
A Boundary Condition Capturing Method for

Multiphase Incompressible Flow ∗

Myungjoo Kang †‡

Ronald P. Fedkiw §¶

Xu-Dong Liu ‖∗∗

October 24, 2000

Abstract

In [6], the Ghost Fluid Method (GFM) was developed to capture the
boundary conditions at a contact discontinuity in the inviscid com-
pressible Euler equations. In [11], related techniques were used to
develop a boundary condition capturing approach for the variable co-
efficient Poisson equation on domains with an embedded interface. In
this paper, these new numerical techniques are extended to treat mul-
tiphase incompressible flow including the effects of viscosity, surface
tension and gravity. While the most notable finite difference tech-
niques for multiphase incompressible flow involve numerical smearing
of the equations near the interface, see e.g. [19, 17, 1], this new ap-
proach treats the interface in a sharp fashion.

∗We would like to thank Dr. David Wasson of Arete Entertainment (www.areteis.com)
for developing the fast level set rendering software that was used in the visualization of
the three dimensional calculations.

†Department of Mathematics, University of California Los Angeles, Los Angeles, Cal-
ifornia 90095

‡Research supported in part by NSF and DARPA grant NSF-DMS961854, for Virtual
Integrated Prototyping (VIP)

§Computer Science Department, Stanford University, Stanford, California 94305
¶Research supported in part by ONR N00014-97-1-0027
‖Department of Mathematics, University of California Santa Barbara, Santa Barbara,

California, 93106
∗∗Research supported in part by NSF DMS-9805546

1



1 Introduction

The “immersed boundary” method [14] uses a δ-function formulation to
compute solutions to the incompressible Navier-Stokes equations in the pres-
ence of a submersed elastic interface. This method allows one to incorporate
the effects of the interface on a standard Cartesian mesh. For more details,
see [15]. In [19], this approach was extended to treat multiphase incompress-
ible flows in three spatial dimensions including complex topological changes.
In [17] and [2], the authors replaced the front tracking formulations of [19]
with level set formulations [12] that are generally easier to implement espe-
cially in the presence of three dimensional topological changes.

While the “immersed boundary” type methods of [14, 15, 19, 17, 2] are
fairly attractive using finite differences on a Cartesian mesh, the inherent
numerical smearing is known to have an adverse effect on the solution forcing
continuity at the interface regardless of the appropriate interface boundary
conditions. That is, the numerical solution is continuous at the interface
even if the actual boundary conditions imply that the solution should be
discontinuous. For example, surface tension forces induce a discontinuous
pressure across a multiphase interface [10], while these methods smear the
pressure profile into a numerically continuous function. While it is possible
to formulate surface tension models based on continuous pressure profiles,
see e.g. [1], one would hope that better results can be obtained if the
jump conditions remain intact. However, this increases the possibility of
introducing disturbances on the length scale of the mesh as discussed in
[19], especially for calculations that are not well resolved.

In [6], the Ghost Fluid Method (GFM) was developed to capture the
boundary conditions at a contact discontinuity in the inviscid Euler equa-
tions. In this paper, we extend those ideas to treat three dimensional mul-
tiphase incompressible flow including the effects of viscosity, surface tension
and gravity eliminating the numerical smearing prevalent in the δ-function
formulation of the “immersed boundary” method. Since a projection method
[5] is used to solve for the pressure, a Poisson equation with both variable
coefficients and a discontinuous solution needs to be solved at each time
step. This is accomplished with the GFM related technique developed in
[11] which yields a symmetric coefficient matrix for the associated linear sys-
tem allowing for straightforward application of many “black box” solvers.

2



2 Equations

2.1 Navier-Stokes Equations

The basic equations for viscous incompressible flow are,

ρt + ~V · ∇ρ = 0 (1)

ut + ~V · ∇u +
px

ρ
=

(2µux)x + (µ(uy + vx))y + (µ(uz + wx))z

ρ
(2)

vt + ~V · ∇v +
py

ρ
=

(µ(uy + vx))x + (2µvy)y + (µ(vz + wy))z

ρ
+ g (3)

wt + ~V · ∇w +
pz

ρ
=

(µ(uz + wx))x + (µ(vz + wy))y + (2µwz)z
ρ

(4)

where t is the time, (x, y, z) are the spatial coordinates, ρ is the density,
~V =< u, v,w > is the velocity field, p is the pressure, µ is the viscosity, g is

gravity, and∇ =
〈

∂
∂x , ∂

∂y , ∂
∂z

〉

. These equations are trivially derived from the

Lagrangian form of the viscous compressible Navier-Stokes equations using
the divergence free condition, ∇ · ~V = 0. The equations for the velocities
can be written in condensed notation as a row vector

