}{\Delta t} = \frac{1}{6} k_1 + \frac{1}{3} k_2 + \frac{1}{3} k_3 + \frac{1}{6} k_4 \) where \(k_1 = f(t^q, c^q), k_2 = f\left(t^{q+\frac{1}{2}}, c^q + \frac{\Delta t}{2} k_1\right), k_3 = f\left(t^{q+\frac{1}{2}}, c^q + \frac{\Delta t}{2} k_2\right), k_4 = f(t^{q+1}, c^q + \Delta t k_3) \)

 - Again, each term builds on the prior in a predictor style fashion
TVD Runge-Kutta Methods

- Combinations of forward Euler and averaging (since both are well-behaved)
- **1st order**: same as standard RK1 and forward Euler
- **2nd order**: same as standard RK2 (also called the midpoint rule, the modified Euler method, and Heun’s predictor-corrector method)
 - Take two forward Euler steps: \(\frac{\hat{c}^{q+1} - c^q}{\Delta t} = f(t^q, c^q) \) and \(\frac{\hat{c}^{q+2} - \hat{c}^{q+1}}{\Delta t} = f(t^{q+1}, \hat{c}^{q+1}) \)
 - Then, average the initial and final state: \(c^{q+1} = \frac{1}{2} c^q + \frac{1}{2} \hat{c}^{q+2} \)
- **3rd order**: different from the standard RK3
 - Take two Euler steps, but average differently: \(\hat{c}^{q+\frac{1}{2}} = \frac{3}{4} c^q + \frac{1}{4} \hat{c}^{q+2} \)
 - Then, take another forward Euler step: \(\frac{\hat{c}^{q+\frac{3}{2}} - \hat{c}^{q+\frac{1}{2}}}{\Delta t} = f(t^{q+\frac{1}{2}}, \hat{c}^{q+\frac{1}{2}}) \)
 - Finally, average again: \(c^{q+1} = \frac{1}{3} c^q + \frac{2}{3} \hat{c}^{q+\frac{3}{2}} \)
Stability Analysis

- Consider the model equation $c' = \lambda c$ with a well-posed $\lambda < 0$
 - This model equation is meant to illustrate how an eigenvalue λ of a Jacobian matrix might behave

- Forward Euler gives $c^{q+1} = c^q + \Delta t \lambda c^q = (1 + \Delta t \lambda)c^q = (1 + \Delta t \lambda)^{q+1}c^0$

- The error shrinks and the solutions decays (as it should for $\lambda < 0$) as long as $|1 + \Delta t \lambda| < 1$

- This leads to $-1 < 1 + \Delta t \lambda < 1$ or $-2 < \Delta t \lambda < 0$ or $-\frac{2}{\lambda} > \Delta t > 0$

- Since $\lambda < 0$ and $\Delta t > 0$, one needs $\Delta t < \frac{2}{-\lambda}$ for stability

- This is called a time step restriction
Stability (an Example)

• Consider $c' = -c$ with $c(0) = 1$, where $\lambda = -1$ implies $\Delta t < 2$ for stability

Here, $\Delta t = .5$ is stable
• Iterates (dots) track the solution (curve)

Here, $\Delta t = 3$ is unstable
• Iterates (dots) grow exponentially
• The actual solution (curve) is shown decaying
Gradient Flow

• Using forward Euler on the gradient flow ODE gives: $c^{q+1} = c^q - \Delta t \nabla \hat{f}(c^q)$

• This is the exact same formula utilized for 1D line search $c^{q+1} = c^q + \Delta t \Delta c^q$ when using the steepest descent search direction $\Delta c^q = -\nabla \hat{f}(c^q)$

• Given this search direction, line search uses a 1D root/minimization approach to determine the next iterate

• This forward Euler interpretation suggests that one may instead choose Δt according to various ODE (or other similar) considerations
Adaptive Time Stepping

• ODEs utilize either a fixed size Δt or time varying Δt^q
 • The latter case is referred to as adaptive time stepping

• The ML community refer to Δt as the learning rate, and time steps as epochs

• When sub-iterations use only partially valid approximations of $-\nabla \hat{f}(c^q)$, e.g. mini-batch or SGD (unit 19), an epoch refers to one pass through the entire set of training data
 • i.e. each epoch allows the $-\nabla \hat{f}(c^q)$ estimates to see all the data
Adaptive Learning Rates

