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Abstract

The level set method was devised by Osher and Sethian in [64] as a
simple and versatile method for computing and analyzing themotion
of an interface � in two or three dimensions. � bounds a (possibly
multiply connected) region 
. The goal is to compute and analyze
the subsequent motion of � under a velocity �eld ~v. This velocity
can depend on position, time, the geometry of the interface and the
external physics. The interface is captured for later time as the zero
level set of a smooth (at least Lipschitz continuous) function ' (~x; t),
i.e., �( t) = f ~xj' (~x; t) = 0 g. ' is positive inside 
, negative outside 

and is zero on �( t). Topological merging and breaking are well de�ned
and easily performed.

In this review article we discuss recent variants and extensions,
including the motion of curves in three dimensions, the Dynamic Sur-
face Extension method, fast methods for steady state problems, di�u-
sion generated motion and the variational level set approach. We also
give a user's guide to the level set dictionary and technology, couple
the method to a wide variety of problems involving external physics,
such as compressible and incompressible (possibly reacting) 
ow, Ste-
fan problems, kinetic crystal growth, epitaxial growth of t hin �lms,
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vortex dominated 
ows and extensions to multiphase motion. We con-
clude with a discussion of applications to computer vision and image
processing.
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1 Introduction

The original idea behind the level set method was a simple one. Given
an interface � in Rn of codimension one, bounding a (perhaps multiply
connected) open region 
, we wish to analyze and compute its subsequent
motion under a velocity �eld ~v. This velocity can depend on position, time,
the geometry of the interface (e.g. its normal or its mean curvature) and
the external physics. The idea, as devised in 1987 by S. Osherand J.A.
Sethian [64] is merely to de�ne a smooth (at least Lipschitz continuous)
function ' (x; t ), that represents the interface as the set where' (x; t ) = 0.
Here x = x(x1; : : : ; xn ) " R n .

The level set function ' has the following properties

' (x; t ) > 0 for x 2 


' (x; t ) < 0 for x 62 �


' (x; t ) = 0 for x 2 @
 = �( t)

Thus, the interface is to be captured for all later time, by merely locat-
ing the set �( t) for which ' vanishes. This deceptively trivial statement is
of great signi�cance for numerical computation, primarily because topolog-
ical changes such as breaking and merging are well de�ned andperformed
\without emotional involvement".

The motion is analyzed by convecting the ' values (levels) with the
velocity �eld ~v. This elementary equation is

@'
@t

+ ~v � r ' = 0 : (1)

Here ~v is the desired velocity on the interface, and is arbitrary elsewhere.
Actually, only the normal component of v is needed: vN = ~v � r '

jr ' j , so
(1) becomes

@'
@t

+ vN jr ' j = 0 : (2)

In section 3 we give simple and computationally fast prescriptions for
reinitializing the function ' to be signed distance to �, at least near the
boundary [84], smoothly extending the velocity �eld vN o� of the front �
[24] and solving equation (2) only locally near the interface �, thus lowering
the complexity of this calculation by an order of magnitude [66]. This makes
the cost of level set methods competitive with boundary integral methods,
in cases when the latter are applicable, e.g. see [42].

3



We emphasize that all this is easy to implement in the presence of bound-
ary singularities, topological changes, and in 2 or 3 dimensions. Moreover,
in the case whichvN is a function of the direction of the unit normal (as in
kinetic crystal growth [62], and Uniform Density Island Dyn amics [15], [36])
then equation (2) becomes the �rst order Hamilton-Jacobi equation

@'
@t

+ jr ' j

�

~N
�

= 0 (3)

where 
 = 
 ( ~N ) a given function of the normal, ~N = r '
jr ' j .

High order accurate, essentially non-oscillatory discretizations to general
Hamilton-Jacobi equations including (3) were obtained in [64], see also [65]
and [43].

Theoretical justi�cation of this method for geometric based motion came
through the theory of viscosity solutions for scalar time dependent partial
di�erential equations [23], [30]. The notion of viscosity solution (see e.g. [8,
27]) { which applies to a very wide class of these equations, including those
derived from geometric based motions { enables users to havecon�dence that
their computer simulations give accurate, unique solutions. A particularly
interesting result is in [29] where motion by mean curvature, as de�ned by
Osher and Sethian in [64], is shown to be essentially the samemotion as is
obtained from the asymptotics in the phase �eld reaction di� usion equation.
The motion in the level set method involves no super
uous sti�ness as is
required in phase �eld models. As was proven in [53], this sti�ness due to
a singular perturbation involving a small parameter � will lead to incorrect
answers as in [48], without the use of adaptive grids [59]. This is not an
issue in the level set approach.

The outline of this paper is as follows: In section 2 we present recent vari-
ants, extensions and a rather interesting selection of related fast numerical
methods. This section might be skipped at �rst, especially by newcomers to
this subject. Section 3 contains the key de�nitions and basic level set tech-
nology, as well as a few words about the numerical implementation. Section
4 describes applications in which the moving interfaces arecoupled to ex-
ternal physics. Section 5 concerns the variational level set approach with
applications to multiphase (as opposed to two phase) problems. Section 6
gives a very brief introduction to the ever-increasing use of level set method
and related methods in image analysis.
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2 Recent Variants, Extensions and Related Fast
Methods

2.1 Motion of Curves in Three Spatial Dimensions

In this section we discuss several new and related techniques and fast nu-
merical methods for a class of Hamilton-Jacobi equations. These are all
relatively recent developments and less experienced readers might skip this
section at �rst.

As mentioned above, the level set method was originally developed for
curves in R2 and surfaces inR3. Attempts have been made to modify it to
handle objects of high codimension. Ambrosio and Soner [5] were interested
in moving a curve in R3 by curvature. They used the squared distance to
the curve as the level set function, thus �xing the curve as the zero level set,
and evolved the curve by solving a PDE for the level set function. The main
problem with this approach is that one of the most signi�cant advantages
of level set method, the ability to easily handle merging andpinching, does
not carry over. A phenomenon called \thickening" emerges, where the curve
develops an interior.

Attempts have also been made in other directions, front tracking, e.g.
see [41]. This is where the curve is parameterized and then numerically rep-
resented by discrete points. The problem with this approachlies in �nding
when merging and pinching will occur and in reparameterizing the curve
when it does. The representation we derived in [13] makes useof two level
set functions to model a curve in R3, an approach Ambrosio and Soner
also suggested but did not pursue because the theoretical aspects become
very di�cult. In this formulation, a curve is represented by the intersection
between the zero level sets of two level set functions� and  , i.e., where
� =  = 0. From this, many properties of the curve can be derived such
as the tangent vectors, ~T = r  �r �

jr  �r � j , the curvature vectors, � ~N = r ~T � ~T,

and even the torsion, � ~N = �r ~B � ~T, where ~N and ~B are the normal and
binormal respectively.

Motions of the curve can then be studied under the appropriate system
of PDE's involving the two level set functions. The velocity can depend on
external physics, as well as on the geometry of the curve (as in the standard
level set approach). The resulting system of PDE's for and � is

� t = � ~v � r �
 t = � ~v � r  
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A simple example involves moving the curve according to its curvature vec-
tors, for which ~v = � ~N . We have shown that this system can also be
obtained by applying a gradient descent algorithm minimizing the length of
the curve,

L (�;  ) =
Z

R3
jr  � r � j� ( )� (� )d~x:

This follows the general procedure derived in [88] for the variational level
set method for codimension one motion, also described in [90]. Numerical
simulations performed in [13] on this system of PDE's, and shown in �gures
1 and 2, show that merging and pinching o� are handled automatically and
follow curve shortening principles.

We repeat the observation made above that makes this sort of motion
easily accessible to this vector valued level set method. Namely all geometric
properties of a curve � which is expressed as the zero level set of the vector
equation

� (x; y; z; t ) = 0
 (x; y; z; t ) = 0

can easily be obtained numerically by computing discrete gradients and
higher derivatives of the functions � and  restricted to their common zero
level set.

This method will be used to simulate the dynamics of defect lines as they
arise in heteroepitaxy of non-lattice notched materials, see [79] and [80] for
Lagrangian calculations.