~V +
(

~V · ∇
)

~V +
∇p

ρ
=

(∇ · τ)T

ρ
+ ~g (5)

where “T” represents the transpose operator, ~g =< 0, g, 0 >, and τ is the
viscous stress tensor for incompressible flow,

τ = µ







2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz






= µ







∇u
∇v
∇w






+ µ







∇u
∇v
∇w







T

(6)

2.2 Jump Conditions

Defining the unit normal vector

~N =< n1, n2, n3 > (7)

3



and applying conservation allows one to write the jump conditions for an
interface moving with the local fluid velocity in the normal direction as













~N
~T1

~T2






(pI − τ) ~NT






=







σκ
0
0






(8)

where ~T1 and ~T2 are orthogonal unit tangent vectors, I is the identity matrix,
σ is the coefficient of surface tension (a constant), κ is the local curvature
of the interface and

[A] = Aright −Aleft (9)

defines “[ · ]” as the jump across the interface. Equation 8 states that the
net stress on the interface must be zero (since it has no mass). For more
details, see [10, 7].

Using the definition of τ in equation 8 leads to












p
0
0






− µ







~N
~T1

~T2













∇u · ~N

∇v · ~N

∇w · ~N







−µ







∇u · ~N ∇v · ~N ∇w · ~N

∇u · ~T1 ∇v · ~T1 ∇w · ~T1

∇u · ~T2 ∇v · ~T2 ∇w · ~T2






· ~N






=







σκ
0
0






(10)

which can be written as three separate jump conditions
[

p− 2µ
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~N
]

= σκ (11)

[

µ
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~T1+

µ
(

∇u · ~T1,∇v · ~T1,∇w · ~T1

)

· ~N
]

= 0 (12)

[

µ
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~T2+

µ
(

∇u · ~T2,∇v · ~T2,∇w · ~T2

)

· ~N
]

= 0 (13)

Since the flow is viscous, the velocities are continuous

[u] = [v] = [w] = 0 (14)

4



as well as their tangential derivatives

[∇u · ~T1] = [∇v · ~T1] = [∇w · ~T1] = 0 (15)

[∇u · ~T2] = [∇v · ~T2] = [∇w · ~T2] = 0 (16)

so that the identity

(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~N +
(

∇u · ~T1,∇v · ~T1,∇w · ~T1

)

· ~T1+
(

∇u · ~T2,∇v · ~T2,∇w · ~T2

)

· ~T2 = ∇ · ~V = 0 (17)

can be used to obtain
[(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~N
]

= 0 (18)

emphasizing that the normal derivative of the normal component of the ve-
locity is continuous across the interface allowing equation 11 to be rewritten
as

[p]− 2 [µ]
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~N = σκ (19)

Next, the family of identities of the form

[AB] = B̂[A] + Â[B] (20)

Â = aAright + bAleft, B̂ = bBright + aBleft, a + b = 1 (21)

is used along with equations 15 and 16 to rewrite equations 12 and 13 as

[(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~T1

]

=
−[µ]

µ̂
α̂ (22)

and

[(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~T2

]

=
−[µ]

µ̂
β̂ (23)

where

α =
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~T1 +
(

∇u · ~T1,∇v · ~T1,∇w · ~T1

)

· ~N (24)

5



and

β =
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~T2 +
(

∇u · ~T2,∇v · ~T2,∇w · ~T2

)

· ~N (25)

with the “hat” superscript defined as outlined above.
Finally, equations 15, 16, 18, 22, and 23 can be compiled to obtain







~N
~T1

~T2













[∇u]
[∇v]
[∇w]













~N
~T1

~T2







T

=
−[µ]

µ̂







0 0 0
α̂ 0 0

β̂ 0 0






(26)

or more simply







[ux] [uy] [uz]
[vx] [vy] [vz]
[wx] [wy] [wz]






=
−[µ]

µ̂







~N
~T1

~T2







T 





0 0 0
α̂ 0 0

β̂ 0 0













~N
~T1

~T2






(27)

Alternatively, equations 15, 16, and 18, can be compiled to obtain







~N
~T1

~T2













[µ∇u]
[µ∇v]
[µ∇w]













~N
~T1

~T2







T

= [µ]







~N
~T1

~T2













∇u
∇v
∇w













~0
~T1

~T2







T

+

[µ]