• **Adagrad** maintains a separate adaptive learning rate for each parameter, and modifies them based on past gradients computed for that parameter
 • Moving more/less in certain directions (because of per-parameter learning rates) changes the search direction

• Since the learning rates are based on a time history, the method is less localized and hopefully more robust (better behaved)

• Unfortunately, the learning rates monotonically decrease and often go to zero (stalling out the algorithm)

• **Adadelta** and **RMSprop** decrease the effect of prior gradients (similar in spirit to L-BFGS) so that the learning rate is not monotonically driven to zero
Implicit Methods

• Used to take larger time steps (compared to forward Euler and RK methods)
• Implicit methods have **either no time step restriction or a very generous one**
• However, one typically requires a **nonlinear solver** to advance each time step
• Sometimes, the nonlinear solver requires more computational effort than all the smaller (and simpler) time steps of forward Euler and/or RK combined (making it less efficient)
• The large time steps often lead to **overly damped solutions** (or unwanted oscillations)
Backward (Implicit) Euler

\[
\frac{c^{q+1} - c^q}{\Delta t} = f(t^{q+1}, c^{q+1}) \text{ is 1st order accurate with } O(\Delta t) \text{ error}
\]

- Stability: \[
\frac{c^{q+1} - c^q}{\Delta t} = \lambda c^{q+1} \implies c^{q+1} = \frac{1}{1-\Delta t \lambda} c^q \text{ where } 0 < \left| \frac{1}{1-\Delta t \lambda} \right| < 1
\]
 - Thus, \textit{unconditionally stable} since the inequality holds for all \(\Delta t\) (assuming \(\lambda < 0\))

- Typically need to solve a nonlinear equation to find \(c^{q+1}\) (can be expensive)

- As \(\Delta t \to \infty\), the method asymptotes to \(f(t^{q+1}, c^{q+1}) = 0\), which is the correct steady state solution
 - But, overly damping makes one get there too fast, which is especially undesirable when the higher frequencies are important

- Great for \textit{stiff problems} where high frequencies don’t contribute much to the solution (and thus overly damping them is fine)
Implicit Stochastic Gradient Descent (ISGD)

- Used in Nonlinear Least Squares to overcome instabilities caused by using large time steps with forward Euler

 - Forward Euler: $c^{q+1} = c^q - \Delta t \nabla \hat{f}(c^q)$
 - Backward (implicit) Euler: $c^{q+1} = c^q - \Delta t \nabla \hat{f}(c^{q+1})$

- Since SGD only evaluates the gradient for one piece of data at a time, evaluating the gradient implicitly is a bit less unwieldy (as compared to doing so using all the data at the same time)
Trapezoidal Rule

\[
\frac{c^{q+1} - c^q}{\Delta t} = \frac{f(t^q, c^q) + f(t^{q+1}, c^{q+1})}{2}
\]

is \(2^{\text{nd}}\) order accurate with \(O(\Delta t^2)\) error

- Averages forward Euler and backward Euler

- Stability: \(\frac{c^{q+1} - c^q}{\Delta t} = \frac{\lambda c^q + \lambda c^{q+1}}{2}\) implies \(c^{q+1} = \frac{1 + \frac{\Delta t \lambda}{2}}{1 - \frac{\Delta t \lambda}{2}} c^q\) where \(0 < \left| \frac{1 + \frac{\Delta t \lambda}{2}}{1 - \frac{\Delta t \lambda}{2}} \right| < 1\)

- Thus, unconditionally stable since the inequality holds for all \(\Delta t\) (assuming \(\lambda < 0\))

- Typically need to solve a nonlinear equation to find \(c^{q+1}\) (can be expensive)

- As \(\Delta t \to \infty\), the method asymptotes to \(f(t^{q+1}, c^{q+1}) = -f(t^q, c^q)\) which can cause unwanted oscillations
 - E.g., when \(c' = \lambda c\), this is \(c^{q+1} = -c^q\) which is oscillatory
 - More generally for \(c' = f(t, c)\), this is \((c')^{q+1} = -(c')^q\) estimating the derivative as changing sign every iteration (causing oscillations)
Momentum

• Optimization methods often struggle when they are too local
• Adaptive learning rates based on time history (as discussed above) help to address this
• Momentum methods also aim to address this

• Momentum methods derive their motivation from Newton’s Second Law
• Physical objects carry a time history of past interactions via their momentum
• The forces currently being applied to an object are combined with all previous forces to obtain the current trajectory/velocity
Newton’s Second Law