An interesting variant of the level set method for geometry based mo-
tion was introduced in [53] as di�usion generated motion, and has now been
generalized to forms known as convolution generated motionor threshold dy-
namics. This method splits the reaction di�usion approach into two highly
simpli�ed steps. Remarkably, a vector valued generalization of this ap-
proach, as in the vector valued level set method described above gives an
alternative approach [74] to easily compute the motion (andmerging) of
curves moving normal to themselves in three dimensions withvelocity equal
to their curvature.

2.2 Dynamic Surface Extension (DSE)

Another �xed grid method for capturing the motion of self-in tersecting in-
terfaces was obtained in [73]. This is a �xed grid, interfacecapturing formu-
lation based on the Dynamic Surface Extension (DSE) method of Steinho�
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et. al. [82]. The latter method was devised as an alternativeto the level
set method of Osher and Sethian [64] which is needed to evolvewavefronts
according to geometric optics. The problem is that the wavefronts in this
case are supposed to pass through each other { not merge as in the viscos-
ity solution case. Ray-tracing can be used but the markers tend to diverge
which leads to loss of resolution and aliasing.

The original (ingenious) DSE method was not well suited to certain
fundamental self intersection problems such as formation of swallowtails. In
[73] we extended the basic DSE scheme to handle this fundamental problem,
as well as all other complex intersections.

The method is designed to track moving sets � of points of arbitrary
(perhaps changing) codimension, moreover there is no concept of \inside"
or \outside". The method is, in some sense, dual to the level set method.
In the latter, the distance representation is constant tangential to a surface.
In the DSE method, the closest point to a surface is constant in directions
orthogonal to the surface.

The version of DSE presented in [73] can be described as follows:
For each point in Rn , set the tracked pointed TP(~x) equal to CP(~x) the

closest point (to ~x) on the initial surface � 0. Set ~N equal to the surface
normal at the tracked point TP(~x). Let ~v(TP(~x)) be the velocity of the
tracked point.

Repeat for all steps:

(1) Evolve the tracked point TP(~x) according to the local dynamicsTP(~x)t =
~v(TP(~x)).

(2) Extend the surface representation by resetting each tracked point TP(~x)
equal to the true closest pointCP(~x) on the updated surface �, where
� is de�ned to be the locus of all tracked points, i.e. � = f TP(~x)j~x " R ng.

Replace each~N (~x) by the normal at the updated TP(~x).

This method treats self intersection by letting moving setspass through
each other. This is one of its main virtues in the ray tracing case. However,
it has other virtues { namely the generality of the moving set { curves can
end or change dimension.

An important extension is motivated by considering �rst arr ival times.
This enables us to easily compute swallowtails, for example, and other sin-
gular points. We actually use a combination of distance and direction of
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motion. One interesting choice arises when nodal values ofTP(~x) are set
equal to the \Minimizing Point"

MP (~x) = min
~y " Interface

� j(~x � ~y) � ~N ? (~y)j + k~x � ~yk2

for � > 0 (rather than CP(~x)), since a good agreement with the minimal
arrival time representation is found near the surface. Recall that the minimal
arrival time at a point ~x is the shortest time it takes a ray emanating from
the surface to reach~x. Using this idea gives a very uniform approximation
and naturally treats the prototype swallowtail problem.

For the special case of curvature dependent motion we may usean elegant
observation of DeGiorgi [28]. Namely the vector mean curvature for a surface
of arbitrary codimension is given by � ~N = � � r

�
d2

2

�
where � is the local

mean curvature and d is the distance to the surface. Using the elementary,
but basic fact that

dr d = ~x � CP(~x)

whereCP(~x) is the closest point to ~x on the surface, we obtain a very simple
expression for vector mean curvature

� ~N = � �( ~x � CP(~x)) = � CP(~x):

Thus motion by a function F , of mean curvature for surfaces of arbitrary
codimension can be achieved by using~v(TP(~x)) = � CP(~x). Then curvature
dependent velocities are possible by using

~v = F (� CP(~x)jT P (~x) � ~N ) ~N:

where numerical experiments in [73] have validated these algorithms to some
degree.

A variety of interesting topics for future research is still open. In partic-
ular, adjustments need to be made if merging is desired. Moreover we can
move objects with more complex topology and geometry, such as surfaces
with boundaries (or curves with endpoints), objects of composite topology
(such as a �lament attached to a sheet) and surfaces on curveswith triple
point junctions (see [88], [53] and section 5 of this paper for successful level
set based and di�usion generated based approaches for the codimension one
case respectively).

Further work in the area of curvature dependent motions is also possible.
Computationally the construction of fast extension methods and localization
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as in [66] for the level set method would be of great practicalimportance.
It would be particularly interesting to determine if surfac es fatten (or de-
velop interiors) when mergers occur. See [9] for a detailed discussion of this
phenomenon.

Additionally in [73] we successfully calculated a geometric optics ex-
pansion by retaining the wave front curvature. Thus this method has the
possibility of being quite useful in electromagnetic calculations. We hope
to investigate its three dimensional performance and include the e�ects of
di�raction.

2.3 A Class of Fast Hamilton-Jacobi Solvers

Another important set of numerical algorithms involves the fast solution of
steady (time independent) Hamilton-Jacobi equations. We also seek meth-
ods which are faster than the globally de�ned schemes originally used to
solve equation 2. The level set method of Osher and Sethian [64] for time
dependent problems can be localized. This means that the problem

' t + ~v � r ' = 0

with �( t) = f ~xj' (~x; t) = 0 g as the evolving front, can be solved locally near
�( t). Several algorithms exist for doing this, see [66] and [2].These both
report an O(N ) algorithm where N is the total number of grid points on or
near the front. However, the algorithm in [66] hasO(N log(N )) complexity
because a partial di�erential equation based reinitialization step requires
log( 1

4 x ) � log(N ) steps to converge (we are grateful to Bjorn Engquist for
pointing this out). The algorithm in [2] claims O(N ) complexity, but this is
not borne out by the numerical evidence presented there.

However for some special Hamilton-Jacobi equations there is a fast method
whose formal complexity is O(N log(N )), but which, in our experience, is
around one order of magnitude faster than these general local methods.

The idea is as follows:
For an equation of the form

~H (~x; r  ) = 0 ;

give  = 0 on a non characteristic set S:

r  � ~H r  6= 0
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then we proved in [63] that the t level set

f ~xj (~x) = tg = � 0(t)

is the same as the zero level set �(t) of ' (~x; t), for t > 0 where' satis�es

~H
�

~x; �
r '
' t

�
= 0 :

This means that the viscosity solutions of either problem have level sets
which correspond to each other. (This was also suggested in the original
level set paper of Osher and Sethian [64]). Thus, one would like to �nd �( t),
the zero level set of' (x; t ), as � 0(t), the t level set of  (x).

A canonical example is the eikonal equation

' t + c(~x)jr ' j = 0 ; c(~x) < 0

which can be replaced by:

jr  j = �
1

c(~x)
= a(~x) > 0:

So we �nd �rst arrival times instead of zero level sets.
In [86] J.N. Tsitsiklis devised a fast algorithm for the eikonal equation.

He obtained the viscosity solution using ideas involving Dijkstra's algorithm,
adapted to the eikonal equation, heap sort and control theory. From a nu-
merical PDE point of view, however, Tsitsiklis had an apparently nonstan-
dard approximation to jr  j on a uniform Cartesian grid.

In (1995) Sethian [76] and Helmsen et. al. [40] independently published
what appeared to be a simpler algorithm making use of the Rouy-Tourin al-
gorithm to approximate jr ' j. This has become known as the \fast marching
method". However, together with Helmsen [61] we have proventhat Tsit-
siklis' approximation is the usual Rouy-Tourin [69] version of Godunov's
monotone upwind scheme. That is, the algorithm in [76] and [40] is simply
Tsitsiklis' algorithm with a di�erent (simpler) expositio n.