~N
~0
~0













∇u
∇v
∇w













~N
~0
~0







T

+







~0
~T1

~T2













[µ∇u]
[µ∇v]
[µ∇w]













~N
~0
~0







T

(28)

or







~N
~T1

~T2













[µ∇u]
[µ∇v]
[µ∇w]













~N
~T1

~T2







T

= [µ]







~N
~T1

~T2













∇u
∇v
∇w













~0
~T1

~T2







T

+

[µ]







~N
~0
~0













∇u
∇v
∇w













~N
~0
~0







T

− [µ]







~0
~T1

~T2













∇u
∇v
∇w







T 





~N
~0
~0







T

(29)

using equations 12 and 13 as well. This can be rewritten as







[µux] [µuy] [µuz]
[µvx] [µvy] [µvz]
[µwx] [µwy] [µwz]






= [µ]







∇u
∇v
∇w













~0
~T1

~T2







T 





~0
~T1

~T2






+

6



[µ] ~NT ~N







∇u
∇v
∇w







~NT ~N − [µ]







~0
~T1

~T2







T 





~0
~T1

~T2













∇u
∇v
∇w







T

~NT ~N (30)

noting that the right hand side of this equation only involves derivatives
that are continuous across the interface as opposed to equation 27.

In viscous flows, the velocity is continuous across the interface implying
that the material derivative or Lagrangian acceleration is continuous as well.
That is,

[

Du

Dt

]

=

[

Dv

Dt

]

=

[

Dw

Dt

]

= 0 (31)

are valid jump conditions allowing one to write

[

px

ρ

]

=

[

(2µux)x + (µ(uy + vx))
y

+ (µ(uz + wx))z

ρ

]

(32)

[

py

ρ

]

=

[

(µ(uy + vx))x + (2µvy)y + (µ(vz + wy))z

ρ

]

(33)

[

pz

ρ

]

=

[

(µ(uz + wx))x + (µ(vz + wy))y + (2µwz)z
ρ

]

(34)

based on equations 2, 3, and 4.

2.3 Level Set Equation

The level set equation

φt + ~V · ∇φ = 0 (35)

is used to keep track of the interface location as the set of points where
φ = 0. To keep the values of φ close to those of a signed distance function,
i.e. |∇φ| = 1, the reinitialization equation

φt + S(φo) (|∇φ| − 1) = 0 (36)

is iterated for a few steps in ficticious time. The level set function is used
to compute the normal

~N =
∇φ

|∇φ| (37)

7



and the curvature

κ = −∇ · ~N (38)

in a standard fashion. For more details on the level set function see [6, 12,
17].

8



3 Numerical Method

A standard MAC grid is used for discretization where pi,j,k, ρi,j,k, µi,j,k, and
φi,j,k exist at the cell centers (grid points) and ui± 1

2
,j,k, vi,j± 1

2
,k, and wi,j,k± 1

2

exist at the appropriate cell walls. See [9] and [13] for more details.

3.1 Level Set Equation

The level set function is evolved in time from φn to φn+1 using nodal ve-

locities defined by ui,j,k =
u

i− 1
2

,j,k
+u

i+1
2

,j,k

2
, vi,j,k =

v
i,j− 1

2
,k

+v
i,j+1

2
,k

2
, and

wi,j,k =
w

i,j,k− 1
2

+w
i,j,k+1

2

2
. Detailed discretizations for equations 35 and 36

are given in [6]. Note that the 5th order WENO discretization from [6] is
used to discretize the spatial terms in equations 35 and 36 for the numerical
examples in this paper.

The normal vector can be computed as

~N =
∇φ

|∇φ| (39)

using standard central differencing everywhere the denominator is non-zero.
In the rare case that the denominator is identically zero, one sided differences
are used to calculate φx, φy, and φz instead of central differencing allowing
at least one nonzero value to be calculated as long as φ has been properly
reinitialized to a signed distance function. Once the normal is computed as
~N =< n1, n2, n3 >, tangent vectors can be found in the following fashion.
First find the min {|n1|, |n2|, |n3|}. For the sake of exposition, suppose that
n1 has the smallest magnitude (the other cases are treated similarly). Then
choose the unit vector in the direction of the component with the smallest
magnitude, which in this case is < 1, 0, 0 >, and define

~T1 =
~N × 〈1, 0, 0〉
| ~N × 〈1, 0, 0〉 |

=

〈

0,
n3

√

n2
2 + n2

3

,
−n2

√

n2
2 + n2

3

〉

(40)

as one tangent vector. The other tangent vector is defined as ~T2 = ~N × ~T1.
Note that the unit tangent vectors T1 and T2 are not necessarily continuously
defined and care should be exercised when using these vectors.