- **Kinematics** describe position $X(t)$, velocity $V(t)$, acceleration $A(t)$ as functions of time t via $\frac{dX}{dt}(t) = V(t)$ and $\frac{dV}{dt}(t) = A(t)$
 - Gradient flow $\frac{dc}{dt}(t) = -\nabla f(c(t))$ is a kinematic equation

- **Dynamics** describe responses to external forces
 - **Newton’s second law** $F(t) = MA(t)$ is a dynamics equation
 - $V'(t) = A(t) = \frac{F(t)}{M}$ or $\frac{d^2 X}{dt^2}(t) = X''(t) = \frac{F(t)}{M}$

- Combining kinematics and dynamics gives:
 $$\begin{pmatrix} X'(t) \\ V'(t) \end{pmatrix} = \begin{pmatrix} V(t) \\ \frac{F(t,X(t),V(t))}{M} \end{pmatrix}$$
Aside: First Order Systems

• Higher order ODEs are often reduced to first order systems
 • E.g. consider: \(c'''' = f(t, c, c', c'', c''') \)
 • Define new variables: \(c_1 = c, c_2 = c', c_3 = c'', \) and \(c_4 = c''' \)

\[
\begin{pmatrix}
 c_1' \\
 c_2' \\
 c_3' \\
 c_4'
\end{pmatrix} =
\begin{pmatrix}
 c_2 \\
 c_3 \\
 c_4 \\
 f(t, c_1, c_2, c_3, c_4)
\end{pmatrix}
\]

• Then \(\begin{pmatrix} X' \\ V' \end{pmatrix} = \begin{pmatrix} V \\ F/M \end{pmatrix} \)

• Newton’s second law \(F = MX'' \) can be written as
Momentum Methods

- Newton’s second law:
 \[
 \begin{pmatrix}
 X'(t) \\
 MV'(t)
 \end{pmatrix}
 =
 \begin{pmatrix}
 V(t) \\
 F(t, X(t), V(t))
 \end{pmatrix}
 \]
 - The second equation augments the momentum with the current forces
 - That momentum is used in the first equation (after dividing by mass to get a velocity)

- Interpreting this from an optimization standpoint:
 - Instead of always using the current search direction, one should still be incorporating the effects of prior search directions
 - This makes the optimization method less localized, and hopefully more robust (better behaved)
(Momentum-Style) Gradient Flow

• Split the forward Euler discretization $c^{q+1} = c^q - \Delta t \nabla \hat{f}(c^q)$ into two parts:

 $c^{q+1} = c^q + \Delta t v^q$ and $v^q = -\nabla \hat{f}(c^q)$

• Here, v^q is a velocity in parameter space

• Instead of setting the velocity equal to the (negative) gradient, treat gradients as forces that affect the velocity:

 $v^{q+1} = v^q - \Delta t \nabla \hat{f}(c^q)$

• This results in a forward Euler discretization of

 $\begin{pmatrix} c'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ -\nabla \hat{f}(c^q) \end{pmatrix}$
“The” ML Momentum Method

• The original momentum method is backward Euler on c and forward Euler on v, i.e. $c^{q+1} = c^q + \Delta tv^{q+1}$ and $v^{q+1} = v^q - \Delta t \nabla \hat{f}(c^q)$
 • Since the second equation can be updated first, the first equation doesn’t require a special solver

• Combining these into a single equation: $c^{q+1} = c^q + \Delta t v^q - \Delta t^2 \nabla \hat{f}(c^q)$

• Taking liberties to treat Δt and Δt^2 as two separate independent parameters leads to: $c^{q+1} = c^q + \alpha v^q - \beta \nabla \hat{f}(c^q)$

• Setting $\beta = \Delta t$ recovers the original discretization of gradient flow augmented with a new history dependent velocity term: $c^{q+1} = c^q + \alpha v^q - \Delta t \nabla \hat{f}(c^q)$
 • Writing this final equation as $c^{q+1} = c^q + \Delta tv^{q+1}$ illustrates an inconsistent velocity update of $v^{q+1} = \frac{\alpha}{\Delta t} v^q - \nabla \hat{f}(c^q)$
Nesterov Momentum