Our goal here is to extend the applicability of this idea from the eikonal
equation to any geometrically based Hamiltonian. By this wemean a Hamil-
tonian satisfying the properties:

H (~x; r  ) > 0; if r  6= ~0 (4)

and
H (~x; r  ) is homogeneous of degree one inr  (5)
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We wish to obtain a fast algorithm to approximate the viscosity solution
of

~H (~x; r  ) = H (~x; r  ) � a(~x) = 0 : (6)

The �rst step is to set up a monotone upwind scheme to approximate
this problem. Such a scheme is based on the idea of Godunov used in the
approximation of conservation laws. In Bardi and Osher [7],see also [65],
the following was obtained (for simplicity we exemplify using two space
dimensions and ignore the explicit~x dependence in the Hamiltonian)

H ( x ;  y) � H G(D x
+  ; D x

�  j ; D y
+  ; D y

�  )

= ext u " I ( u � ;u + )
extv " I ( v � ;v + )

H (u; v)

where

I (a; b) = [min( a; b); max(a; b)]

extu I (a; b) =

(
mina� u� b if a � b
maxb� u� a if a > b

u� = D x
�  ij = �

( i � 1;j �  ij )
� x

; v� = D y
�  ij = �

( i;j � 1 �  ij )
� y

:

(Note, the order may be reversed in the ext operations above {we always
obtain a monotone upwind scheme which is often, but not always, order
invariant [65]).

This is a monotone upwind scheme which is obtained through the Go-
dunov procedure involving Riemann problems, extended to general Hamilton-
Jacobi equations [7], [65].

If we approximate
H (r ' ) = a(x; y)

by
H G(D x

+ '; D x
� ' ; D x

+  ; D y
+  ; D y

�  ) (7)

for Hamiltonians satisfying (4); (5) above, then there exists a unique solution
for  i;j in terms of  i � 1;j ;  i;j � 1 and  i;j . Furthermore  i;j is a nondecreas-
ing function of all these variables.

However, the fast algorithm needs to have propertyF : The solution to
(7) depends on the neighboring �;� only for  �;� <  i;j . This gives us a
hint as to how to proceed.

11



For special Hamiltonians of the form: H (u; v) = F (u2; v2), with F non-
decreasing in these variables, then we have the following result [61]

H G(u+ ; u� ; v+ ; v� ) = F (max((u�
+ )2; (u+

� )2); max(( v�
+ )2; (v+

� )2)) (8)

where x+ = max( x; 0); x � = min( x; 0). It is easy to see that this numerical
Hamiltonian has property F described above. This formula, as well as the
one obtained in equation 10 below enables us to extend the fast marching
method algorithm to a much wider class than was done before. For example,
using this observation we were able to solve an etching problem, also consid-
ered in [3] where the authors did not use a fast marching method algorithm,
but instead used a local narrow band approach and schemes devised in [64].
The Hamiltonian was

H (' x ; ' y ; ' z) =
q

' 2
z

 

1 +
4(' 2

x + ' 2
y)

' 2
x + ' 2

y + ' 2
z

!

:

We are able to use the same heap sort technology as for the eikonal
equation, for problems of this type. See �gures 3 and 4. These�gures
represent the level contours of an etching process whose normal velocity is
a function of the direction of the normal. The process moves down in �gure
3 and up in �gure 4.

More generally, for H (u; v) having the property

uH 1 � 0; vH2 � 0 (9)

then we also proved [61]

H G(u+ ; u� ; v+ ; v� ) = max[ H (u�
+ ; v�

+ ); H (u+
� ; v�

+ ); H (u�
+ ; v+

� ); H (u+
� ; v+

� )]
(10)

and property F is again satis�ed.
Again in [61], we were able to solve a somewhat interesting and very

anisotropic etching problem with this new fast algorithm. Here we took

H (' x ; ' y ) = j' y j(1 � a(' y )' y=(' 2
x + ' 2

y))

where

a = 0 if ' y < 0

a = :8 if ' y > 0
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and observed merging of two fronts. See �gures 5 and 6. These �gures show
a two dimensional etching process resulting in a merger.

The fast method originating in [86] is a variant of Dijkstra' s algorithm
and, as such involves the tree like heap sort algorithm in order to compute
the smallest of a set of numbers. Recently Bou�e and Dupuis [11] have pro-
posed an extremely simple fast algorithm for a class of convex Hamiltonians
including those which satisfy (4) and (5) above. Basically,their statement
is that the standard Gauss-Seidel algorithm, with a simple ordering, con-
verges in a �nite number of iterations for equation (7). This would give
an O(N ), not O(N logN ) operations, with an extremely simple to program
algorithm { no heap sort is needed. Moreover, for the eikonalequation
with a(x; y) = 1, the algorithm would seem to converge in 2dN iterations
in Rd; d = 1 ; 2; 3, which is quite fast. This gives a very simple and fast re-
distancing algorithm. For more complicated problems we have found more
iterations to be necessary, but still obtained promising results, together with
some theoretical justi�cation. See [85] for details, whichalso include results
for a number of nonconvex Hamiltonians. We call this technique the \fast
sweeping method" in [85]. We refer to it in section 3 when we discuss the
basic distance reinitialization algorithm.
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Figure 1: Merging and pinching of curves inR3 moving by mean curvature.
Reprinted from [13].
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Figure 2: Merging and pinching of curves inR3 moving by mean curvature.
Reprinted from [13].
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Figure 3: Three dimensional etching using a fast algorithm.Reprinted from
[61].
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Figure 4: Three dimensional etching using a fast algorithm.Reprinted from
[61].
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Figure 5: Two dimensional etching with merging using a fast algorithm.
Reprinted from [61].
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Figure 6: Two dimensional etching with merging using a fast algorithm.
Reprinted from [61].
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3 Level Set Dictionary, Technology and Numerical
Implementation

We list key terms and de�ne them by their level set representation.

1. The interface boundary �( t) is de�ned by: f ~xj' (~x; t) = 0 g. The region

( t) is bounded by �( t) : f ~xj' (~x; t) > 0g and its exterior is de�ned
by: f ~xj' (~x; t) < 0g

2. The unit normal ~N to �( t) is given by

~N = �
r '
jr ' j

:

3. The mean curvature � of �( t) is de�ned by

� = �r �
�

r '
jr ' j

�
:

4. The Dirac delta function concentrated on an interface is:

� (' )jr ' j;

where � (x) is a one dimensional delta function.

5. The characteristic function � of a region 
( t):

� = H (' )

where

H (x) � 1 if x > 0

H (x) � 0 if x < 0:

is a one dimensional Heaviside function.

6. The surface (or line) integral of a quantity p(~x; t) over �:
Z

Rn
p(~x; t)� (' )jr ' jd~x:

7. The volume (or area) integral of p(~x; t) over 

Z

Rn
p(~x; t)H (' )d~x:
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Next we describe three key technological advances which areimportant
in many, if not most, level set calculations.

8. The distance reinitialization procedure replaces a general level set func-
tion ' (~x; t) by d(~x; t) which is the value of the distance from ~x to
�( t), positive outside and negative inside. This assures us that ' does
not become too 
at or too steep near �( t). Let d(~x; t), be signed dis-
tance of ~x to the closest point on �. The quantity d(~x; t) satis�es
jr dj = 1 ; d > 0 in 
 ; d < 0 in ( �
) c and is the steady state solution
(as � ! 1 ) to

@ 
@�

+ sgn(' )( jr  j � 1) = 0 (11)

 (~x; 0) = ' (~x; t):

where sgn(x) = 2 H (x)� 1 is the one dimensional signum function. This
was designed in [84]. The key observation is that in order to de�ne d
in a band of width � around �, we need solve (11) only for � = O(� ). It
can easily be shown that this can be used globally to construct distance
(with arbitrary accuracy) in O(N logN ) iterations [66]. Alternatively,
we may use Tsitsiklis' fast algorithm [86], which is alsoO(N logN ),
with a much smaller constant, but which is only �rst order accurate.
A locally second order accurate (in the high resolution sense) fast
marching method was proposed in [77]. While this method has amuch
lower local truncation error than a purely �rst order accura te method,
it is still globally �rst order accurate except for special cases. Finally,
we might also use the fast sweeping method from [11] and [85] as
described in the last section, which appears to haveO(N ) complexity
and which is also only �rst order accurate, although this complexity
estimate has not been rigorously justi�ed.