The curvature at each grid point is defined as

κ = −
(

φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφzz − 2φxφzφxz + φ2

zφxx

+φ2
yφzz − 2φyφzφyz + φ2

zφyy

)

/
(

φ2
x + φ2

y + φ2
z

)1.5
(41)

9



and discretized using standard central differences. In the rare case that the
denominator in equation 41 is identically zero, one sided differences are used
to calculate φx, φy, and φz instead of central differencing allowing at least
one nonzero value to be calculated as long as φ has been properly reinitialized
to a signed distance function. Note that the curvature is limited with

|κ| ≤ 1

min {△x,△y,△z} (42)

so that under-resolved regions do not erroneously contribute large surface
tension forces.

3.2 Projection Method

First, ~V ⋆ = 〈u⋆, v⋆, w⋆〉 is defined by

~V ⋆ − ~V n

△t
+
(

~V · ∇
)

~V =
(∇ · τ)T

ρ
+ ~g (43)

and then the velocity field at the new time step, ~V n+1 =
〈

un+1, vn+1, wn+1
〉

,
is defined by

~V n+1 − ~V ⋆

△t
+
∇p

ρ
= 0 (44)

so that combining equations 43 and 44 to eliminate ~V ⋆ results in equation
5. Taking the divergence of equation 44 results in

∇ ·
(∇p

ρ

)

=
∇ · ~V ⋆

△t
(45)

after setting ∇· ~V n+1 to zero. Note that equation 45 defines the pressure in
terms of the value of △t used in equation 43. Defining a scaled pressure by
p⋆ = p△t leads to

~V n+1 − ~V ⋆ +
∇p⋆

ρ
= 0 (46)

and

∇ ·
(∇p⋆

ρ

)

= ∇ · ~V ⋆ (47)

10



in place of equations 44 and 45 where p⋆ no longer depends on △t. In the
case of a spatially constant density one can proceed even further defining
p̂ = p△t

ρ
leading to

~V n+1 − ~V ⋆ +∇p̂ = 0 (48)

and

△p̂ = ∇ · ~V ⋆ (49)

where p̂ no longer depends on △t or ρ.
Boundary conditions are applied to the velocity and are not needed for

the pressure. In order to apply boundary conditions to ~V n+1, one simply
applies them to ~V ⋆ after computing ~V ⋆ in equation 43 and before solving
equation 45. Then in equation 45, one sets∇p· ~N = 0 on the boundary where
~N is the unit normal to the boundary. Since the flow is incompressible, the
compatibility condition

∫

Γ

~V ⋆ · ~N = 0 (50)

needs to be satisfied when specifying the boundary condition on ~V ⋆ in order
to guarantee the existence of a solution. Here, Γ represents the boundary of
the compuational domain and ~N is the unit normal to that boundary. [13]

3.3 Runge Kutta

The projection method is a special splitting method that allows one to ad-
vance a solution forward one time step,△t, with Euler’s method. To simplify
notation, let E define an Euler update so that

~V n+1 = E
(

~V n
)

(51)

can be used to describe a temporal update using Euler’s method. Moreover,

~V n+1 =
1

2
~V n +

1

2
E
(

E
(

~V n
))

(52)

is 2nd order TVD Runge Kutta (also known as 2nd order Runge Kutta,
the modified Euler method, the midpoint rule, or Heun’s predictor corrector
method) [16]. In a similar fashion, one can write

~V n+1 =
1

3
~V n +

2

3
E

(

3

4
~V n +

1

4
E
(

E
(

~V n
))

)

(53)

11



for 3rd order TVD Runge Kutta [16].
It is obvious that 2nd and 3rd order TVD Runge Kutta can be written

as a convex combination of Euler updates. This is exactly what makes them
TVD as described in [16]. Another interesting fact is that these TVD Runge
Kutta methods can be numerically implemented with a minimal amount of
memory. More specifically, only two copies of the independent variables are
needed for 2nd order TVD Runge Kutta

~V ← ~V n

~V ← E
(

~V
)

~V ← E
(

~V
)

~V ← 1

2
~V n +

1

2
~V

and only two copies of the independent variables are needed for 3nd order
TVD Runge Kutta

~V ← ~V n

~V ← E
(

~V
)

~V ← E
(

~V
)

~V ← 3

4
~V n +

1

4
~V

~V ← E
(

~V
)

~V ← 1

3
~V n +

2

3
~V

which is not true for non-TVD Runge Kutta methods. Note that 3rd order
TVD Runge Kutta is used in the examples section.