• Uses a predictor-corrector approach similar to 2nd order Runge-Kutta

• First, a forward Euler predictor step is taken $\hat{c}^{q+1} = c^q + \Delta t \hat{v}^{q+1}$ using a velocity of $\hat{v}^{q+1} = \frac{\alpha}{\Delta t} v^q$ (instead of $v^{q+1} = \frac{\alpha}{\Delta t} v^q - \nabla \hat{f}(c^q)$ from the last slide)
 • The current gradient information is ignored in the predictor step
 • Simplifying, the predictor step is $\hat{c}^{q+1} = c^q + \alpha v^q$

• Then, the gradient is evaluated at this new location \hat{c}^{q+1} and used in “The” ML Momentum method: $c^{q+1} = c^q + \Delta t v^{q+1}$ and $v^{q+1} = \frac{\alpha}{\Delta t} v^q - \nabla \hat{f}(\hat{c}^{q+1})$
 • As a single equation: $c^{q+1} = c^q + \alpha v^q - \Delta t \nabla \hat{f}(\hat{c}^{q+1})$
 • Once again, there is an inconsistent velocity update $v^{q+1} = \frac{\alpha}{\Delta t} v^q - \nabla \hat{f}(\hat{c}^{q+1})$
Physics/ODE Consistency

- Numerical ODE theory dictates (via consistency with the Taylor expansion) that the correct solution/path should be obtained as $\Delta t \to 0$
 - $c^{q+1} = c^q + \Delta t v^{q+1}$ properly resolves $c' = v$
 - But, $v^{q+1} = \frac{\alpha}{\Delta t} v^q - \nabla \hat{f}(\hat{c})$ (with \hat{c} either c^q or c^{q+1}) is problematic

- Revert to where we took liberties with $c^{q+1} = c^q + \alpha v^q - \beta \nabla \hat{f}(\hat{c})$

- Choose $\beta = \hat{\beta} \Delta t^2$ (instead of $\beta = \Delta t$) to obtain $v^{q+1} = \frac{\alpha}{\Delta t} v^q - \Delta t \hat{\beta} \nabla \hat{f}(\hat{c})$

- Setting $\alpha = \Delta t$ leads to a consistent $v^{q+1} = v^q - \Delta t \hat{\beta} \nabla \hat{f}(\hat{c})$ where $\hat{\beta} > 0$ determines the strength of the steepest descent force
 - Forces (in physical systems) should be independent of Δt, and should accumulate to the same $O(1)$ net effect in $O(1)$ time (regardless of Δt)
Adam

• Mixes ideas from adaptive learning rates and momentum methods:
 • Adaptive learning rate for each parameter (uses squared gradients to scale the learning rate, like RMSprop)
 • Uses a moving average of the gradient, like momentum methods
• AdaMax variant uses the L^∞ norm instead of the L^2 norm
• Nadam variant uses Nesterov momentum for the moving averages

• The original Adam paper had impressive results, which were duplicated by others, and the method has been quite popular
• Some recent work states that Adam might converge quicker than SGD w/momentum, but sometimes quicker to a worse solution (and so some practitioners are going back to SGD)
 • Still a lot to do!
Adam: A Method for Stochastic Optimization

Authors Diederik P. Kingma, Jimmy Ba

Publication date 2014/12/22

Description We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyperparameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

Total citations Cited by 138431
Constant Acceleration Equations

• Taylor expansion: \(X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} A^q + O(\Delta t^3) \)

• In order to determine \(X^{q+1} \) with \(O(\Delta t^3) \) accuracy, one only needs \(V^q \) with \(O(\Delta t^2) \) accuracy and \(A^q \) with \(O(\Delta t) \) accuracy

• In the system of equations for Newton's second law, \(V' = F/M \) requires \(O(\Delta t) \) less accuracy than \(X' = V \) requires

• The standard kinematic formulas in basic physics use:
 • piecewise constant accelerations \(A^q \)
 • piecewise linear velocities \(V^{q+1} = V^q + \Delta t A^q \)
 • piecewise quadratic positions \(X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} A^q \)
Newmark Methods

\[X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} ((1 - 2\beta)A^q + 2\beta A^{q+1}) \]

\[V^{q+1} = V^q + \Delta t ((1 - \gamma)A^q + \gamma A^{q+1}) \]

\[\beta = \gamma = 0 \text{ constant acceleration equations (on the last slide)} \]