9. Smooth extension of a quantity, e.g. vn on � to a neighborhood of �.
Let the quantity be p(~x; t). Solve to steady state (� ! 1 )

@q
@�

+ sgn(' )
�

r '
jr ' j

� r q
�

= 0

q(~x; 0) = p(~x; t):

Again, we need only solve this for� = O(� ) in order to extend p to be
constant in the direction normal to the interface in a tube of width � .
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This was �rst suggested and implemented in [24], analyzed carefully in
[88], and further discussed and implemented in both [32] and[66]. A
computationally e�cient algorithm based on heap sort techn ology and
fast marching methods was devised in [1]. There are many reasons to
extend a quantity o� of �, one of which is to obtain a well condi tioned
normal velocity for level contours of ' close to ' = 0 [24]. Others
involve implementation of the Ghost Fluid Method of [32] discussed
in the next section.

10. The basic level set method concerns a function' (~x; t) which is de�ned
throughout space. Clearly this is wasteful if one only caresabout
information near the zero level set. The local level set method de�nes
' only near the zero level set. We may solve (2) in a neighborhood of
� of width m� x, where m is typically 5 or 6. Points outside of this
neighborhood need not be updated by this motion. This algorithm
works in \ ' " space { so not too much intricate computer science is
used. For details see [66]. Thus this local method works easily in the
presence of topological changes and for multiphase 
ow. An earlier
local level set approach called \narrow banding" was devised in [2].

Finally, we repeat that, in the important special case wherevN in equa-
tion 2 is a function only of ~x, t and r ' (e.g. vN = 1), then equation
2 becomes a Hamilton-Jacobi equation whose solutions generally develop
kinks (jumps in derivatives). We seek the unique viscosity solution. Many
good references exist for this important subject, see e.g. [8, 27]. The appear-
ance of these singularities in the solution means that special, but not terribly
complicated, numerical methods have to be used, usually on uniform Carte-
sian grids. This was �rst discussed in [64] and numerical schemes developed
there were generalized in [65] and [43]. The key ideas involve monotonicity,
upwind di�erencing, essentially nonoscillatory (ENO) schemes and weighted
essentially nonoscillatory (WENO) schemes. See [64], [65]amd [43] for more
details.
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4 Coupling of the Level Set Method with External
Physics

Interface problems involving external physics arise in various areas of science.
The computation of such problems has a very long history. Methods of choice
include front tracking, see e.g. [87] and [41], phase-�eld methods, see e.g.
[48] and [59], and the volume of 
uid (VOF) approach, see e.g. [60] and
[12]. The level set method has had major successes in this area. Much of
the level set technology discussed in the previous two sections was developed
with such applications in mind.

Here, we shall describe level set approaches to problems in compressible

ow, incompressible 
ow, 
ows having singular vorticity, S tefan problems,
kinetic crystal growth and a relatively new island dynamicsmodel for epitax-
ial growth of thin �lms. We shall also discuss a recently developed technique,
the ghost 
uid method (GFM), which can be used (1) to remove numerical
smearing and nonphysical oscillations in 
ow variables near the interface and
(2) to simplify the numerical linear algebra arising in someof the problems
in this section and elsewhere.

4.1 Compressible Flow

Chronologically, the �rst attempt to use the level set method in this area
came in two phase inviscid compressible 
ow, [55]. There, tothe equations
of conservation of mass, momentum and energy, we appended equation (1),
which we rewrote in conservation form as

(�' )t + r � (�'~v ) = 0 (12)

using the density of the 
uid � .
The sign of ' is used to identify which gas occupied which region, so it

determines the local equation of state. This (naive) methodsu�ered from
spurious pressure oscillations at the interface, as shown in [46] and [45].
These papers proposed a new method which reduced these errors by using a
nonconservative formulation near the interface. However,[46] and [45] still
smear out the density across the interface, leading to terminal oscillations
for many equations of state.

A major breakthrough in this area came in the development of the ghost

uid method (GFM) in [32]. This enables us to couple the level set repre-
sentation of discontinuities to �nite di�erence calculati ons of compressible
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ows. The approach was based on using the jump relations for discontinu-
ities which are tracked using equation (1) (for two phase compressible 
ow).
What the method amounts to (in any number of space dimensions) is to pop-
ulate cells next to the interface with \ghost values", which, for two phase
compressible 
ow retain their usual values of pressure and normal veloc-
ity (quantities which are continuous across the interface), with extrapolated
values of entropy and tangential velocity (which jump across the interface).
These quantities are used in the numerical 
ux when \crossing" an interface.

An important aspect of the method is its simplicity. There is no need
to solve a Riemann problem normal to the interface, considerthe Rankine-
Hugoniot jump conditions, or solve an initial-boundary value problem. An-
other important aspect is its generality. The philosophy appears to be: at
a phase boundary, use a �nite di�erence scheme which takes only values
which are continuous across the interface, using the natural values when-
ever possible. Of course, this implies that the tangential velocity is treated
in the same fashion as the normal velocity and the pressure when viscosity is
present. The same holds true for the temperature in the presence of thermal
conductivity.

Figure 7 shows results obtained for two phase compressible 
ow using
the GFM together with the level set method. Air with density a round
1 kg

m3 is to the left of the interface and water with density around 1000kg
m3

is to the right of the interface. Note that there is no numerical smearing
of the density at the interface itself which is fortunate as water cavitates
at a density above 999kg

m3 leading to host of nonphysical problems near the
interface. Note too, that the pressure and velocity are continuous across
the interface, although there are kinks in both of these quantities. A more
complicated multidimensional calculation is shown in �gure 8 where a shock
wave in air impinges upon a helium droplet. See [32] for more details.

While the GFM was originally designed for multiphase compressible 
ow,
it can be generalized to treat a large number of 
ow discontinuities. In [33],
we generalized this method to treat shocks, detonations andde
agrations in
a fashion that removes the numerical smearing of the discontinuity. Figure
9 shows the computed solution for a detonation wave. Note that there is no
numerical smearing of the leading wave front which is extremely important
when trying to eliminate spurious wave speeds for sti� source terms on
coarse grids as �rst pointed out by [26]. While shocks and detonations
have associated Riemann problems, the Riemann problem for acompressible

ow de
agration discontinuity is not well posed unless the speed of the
de
agration is given. Luckily, there is a large amount of lit erature on the
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G-equation for 
ame discontinuities which was originally proposed in [50].
The G-equation represents the 
ame front as a discontinuity in the same
fashion as the level set method so that one can easily consultthe abundant
literature on the G-equation to obtain de
agration speeds for the Ghost
Fluid Method. Figure 10 shows two initially circular de
agr ation fronts
that have just recently merged together. Note that the light colored region
surrounding the de
agration fronts is a precursor shock wave that causes
the initially circular de
agration waves to deform as they a ttempt to merge.

The GFM was extended in [34] in order to treat the two phase compress-
ible viscous Navier Stokes equations in a manner that allowsfor a large jump
in viscosity across the interface. This paper spawned the technology needed
to extend the GFM to multiphase incompressible 
ow includin g the e�ects
of viscosity, surface tension and gravity as discussed in the next subsection.

4.2 Incompressible Flow

The earliest real success in the coupling of the level set method to prob-
lems involving external physics came in computing two-phase Navier-Stokes
incompressible 
ow [84], [22]. The equations can be writtenas:

~ut + ~u � r ~u +
r p
�

= ~g+
r � (2�D )

�
+

� (' )�� ~N
�

r � ~u = 0

where ~u = ( u; v; w) is the 
uid velocity, p is the pressure,� = � (' ) and
� = � (' ) are the piecewise constant 
uid densities and viscosities, g is the
gravitational force, D is the viscous stress tensor,� is the surface tension
coe�cient, � is the curvature of the interface, ~N is the unit normal and
� (' ) is a delta function. See [87] and [12] for earlier front tracking and VOF
methods (respectively) using a similar formulation. This equation is coupled
to the front motion through the level set evolution equation (1) with ~v = ~u.
This involves de�ning the interface numerically as having a �nite width of
approximately 3 to 5 grid cells. Within this smeared out band, the density,
viscosity and pressure are modeled as continuous functions. Then the �� ~N

�
term is used to approximate the surface tension forces whichare lost when
using a continuous pressure [84]. Successful computationsusing this model
were performed in [84] and elsewhere [22]. Problems involving area loss were
observed and signi�cant improvements were made in [83].

As mentioned above, the technology from [34] motivated the extension
of the Ghost Fluid Method to this two phase incompressible 
ow problem.
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First, a new boundary condition capturing approach was devised and applied
to the variable coe�cient Poisson equation to solve problems of the form

r
�

1
�

r p
�

= f

where the jump conditions [p] = g and [1
� r p � ~N ] = h are given and � is

discontinuous across the interface. This was accomplishedin [49]. A sample
calculation from [49] is shown in �gure 11 where one can see that both the
solution, p, and its �rst derivatives are sharp across the interface without
numerical smearing. Next, this new technique was applied tomultiphase
incompressible 
ow in [44]. Here, since one can model the jumps in pressure
directly, there is no need to add the �� ~N

� source term to the right hand side
of the momentum equation in order to capture the surface tension forces.
Instead surface tension is modeled directly by imposing a pressure jump
across the interface. In addition, [44] allows for exact jumps in both � and
� so that the nonphysical �nite width smeared out interface in [84] can
be replaced by a sharp interface. A three dimensional calculation of an
(invisible) solid sphere impacting water causing a splash is shown in �gure
12. Here the air has density near 1kg

m3 while the water has density near
1000kg

m3 .
Recently, in [57], this boundary condition capturing technology was ex-

tended to treat two phase incompressible 
ames where the normal velocity is
discontinuous across the interface as well. Figure 13 showsan example cal-
culation where two 
ames have just merged. Note that the velocity vectors
in �gure 13 clearly indicate that the velocity is kept discontinuous across
the 
ame front. [39] considered two phase incompressible 
ames as well,
proposing a method that keeps the interface sharp and removes numerical
smearing. Unfortunately, the method proposed in [39] cannot treat topo-
logical changes in the 
ame front. Our method improves upon [39] allowing

ame front discontinuities to merge, as in �gure 13, or pinch o�. Figure 14
shows two 
ame fronts shortly after merging in three spatial dimensions.

4.3 Topological Regularization

In [37] and [38], it is shown that the level set formulation provides a new
and novel way to regularize certain ill-posed equations of interface motion,
by blocking interface self-intersection. We computed two and three dimen-
sional unstable vortex motion without regularization other than that in the
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discrete approximation to � (' ) { this is done over a few grid points. The key
observation is that viewing a curve or surface as the level set of a function,
and then evolving it with a perhaps unstable velocity �eld, p revents certain
types of blow up from occuring. This is denoted \topological regulariza-
tion". For example a tracked curve can develop a �gure eight pattern, but a
level set captured curve will pinch o� and stabilize before this happens. For
the set up (involving two functions), see [37], where we perform calculations
involving the Cauchy-Riemann equations. The motions agreeuntil pinch
o�, when the topological stabilization develops.

As an example, we considered the two dimensional incompressible Euler
equations, which may be written as

! t + ~u � r ! = 0

r � ~u = !

r � ~u = 0

We are interested in situations in which the vorticity is ini tially concentrated
on a set characterized by the level set function' as follows

Vortex patch: ! = H (' )

Vortex sheet: ! = � (' ); (strength of sheet is
1

jr ' j
)

Vortex sheet dipole: ! =
d

d'
� (' ) = � 0(' ):

The key observation is that ' also satis�es a simple advection equation and
~u and ! can be easily recovered. For example, for the vortex sheet case we
solve

' t + ~u � r ' = 0

~u =

 
� @y

@x

!

� � 1� (' ):

Standard Laplace solvers may be used. See [38] for results involving two and
three dimensional 
ows. In [66] we added reinitialization and extension to
this procedure and obtained improved results in the two dimensional case.
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4.4 Stefan Problem

Another classical �eld concerns Stefan problems [24], see also [78] for an
earlier, but much more involved level set based approach. Here we wish
to simulate melting ice or freezing water, or more complicated crystalline
growth, as in the island dynamics model discussed below.

We begin with a simpli�ed, nondimensionalized model (see [47] for an
extension as mentioned below),

@T
@t

= r 2T; ~x 6" @
 = �( t)

vN = [ r T � N ] ; ~x " �( t)

where [�] denotes the jump across the boundary, and

T = � �"c� (1 � Acos(kA � + � 0)) + �"vvn (1 � A cos(kA � + � 0))

on �( t), and where � is the curvature, � = cos� 1 ' x
jr ' j , and the constants

A; kA ; � 0; �"c, and �"v depend on the material being modeled.
We directly discretize the boundary conditions at �: To upda te T at

grid nodes near the boundary, if the stencil for the heat equation would
cross � (as indicated by nodal sign change in' ), we merely use dimension
by dimension one sided interpolation and the given boundaryT value at an
imaginary node placed at ' = 0 (found by interpolation on ' ) to compute
Txx and or Tyy , (never interpolating across the interface) rather than the
usual three point central stencils. The level set function' is updated and
then reinitialized to be equal to the signed distance to �. Note that the
level set update usesvN that has been extended o� the interface. See [24]
for details.

We note that one can easily extend this to

@T
@t

= r � (kr T)

where k is a di�erent positive constant inside and outside of 
 and

vN =
h
kr T � ~N

i
; ~x " �( t):

as was recently done in [47].
An important observation is that our �nite di�erencing at th e interface

leads to a nonsymmetric matrix inversion when applying implicit discretiza-
tion in time, although the method does have nice properties such as second
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order accuracy and a maximum principle. This lack of symmetry is a bit
problematic for a fast implementation, especially for very large values ofk.
Fortunately, an extension of GFM can be used to derive a di�erent spatial
discretization producing a symmetric matrix that can be inverted rather
easily using fast methods. This was originally proposed by Fedkiw [31] and
is described below.

It is su�cient to explain how the spatial derivatives are der ived with
respect to one variable, since there are no mixed partial derivative terms.
Suppose the interface point,x f , falls in between two grid points x i and x i +1 .
From � , the distances betweenx i ; x i +1 and x f can be estimated by

x f � x i �
� � i � x

(� i +1 � � i )
= � 1� x (13)

x i +1 � x f �
� i +1 � x

(� i +1 � � i )
= � 2� x (14)

To avoid numerical errors caused by division by 0,� 1 or � 2 are not used if
either is less than � x2. If � 1 < � x2, then x f is assumed equal tox i . If
� 2 < � x2, then x f is assumed equal tox i +1 . Either assumption is e�ectively
a second order perturbation of the interface location leading to second order
accurate spatial discretization. The nonsymmetric secondorder accurate
discretization for Txx given in [24] is

(Txx ) i �

�
Tf � Ti
� 1 � x

�
�

�
Ti � Ti � 1

� x

�

1
2(� 1� x + � x)

(15)

(Txx ) i +1 �

�
Ti +2 � Ti +1

� x

�
�

�
Ti +1 � Tf

� 2 � x

�

1
2(� x + � 2� x)

(16)

where Tf denotes the value ofT at x f and is determined from the bound-
ary condition. Instead of using the nonsymmetric equations(15) and (16),
Fedkiw [31] proposed using

(Txx ) i �

�
Tf � Ti
� 1 � x

�
�

�
Ti � Ti � 1

� x

�

� x
(17)

(Txx ) i +1 �

�
Ti +2 � Ti +1

� x

�
�

�
Ti +1 � Tf

� 2 � x

�

� x
(18)

which leads to a symmetric linear system when using implicittime discretiza-
tion. Equation (17) is derived using linear extrapolation of T from one side
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of the interface to the other, obtaining

TG = Tf + (1 � � 1)
�

Tf � Ti

� 1

�
(19)

as a ghost cell value forT at x i +1 . The standard second order discretization
of @2T

@x2 at x i using TG at x i +1 is

(Txx ) i �

�
TG � Ti

� x

�
�

�
Ti � Ti � 1

� x

�

� x
(20)

and the substitution of equation (19) into equation (20) leads directly to
(17). Equation (18) is derived similarly.