Second order accurate if and only if \(\gamma = \frac{1}{2} \), i.e. \(V^{q+1} = V^q + \Delta t A^q + A^{q+1} \)

\[\gamma = \frac{1}{2}, \beta = \frac{1}{4} \text{ is Trapezoidal Rule (on both } X \text{ and } V) \]

\[X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} (A^q + A^{q+1}) \text{ becomes } X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} (V^{q+1} - V^q) \text{ or } X^{q+1} = X^q + \Delta t \frac{V^q + V^{q+1}}{2} \]

\(\gamma = \frac{1}{2}, \beta = 0 \text{ is Central Differencing: } X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} A^q \)
Central Differencing

- \(X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} A^q \) and \(V^{q+1} = V^q + \Delta t \frac{A^q + A^{q+1}}{2} \)

- Adding \(X^{q+2} = X^{q+1} + \Delta t V^{q+1} + \frac{\Delta t^2}{2} A^{q+1} \) to \(X^{q+1} = X^q + \Delta t V^q + \frac{\Delta t^2}{2} A^q \) gives:

\[
X^{q+2} - X^q = \Delta t (V^q + V^{q+1}) + \frac{\Delta t^2}{2} (A^q + A^{q+1}) = \Delta t (V^q + V^{q+1}) + \Delta t (V^{q+1} - V^q) = 2\Delta t V^{q+1}
\]

- So \(V^{q+1} = \frac{X^{q+2} - X^q}{2\Delta t} \) (a second order accurate central difference)

- Subtracting (same equations) gives:

\[
\frac{\Delta t^2}{2} (A^{q+1} - A^q) = \frac{\Delta t^2}{2} (A^q + A^{q+1}) + \frac{\Delta t^2}{2} (A^{q+1} - A^q) = \Delta t^2 A^{q+1}
\]

- So \(A^{q+1} = \frac{X^{q+2} - 2X^{q+1} + X^q}{\Delta t^2} \) (a second order accurate central difference)
Staggered Position and Velocity

• Update position with a staggered velocity $X^{q+1} = X^q + \Delta t V^{q+\frac{1}{2}}$

• Using averaging $V^{q+1} = \frac{V^{q+\frac{1}{2}} + V^{q+\frac{3}{2}}}{2}$ which still equals $\frac{X^{q+2} - X^q}{2\Delta t}$ as desired

• $A^{q+1} = \frac{(X^{q+2} - X^{q+1}) - (X^{q+1} - X^q)}{\Delta t^2} = \frac{V^{q+\frac{3}{2}} - V^{q+\frac{1}{2}}}{\Delta t}$

• This last term is equal to both $\frac{V^{q+1} - V^{q+\frac{1}{2}}}{(\Delta t/2)}$ and $\frac{V^{q+\frac{3}{2}} - V^{q+1}}{(\Delta t/2)}$

• So $V^{q+1} = V^{q+\frac{1}{2}} + \frac{\Delta t}{2} A^{q+1}$ and $V^{q+\frac{3}{2}} = V^{q+1} + \frac{\Delta t}{2} A^{q+1}$

• The second equation shifted one index is $V^{q+\frac{1}{2}} = V^q + \frac{\Delta t}{2} A^q$
Staggered Central Differencing

- \(V^{q+\frac{1}{2}} = V^q + \frac{\Delta t}{2} A(X^q, V^q) \) and \(X^{q+1} = X^q + \Delta t V^{q+\frac{1}{2}} \) are explicit
- \(V^{q+1} = V^{q+\frac{1}{2}} + \frac{\Delta t}{2} A(X^{q+1}, V^{q+1}) \) is explicit in \(X \) but implicit in \(V \)
- Position based forces (e.g. elasticity) are typically nonlinear making them hard to invert (good that we don’t have to), whereas velocity based forces (e.g. damping) are typically linear making them easier to invert (which we need to)
- Position based forces are often important for material behavior (good we don’t overdamp them), whereas velocity based damping doesn’t suffer much from increased damping (which we do if we switch from trapezoidal rule to backward Euler in the last step, i.e. \(V^{q+1} = V^q + \Delta t A(X^{q+1}, V^{q+1}) \))
- Position based forces don’t require too stringent a time step restriction (good, because we need one), whereas velocity based forces typically require a very small time step restriction (which we can ignore with an implicit solve)
Appendix
Notation
Unit 1: Intro