Formulas (17) and (18) haveO(1) errors using formal truncation error
analysis. However, they are second order accurate on a problem where the
interface has been perturbed byO(� x2), making them second order accurate
in the interface location. Assume that the standard second order accurate
discretization is used to obtain the standard linear systemof equations for
T at every grid point except for those adjacent to the interface, that is
except for x i and x i +1 . Since the linear system of equations for the nodes
to the left and including x i is independent of the system for the nodes
to the right including x i +1 , only the linear system to the left is discussed
here. Equation (20) is used to write a linear equation forTi introducing a
new unknown TG, and the system is closed with equation (19) forTG. In
practice, equations (19) and (20) are combined to obtain equation (17) and a
symmetric linear system of equations. This linear system ofequations results
in well determined values (up to some prescribed tolerance near roundo�
error levels) of T at each grid node as well as a well determined value of
TG (from equation (19)). For the sake of reference, designate~T as the
solution vector containing the values of T at each grid point to the left
and including x i as well as the value ofTG at x i +1 which are obtained by
solving this symmetric linear system. Below, ~T is shown to be a second
order accurate solution to our problem by showing that it is the second
order accurate solution to a modi�ed problem where the interface location
has been perturbed byO(� x2).

Consider the modi�ed problem where a Dirichlet boundary condition of
T = TG is speci�ed at x i +1 whereTG is chosen to be the value ofTG from ~T
de�ned above. This modi�ed problem can be exactly discretized to second
order accuracy everywhere using the standard discretization at every node
except x i where equation (20) is used. We note that equation (20)is the
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standard second order accurate discretization when a Dirichlet boundary
condition of T = TG is applied at x i +1 . This new linear system can be dis-
cretized and solved in a standard fashion to obtain a second order accurate
solution at each grid node. Then the realization that ~T is an exact solu-
tion to this linear system implies that ~T is a second order accurate solution
to this modi�ed problem. Next consider the interface location dictated by
the modi�ed problem. Since ~T is a second order accurate solution to the
modi�ed problem, ~T can be used to obtain the interface location to second
order accuracy. The linear interpolant that uses Ti at x i and TG at x i +1

predicts an interface location ofexactly x f which is the true interface loca-
tion. Since higher order interpolants (higher than linear) can contribute at
most an O(� x2) perturbation of the interface location, the interface loca-
tion dictated by the modi�ed problem is at most an O(� x2) perturbation
of the true interface location, x f .

In [25], we used this strategy to obtain a second order accurate symmetric
discretization of the variable coe�cient Poisson equation

r (kr T) = f

on irregular domains in as many as three spatial dimensions. Then, in
a straightforward way, we obtained second order accurate symmetric dis-
cretizations of the heat equation on irregular domains using backward Euler
time stepping with 4 t = ( 4 x)2 and Crank-Nicolson time stepping with
4 t = 4 x.

4.5 Kinetic Crystal Growth

For an initial state consisting of any number of growing crystals in Rd, d
arbitrary, moving outward with given normal growth velocit y ~v( ~N ) > 0
which depends on the angle of the unit surface normal~N , the asymptotic
growth shape is a single (kinetic) Wul�-construct crystal. This result was
�rst conjectured by Gross in (1918) [35]. This shape is also known to min-
imize the surface integral of ~v( ~N ) for a given volume. We gave a proof
of this result [62], see also [81], using the level set formulation and the
Hopf-Bellman formulas [6] for the solution of a Hamilton-Jacobi equation.
Additionally, with the help of the Brunn-Minkowski inequal ity, we showed
that if we evolve a convex surface under the motion describedin (3), then
the ratio to be minimized monotonically decreases to its minimum as time
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increases, which provides a new proof that the Wul� construction solves
the generalized isoperimetric problem as well. Thus there is a new link
between this hyperbolic surface evolution and this (generally nonconvex)
energy minimization. This also provides a convenient framework for numer-
ically computing anisotropic kinetic crystal growth [67]. The theoretical and
numerical results of this work are illustrated in the Unifor m Density Island
Dynamics models of [15] and [36]. That model describes crystals growing in
two dimensions with an anisotropic velocity.

An interesting spino� of this work came in [67] in which we proved that
any two dimensional Wul� shape can be interpreted preciselyas the solution
of a Riemann problem for a scalar conservation law { contact discontinu-
ities correspond to jumps in the angle of the normal to the shape, smoothly
varying non 
at faces correspond to rarefaction waves and planar facets
correspond to constant states, which develop because of kinks in the con-
servation law's 
ux function. These kinks are also seen in the convexi�ed
Wul� energy.

4.6 Epitaxial Growth of Thin Films

A new continuum model for the epitaxial growth of thin �lms ha s been de-
veloped. Molecular Beam Epitaxy (MBE) is a method for growing extremely
thin �lms of material. The essential aspects of this growth process are as
follows: under vacuum conditions a 
ux of atoms is depositedon a substrate
material, typically at a rate that grows one atomic monolayer every several
seconds. When deposition 
ux atoms hit the surface, they bond weakly
rather than bounce o�. These surface \adatoms" are relatively free to hop
from lattice site to site on a 
at (atomic) planar surface. Ho wever, when
they hop to a site at which there are neighbors at the same level, they form
additional bonds which hold them in place. This bonding could occur at the
\step edge" of a partially formed atomic monolayer, which contributes the
growth of that monolayer. Or, it could occur when two adatoms collide with
each other. If the critical cluster size is one, the colliding adatoms nucleate
a new partial monolayer \island" that will grow by trapping o ther adatoms
at its step edges.

By these means, the deposited atoms become incorporated into the grow-
ing thin �lm. Each atomic layer is formed by the nucleation of many isolated
monolayer islands, which then grow in area, merge with nearby islands, and
ultimately �ll in to complete the layer. Because the deposition 
ux is con-
tinually raining down on the entire surface, including the tops of the islands,
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a new monolayer can start growing before the previous layer is completely
�lled. Thus islands can form on top of islands in a \wedding cake" fashion,
and the surface morphology during growth can become quite complicated.

The Island Dynamics model is a continuum model designed to capture
the longer length scale features that are likely to be important for the anal-
ysis and control of monolayer thin �lm growth. It is also inte nded to model
the physics relevant to studying basic issues of surface morphology, such as
the e�ects of noise on growth, the long time evolution of islands, and the
scaling relationships between surface features (mean island area, step edge
length, etc) in various growth regimes (precoalescence, coalescence). Refer
to the classic work of [14] for useful background on the modeling of the
growth of material surfaces. Our present discussion of the Island Dynamics
Model is an abridged version of what was discussed in [54]. Weshall present
this new model in some detail because, although it has many ofthe fea-
tures of the Stefan problem, it also requires some new level set technology.
This includes a \wedding cake" formulation involving several level sets of
the same function, nucleation of new islands, and nontrivial numerical treat-
ment of the interface to obtain rapid convergence of implicit time marching
schemes.

In the Island Dynamics model, we treat each of the islands present as
having a unit height, but a continuous (step edge) boundary on the surface.
This represents the idea that the �lms are atomic monolayers, so that height
is discrete, but they cover relatively large regions on the substrate, so x and
y are continuum dimensions. The adatoms are modeled by a continuous
adatom density function on the surface. This represents theidea that they
are very mobile, and so they e�ectively occupy a given site for some fraction
of the time, with statistical continuity, rather than discr etely.

Thus, the domain for the model is thex � y region originally de�ned by
the substrate, and the fundamental dynamical variables forthis model are:

� The island boundary curves � i (t); i = 1 ; 2; : : : ; N

� The adatom density on the surface� (x; y; t )

The adatom density � obeys a surface di�usive transport equation, with
a source term for the deposition 
ux

@�
@t

= r � (D r � ) + F;

where F = F (x; y; t ) is speci�ed. During most phases of the growth, it is
simply a constant. This equation may also include additional small loss
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terms re
ecting adatoms lost to the nucleation of new islands, or lost to
de-absorption o� the surface. This equation must be supplemented with
boundary conditions at the island boundaries. In the simplest model of
Irreversible Aggregation, the binding of adatoms to step edges leaves the
adatom population totally depleted near island boundaries, and the bound-
ary condition is

� j� = 0 :

More generally, the e�ects of adatom detachment from boundaries, as well
as the energy barriers present at the boundary, lead to boundary conditions
of the form �

A� + B
@�
@n

�
= C

whereC is given and [�] denotes the local jump across the boundary. In par-
ticular, note that � itself can have a jump across the boundary, even though
it satis�es a di�usive transport equation. This simply re
e cts that fact that
the adatoms on top of the island are much more likely to incorporate into
the step edge than to hop across it and mix with the adatoms on the lower
terrace, and vice versa.

The island boundaries � i move with velocities ~v = vN ~N , where the
normal velocity vn re
ects the island growth. This is determined simply by
local conservation of atoms: the total 
ux of atoms to the boundary from
both sides times the e�ective area per atom,a2, must equal the local rate
of growth of the boundary, vN :

vN = � a2[~q� ~N ]

(this assumes there is no particle transport along the boundary; more gen-
erally, there is a contribution from this as well) where ~q is the surface 
ux
of adatoms to the island boundary and ~N is the local outward normal. In
general, the net atom 
ux ~qcan be expressed in terms of the di�usive trans-
port, as well as attachment and detachment probabilities, all of which can
be directly related to the parameters of Kinetic Monte Carlo models. In the
special case of Irreversible Aggregation,~q is simply the surface di�usive 
ux
of adatoms

~q= � Dr �:

To complete the model we include a mechanism for the nucleation of new
islands. If islands nucleate by random binary collisions between adatoms
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(and if the critical cluster size is one), we expect the probability that an
island is nucleated at a timet, at a site (x; y), scales like

P[dx; dy; dt] = �� (x; y; t )2dt dx dy:

This model describes nucleation as a site-by-site, timestep-by-timestep ran-
dom process. A simplifying alternative is to assume the nucleation occurs at
the continuous rate obtained by averaging together the probabilistic rates
at each site. In this case, if we letn(t) denote the total number of islands
nucleated prior to time t, we have the deterministic equation

dn
dt

= h�� 2i

where h�i denotes the spatial average. In this formulation, at each time
when n(t) reaches a new integer value, we nucleate a new island in space.
This is carried out by placing it randomly on the surface with a probability
weighted by � 2, so that the e�ect of random binary collisions is retained.

This basic model also has natural extensions to handle more complex thin
�lm models. For example, additional continuum equations can be added to
model the dynamics of the density of kink sites on the island boundaries,
which is a microstructural property that signi�cantly in
u ences the local
adatom attachment rates (see [15]). Also, we can couple thismodel to
equations for the elastic stress that results from the \lattice mismatch"
between the size of the atoms in the growing layers and the size of the
atoms in the substrate.

Conversely, the above model has a particular interesting extreme simpli-
�cation. We can go to the limit where the adatoms are so mobileon the sur-
face (D ! 1 ) that the adatom density is spatially uniform, � (x; y; t ) = � (t).
In this case, the loss of adatoms due to the absorbing boundaries is assumed
to take on a limiting form proportional to the adatom density and the total
length L of all the island boundaries, which can be written as a simplesink
term

d�
dt

= F � �L�:

(This equation can be derived systematically from the conservation law for
the total number of adatoms,

R
� , that follows from the adatom di�usion

equation. The above loss term is just a simpli�ed model for the net loss of
adatoms to the island boundaries.) Further, it is assumed the velocity takes
on a given normal dependent limiting form, vN = vN ( ~N ) (which implies
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that growing islands will rapidly assume the associated \Wul� shape" for
this function vN ( ~N ) (as in [62])). We have used this \Uniform Density"
model to prototype the numerical methods, and to develop an understand-
ing of how the island dynamics models are related to the continuum \rate
equation" models that describe island size distribution evolution while using
no information at all about the spatial interactions of the i slands.

Much of the above model is formally a Stefan problem and many of the
level set techniques required for this were developed in [24] and can similarly
be applied here. In addition, the internal boundary condition discretization
of the adatom di�usion equation can be implemented using thesymmetric
matrix version of the discretization proposed by Fedkiw [31] and discussed
earlier in this paper.
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Figure 7: Two phase compressible 
ow calculated with the Ghost Fluid
Method. Air on the left and water on the right. Reprinted from [32].
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Figure 8: Mach 1.22 air shock collapse of a helium bubble. Reprinted from
[32].
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Figure 9: Nonsmeared detonation wave traveling away from a solid wall.
Reprinted from [33].
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Figure 12: Water waves generated by the impact of an (invisible) solid
object. Reprinted from [44].
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Figure 14: Two phase incompressible 
ames depicted shortlyafter merging
(3 spatial dimensions). Reprinted from [57].
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5 A Variational Approach with Applications to
Multiphase Motion

In many situations, e.g., crystal growth, a material is composed of three or
more phases. The interfaces between the phases move according to some
law. If the material is a metal and its grain orientation is di �erent in each
region, then an isotropic surface energy means that the velocity is the mean
curvature of the interface. Or the velocities of the interfaces may depend
on the pair of phases in contact; e.g. a di�erent constant velocity on each
interface.

Several �xed grid approaches to this problem have been used.Merriman,
Bence and Osher [53] have extended the level set method to compute the
motion of multiple junctions. Also in that paper, and in [51] and [52], a
simple method based on the di�usion of characteristic functions of each set

 i , followed by a certain reassignment step, was shown to be appropriate
for the motion of multiple junctions in which the bulk energi es are zero (and
hence, the constantsei = 0 ; i = 1 ; : : : ; n) and the f i;j are all equal to the
same positive constant, i.e., pure mean curvature 
ow. See equations (21)
below.

Another method using an \in
uence matrix" was designed in [75]. How-
ever, as cautioned by the author, the method is expensive andcomplex.

More general motion involving somewhat arbitrary functions of curva-
ture, perhaps di�erent for each interface, was proposed in [53] as well. This
was implemented basically by decoupling the motions, and then using a re-
assignment step. Again each region has its own private levelset function.
This function moves each level set with a normal velocity depending on
the proximity to the nearest interface, thus vacuum and overlapping regions
generally develop. Then a simple reassignment step is used,removing all
the spurious regions. For details see [53]. In that paper there was no restric-
tion to gradient 
ows. However, the general method in [53] lacks (so far) a
clean theoretical basis to guide the design of numerical algorithms. These
di�culties were recti�ed by the following method.

In [88] we developed the variational level set approach inspired by [68].
Given a disjoint family 
 i of regions in R2 with the common boundary
between 
 i and 
 j denoted by � i;j , we associate to this geometry an energy
function of the form

E = E1 + E2
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E1 =
X

1� i � j � n

f i;j length (� i;j ) (21)

E2 =
X

1� i � n

ei area (
 i )

where E1 is the energy of the interface (surface tension). E2 is bulk en-
ergy, and n is the number of phases. The gradient 
ow induces motion
such that the normal velocity of each interface is de�ned in (22). At triple
points (which can be seen geometrically by the triangle inequality to be the
only stable junctions if all the f i;j > 0), the angles are determined by (23)
throughout the motion.

Normal velocity of � i;j = ( vN ) i;j = f i;j � i;j + ( ei � ej ): (22)

sin � 1

f 2;3
=

sin� 2

f 3;1
=

sin� 3

f 1;2
: (23)

This could be rewritten as:

E = E1 + E2

E1 =
nX

i =1


 i

Z Z
� (' i (x; y; t )) jr ' i (x; y; t )jdxdy (24)

E2 =
nX

i =1

ei

Z Z
H (' i (x; y; t ))dxdy;

where

f i;j = 
 i + 
 j ; 1 � i < j � n:

In the (most interesting) case whenn = 3 we can solve uniquely for the
 i .
Now our problem becomes:
Minimize E subject to the constraint that

nX

i =1

H (' i (x; y)) � 1 � 0: (25)

This in�nite set of constraints prevents the development of overlapping re-
gions and/or vacuum. It requires that the level curvesf (x; y)j' i (x; y; t ) = 0 g
match perfectly.
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The implementation of (24) with the in�nite set of constrain ts (25) is
computationally demanding. Instead we try to replace the constraint (25)
by a single constraint

Z Z
(
P

H (' i (x; y; t )) � 1)2

2
dxdy = � (26)

where � > 0 is as small as we can manage numerically.
The gradient projection method leads us to an interesting coupled system

which involves motion of level contours of each' with normal velocity a+ b�
together with a term enforcing the no overlap/vacuum constraint. We �nd
that � � � x in real calculations. See [88] for details.