- x, y, z are data inputs/outputs
- A is a matrix (I for identity), b is the right hand side (y is used when the right hand side is the data)
- $i = 1, m$ subscript enumerates data (and thus rows of a matrix A)
- f is function of the data
- $\hat{x}, \hat{y}, \hat{z}, \hat{f}, \hat{\varphi}$ are inference/approximation of same variables or functions
- c represents unknown parameters to characterize functions
- $k = 1, n$ subscript enumerates c (and thus columns of a matrix A)
- a_k is column of A
- Σ_k is the sum over all k, $\Pi_{i\neq k}$ is the product over all i not equal to k
- Quadratic Formula slide: uses standard notation for the quadratic formula
- ϕ are basis functions
- θ are pose parameters, φ represents all vertex positions of the cloth mesh
- S are the skinned vertex positions of the body mesh, D is the displacement from the body mesh to the cloth mesh
- u, v are the 2D texture space coordinate system, n is the (unit) normal direction
- I is 2D RGB image data, ψ interpolates RGB values and converts them to a 3D displacement
Unit 2: Linear Systems

- R^n is an n dimensional Cartesian space (e.g. R^1, R^2, R^3)
- a_{ik} is the element in row i and column k of A
- A^T is the transpose of matrix A, and A^{-1} is its inverse
- $\det A$ is the determinant of A
- \exists is "there exists", and \forall is "for all"
- \hat{e}_i are the standard basis vectors, with a 1 in the i-th entry (and 0's elsewhere)
- Gaussian Elimination slides m_{ik} special column, M_{ik}, L_{ik} elimination matrices
- $I_{m \times m}$ is a size $m \times m$ identity matrix
- U upper triangular matrix, L lower triangular matrix
- \hat{c} transformed version of c
- P permutation matrix (with its own special notation)
Unit 3: Understanding Matrices

- λ eigenvalue (scalar)
- ν eigenvector, u right eigenvector (both column vectors)
- α is a scalar
- $i = \sqrt{-1}$ when dealing with complex numbers
- * superscript indicates a complex conjugate (for imaginary numbers)
- $\hat{b}, \tilde{b}, \hat{c}$ perturbed or transformed b, c
- \hat{A}^{-1}, \hat{I} approximate versions of A^{-1}, I
- U, V orthogonal (for SVD)
- u_k, v_k are columns of U, V
- Σ diagonal (not necessarily square, potentially has zeros on the diagonal)
- σ_k singular values (diagonal entries of Σ)
Unit 4: Special Matrices

• v, u column vectors
• $u \cdot v$ or $\langle u, v \rangle$ is the inner product (or dot product) between u and v
• $\langle u, v \rangle_A$ is the A weighted inner product
• Λ is a diagonal matrix of eigenvalues
• l_{ik} is an element of L
• \hat{A} is an approximation of A
Unit 5: Iterative Solvers

- q superscript, integer for sequences/iterations (iterative solvers)
- ϵ small number
- t time
- X, V position and velocity
- r, e residual and error (column vectors)
- \hat{r}, \hat{e} are transformed versions of r, e
- s search direction
- α, β are scalars
- \bar{S} column vector (potential search direction)
Unit 6: Local Approximations

- p is an integer for sequences, polynomial degree, order of accuracy
- $p!$ is p factorial
- h scalar (relatively small)
- f' and f'' one derivative and two derivatives
- $f^{(p)}$ parenthesis (integer) indicates taking p derivatives
- ϕ basis functions
- w weighting function
Unit 7: Curse of Dimensionality

• A, V area and volume
• r radius
• N integer, number of sample points
• \mathbf{x} vector of data input to a function
Unit 8: Least Squares

• False Statements (first slide): a, b scalars
• D, \hat{D} diagonal matrices
Unit 9: Basic Optimization

• F system of functions (output is a vector not a scalar)
• ∂ partial derivative
• J Jacobian matrix of all first partial derivatives
• F' is the Jacobian of F
• ∇f gradient of scalar function f (Jacobian transposed)
• H matrix of all second partial derivatives of scalar function f (Jacobian of the gradient transposed)
• c^* critical point (special value of c)
• \tilde{A} matrix
• \tilde{b}, \tilde{c} vectors
Unit 10: Solving Least Squares