We have used this technique to reproduce the general behavior of com-
plicated bubble and droplet motions in two and three dimensions [90]. The
problems included soap bubble colliding and merging, dropsfalling or re-
maining attached to a generally irregular ceiling (see �gure 15), liquid pene-
trating through an asymmetric funnel opening (see �gure 16), and mercury
sitting on the 
oor (see �gure 17).

This variational approach has also been found to have many applications
in computer vision { this will be discussed in the next section.
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Figure 15: Three dimensional drop falling from ceiling. Reprinted from [90].
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Figure 16: Liquid falling through funnel opening. Reprinted from [90].

49



20 40 60 80 100

20

40

60

80

100
t=0.05

20 40 60 80 100

20

40

60

80

100
t=0.02

20 40 60 80 100

20

40

60

80

100
t=0.002

20 40 60 80 100

20

40

60

80

100
t=0

dx=0.01, dt=0.00001

Figure 17: Mercury droplet responding to surface tension. Reprinted from
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6 Applications to Computer Vision and Image Pro-
cessing

The use of PDE's and level set motion in image analysis and computer vision
has exploded in recent years. Good references include [18] and [58].

One basic idea is to view an image asu0(x; y), a function de�ned on a
square, and obtain a (usually second order) 
ow equation of the form

ut = F (u; Du; D 2u; x; t ) (27)

u(x; y; 0) = u0(x; y)

which, for positive t, processes the image.
For example, if one solves the heat equation withF (u; Du; D 2u; x; t ) =

� u, then u(x; y; t ) is the same as convolution ofu0 with a Gaussian of
variance t.

L.I. Rudin, in his Ph.D. thesis [70], made the point that images are
largely characterized by singularities, edges, boundaries, etc, and thus non-
linearity, especially ideas related to shock propagation,should play a role.
This led to the very successful total variation based image restoration al-
gorithms of [72] and [71]. Brie
y, if we are presented with a noisy blurred
image

u0 = j � u + n (28)

where j is a given convolution kernel, and the mean and variance of the
noise are given, we wish to obtain the \best" restored image.This leads us
(see [72] and [71]) to the evolution equation

ut = r �
r u

jr uj
� �j � (j � u � u0) (29)

to be solved for t > 0, where u(x; y; 0) is given, and � (t) > 0 is obtained
as a Lagrange multiplier, or is set to be a �xed constant. If j � u = u,
this becomes a pure denoising problem. The (very interesting) geometric
interpretation of this procedure is that each level contour of u is moved
normal to itself with velocity equal to its curvature, divid ed by the norm
of the gradient of u, then \pulled back" in an attempt to deconvolve (28).
The results are state-of-the-art for many problems. Noisy regions can be
thought of as corresponding to contours having very high curvature, while
edges have �nite curvature and in�nite gradients.

Here the motion of level sets is just used to interpret the dynamics. In
[4], it was shown that reasonable axioms of image processinglead to the
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remarkable fact that motion of level contours by a function of curvature
is fundamental to the subject. The arti�cial time t is actually the scale
parameter [4].

We would like to describe a few new applications of this set ofideas.
In [10], we have considered the problem of processing of images de�ned on
manifolds. The technique actually can be used to solve a wideclass of elliptic
equations on manifolds, without triangulation, using only a local Cartesian
grid, for very general situations.

Given a manifold in R3, de�ned by  (x; y; z) = 0, we can de�ne the
projection matrix

Pr  = I �
r  

jr  j



r  
jr  j

: (30)

If u is an image de�ned on  = 0 we can use our level set calculus to
extend it constant normal to the manifold, in some neighborhood of the
manifold.

If u0 is the original noisy image, the energy to be minimized is

E(u) =
Z

R3
jPr  r uj� ( )jr  jd~x +

�
2

Z
(u � u0)2� ( )jr  jd~x:

Using the gradient descent algorithm, i.e. following the general procedure
of [72] and [88] leads us to

ut =
1

jr  j
r �

 
Pr  r u

jPr  r uj
jr  j

!

� � (u � u0):

This corresponds to total variation denoising. This is doneusing the
local level set method [66] which allows great 
exibility in geometry, while
always using a Cartesian grid. See [10] for denoising and deblurring results.

The technique is quite general { both variational problems and PDE's
de�ned on manifolds can be solved in a reasonably straightforward fashion,
without restrictions on the manifold and without complicat ed triangulation
{ just by using a �xed Cartesian grid.

Another basic image processing task is to detect objects hidden in an
image u0. A popular technique is called active contours or snakes, inwhich
one evolves a curve, subject to constraints until the curve surrounds the
image.

The level set method was �rst used in [16] as a very convenienttool to
follow the motion of active contours in order to surround hidden objects.
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This was an important step since topological changes could easily be han-
dled, a variational approach could be easily used [17] and stable, easy to
program algorithms resulted.

The curve is moved with a velocity which vanishes when the object is
surrounded. Thus edge detectors are traditionally used to stop the evolving
curve. For example, one might use

g(jr u0j) =
�

1
1 + jr j � � u0j

� 2

where j � is a Gaussian of variance� .
In [20] the authors developed a model which was not based on edges,

using a scale parameter, based on a simpli�cation of the Mumford-Shah [56]
energy based segmentation. The implementation is done through the vari-
ational level set approach [88] and the results are remarkable. The method
has a denoising capability as well as the ability to perform amultiscale seg-
mentation. See [21] and [20] for details. Here we just present the evolution
equation for the level set function ' :

' t = jr ' j
�
� r �

r '
jr ' j

� � � � (u0 � c1)2 + � (u0 � c2)2
�

for parameters �; �; � � 0, wherec1 and c2 are the averages ofu0 over the
region for which ' � 0 and ' � 0 respectively. � corresponds to the bulk
energy of the area for which' � 0, � corresponds to the surface tension of
the interface, and � is the penalty for the L 2 error betweenu0 and its mean
over each region. Figure 18 shows an active contour segmenting a MRI brain
image from its backgound.

A somewhat related problem as discussed in [89] is the following. Given
a collection of unorganized points, and/or curves, and/or surface patches,
�nd a surface which can be regarded as its shape. This is a fundamental
visualization problem which arises in computer graphics, visualization and
simulation. No assumptions about the ordering, connectivity or topology
of the data sets or of the true shape is given. The input is the general
distance to the data set which is given on a (usually logically rectangular)
grid. Additionally, we may also input the values of the normal to the surface
at the same or di�erent data points.

The key idea is to �nd a function ' whose zero level set is the interpo-
lating surface, ' changes sign as one goes from inside to outside the surface.
The output is the discrete values of' , which can be reinitialized to be signed
distance to this surface.
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We set up a variational problem, which basically minimizes the integral
over the unknown surface, of thepth power of distance to the data set. We
may include information about the normals in analogous fashion.

Gradient descent (as in the image restoration and active contour prob-
lems) gives us a weighted motion by curvature plus convection algorithm.
The results are very promising as shown �gure 19. For more details, see
[89].
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Figure 18: Active contour segmentation of an MRI brain image from its
backgound. Reprinted from [19].
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Figure 19: Interpolation of two linked tori. Reprinted from [89].
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7 Conclusion

The idea of using a level set to represent an interface is a very old one.
The level set method itself has antecedents, for example, inthe G equation
approach of Markstein [50]. What is new is the level set method technol-
ogy, theoretical justi�cation through viscosity solution s, and the enormous
number of wide ranging applications that are now available,with new ap-
plications developing quite frequently.
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