- Σ diagonal invertible matrix (no zeros on the diagonal)
- I_{nxn} stresses the size of the identity as nxn
- \hat{b}_r, \hat{b}_z sub-vectors of \hat{b} of shorter length (r for range, z for zero)
- \tilde{Q} orthogonal matrix
- Q, \tilde{Q} are tall matrices with orthonormal columns (subsets of an orthogonal matrix)
- q_k column of Q
- R upper triangular matrix
- r_{ik} entry of R
- **Householder slides:** \hat{v} normal vector, H householder matrix, a column vector
Unit 11: Zero Singular Values

• c_r, c_z sub-vectors of \hat{c} of shorter length (range and zero abbreviations)
• A^+ pseudo-inverse of A
• T matrix (for similarity transforms)
• Q^q is orthogonal and R^q is upper triangular
• **Power Method Slides**: A^q and λ^q are A and λ raised to the q power
Unit 12: Regularization

- ϵ is a small positive number
- c^* is an initial guess for c
- r used in its geometric series capacity (a scalar)
- D is a diagonal matrix with all positive diagonal entries
- a_k is a column of A
- Θ is the angle between two vectors
- θ are pose parameters, φ represents all vertex positions of the face mesh
- C^* are 2D curves (vertices connected by line segments) drawn on the image
- C are 3D curves embedded on the 3D geometry, and subsequently projected into the 2D image space
Unit 13: Optimization

• \(f \) briefly is allowed to be either vector valued (or stay scalar valued)
• \(\hat{f} \) is a (scalar) cost function for optimization
• \(F \) is a system of functions (the gradient in the case of optimization)
• \(\hat{g} \) is a vector valued function of constraints
• \(\eta \) is a column vector of scalar Lagrange multipliers
Unit 14: Nonlinear Systems

- c^* is a point to linearize about
- d is for the standard derivative
- t is an arbitrary (scalar) variable
- dc is a vanishingly small differential (of c)
- Δ finite size difference
- α, β are scalars with $\beta \in [0,1)$
- g scalar function (that determines the line search parameter α)
Unit 15: Root Finding

- \(\hat{g} \) is a modified \(g \)
- \(t \) is search parameter in 1D, replacing \(\alpha \)
- \(t^* \) is the converged solution
- \(e \) is the error
- \(g' \) is the derivative of \(g \)
- \(\hat{t} \) is a particular \(t \)
- \(C \geq 0 \) is a scalar
- \(p \) integer (power)
- \(t_L, t_R \) interval bounds
- \(t_M \) interval midpoint
Unit 16: 1D Optimization

- t_{\min}, t_{M1}, t_{M2} more t values
- δ scalar (interval size)
- $\lambda \in (0, .5)$ is a scalar
- $\tau \in (0,1)$ is a scalar
- H_F is a 3rd order tensor of 2nd derivatives of F
- $OMG_{\hat{f}}$ is a 3rd order tensor of 3rd derivatives of \hat{f}
Unit 17: Computing Derivatives

- \(H \) is the Heaviside function
- \(\hat{f} \) is a scalar function to be minimized
- \(\hat{g} \) is a vector-valued function of constraints (\(\hat{g}_i \) is a component of \(\hat{g} \))
- \(\hat{e}_i \) is the \(i \)-th standard basis vector
- \(\hat{n} \) is a (possibly) high-dimensional unit normal
- \(\epsilon > 0, \ b \) are scalars
- \(e, \log \) are the usual exponential and logarithmic functions
- \(C_1, C_2, C_3 \) are different sets of parameters
- \(f_1, f_2, f_3 \) are different functions
- \(X_1, X_2, X_3, X_4 \) are the data as it is processed through the pipeline
- \(X_{\text{target}} \) is the desired final result as the data is processed through the pipeline
Unit 18: Avoiding Derivatives

• \hat{m} is the integer length of the column vector output of $f(x, y, c)$

• $\tilde{f}(c)$ is a column vector of size $m \times \hat{m}$ that stacks the \hat{m} outputs of $f(x_i, y_i, c)$ for each of the m data points (x_i, y_i)

• \hat{e}_k is the standard basis vector
Unit 19: Descent Methods

• (covered in other units)
Unit 20: Momentum Methods

- t is time
- t_i, t_f initial and final time
- Δt time step size
- k_1, k_2, k_3, k_4 intermediate function approximations in RK methods
- \hat{c} intermediate states for TVD RK methods
- λ is a scalar, and represents an eigenvalue
- $X(t), V(t), A(t), F(t), M$ position, velocity, acceleration, force, mass
- v is the velocity of state c in parameter space
- $\alpha, \beta, \hat{\beta}$ are scalars