3.4 Convection Terms

The MAC grid stores u values at ~xi± 1

2
,j,k. Updating u⋆

i± 1

2
,j,k

in equation 43

requires the discretization of ~V · ∇u at ~xi± 1

2
,j,k. First, simple averaging can

be used to define ~V at ~xi± 1

2
,j,k. For example

vi+ 1

2
,j,k =

vi,j− 1

2
,k + vi,j+ 1

2
,k + vi+1,j− 1

2
,k + vi+1,j+ 1

2
,k

4
(54)

12



and

wi+ 1

2
,j,k =

wi,j,k− 1

2

+ wi,j,k+
1

2

+ wi+1,j,k− 1

2

+ wi+1,j,k+
1

2

4
(55)

define v and w at ~xi+ 1

2
,j,k while u is already defined there. Then the ~V · ∇u

term on the offset ~xi± 1

2
,j,k grid can be discretized in the same fashion as the

~V · ∇φ term on the regular ~xi,j,k grid using the method outlined in [6] for
equation 35. Note that the 3rd order ENO discretization from [6] is used in
the examples section. Along the same lines, updating v⋆

i,j± 1

2
,k

and w⋆
i,j,k± 1

2

in equation 43 requires the discretization of ~V ·∇v at ~xi,j± 1

2
,k and ~V ·∇w at

~xi,j,k± 1

2

respectively. Once again, with the aid of simple averaging to define

~V , these terms can be discretized on offset grids in a fashion similar to the
~V · ∇φ term on the regular grid.

Ghost cells are used to aid in the discretization near the boundaries. For
example, if the computational boundary is a solid wall, a reflection condition
is used to populate the ghost cells with the appropriate velocities.

3.5 Viscous Terms - δ-function formulation

Updating u⋆
i± 1

2
,j,k

in equation 43 requires discretization of

(2µux)x + (µ(uy + vx))y + (µ(uz + wx))z
ρ

(56)

at ~xi± 1

2
,j,k. Likewise, updating v⋆

i,j± 1

2
,k

and w⋆
i,j,k± 1

2

requires discretization

of

(µ(uy + vx))x + (2µvy)y + (µ(vz + wy))z

ρ
(57)

at ~xi,j± 1

2
,k and

(µ(uz + wx))x + (µ(vz + wy))y + (2µwz)z
ρ

(58)

at ~xi,j,k± 1

2

respectively. Since the velocities are continuous (see equation

14), the first derivatives are computed directly using central differencing.
For example,

(ux)i,j,k =
ui+ 1

2
,j,k − ui− 1

2
,j,k

△x
(59)

13



(uy)i+ 1

2
,j+ 1

2
,k =

ui+ 1

2
,j+1,k − ui+ 1

2
,j,k

△y
(60)

and

(uz)i+ 1

2
,j,k+

1

2

=
ui+ 1

2
,j,k+1

− ui+ 1

2
,j,k

△z
(61)

are used to compute the first derivatives of u.
Suppose that µ− and µ+ are the viscosities for the fluid where φ ≤ 0

and φ > 0 respectively. Then a continuous viscosity can be defined as

µ(φ) = µ− +
(

µ+ − µ−)H(φ) (62)

where

H(φ) =











0 φ < −ǫ
1

2
+ φ

2ǫ + 1

2π sin
(

πφ
ǫ

)

−ǫ ≤ φ ≤ ǫ

1 ǫ < φ

(63)

defines the Heaviside function based on φ. Since φ is only defined at the
grid points, simple averaging is used to define φ elsewhere. For exam-
ple φi+ 1

2
,j,k =

φi,j,k+φi+1,j,k

2
and φi+ 1

2
,j+ 1

2
,k =

φi,j,k+φi+1,j,k+φi,j+1,k+φi+1,j+1,k

4
.

Then viscosities can be defined where needed using equation 62.
Since the viscosity has been forced to be continuous, equation 27 implies

that all the first derivatives of the velocity are continuous as well. Therefore,
the second derivative terms in equations 56, 57 and 58 can be calculated
directly using central differencing. For example,

µ
(

φi+ 1

2
,j+ 1

2
,k

)

(uy + vx)i+ 1

2
,j+ 1

2
,k − µ

(

φi+ 1

2
,j− 1

2
,k

)

(uy + vx)i+ 1

2
,j− 1

2
,k

△y
(64)

is used to approximate (µ(uy + vx))
y

at ~xi+ 1

2
,j,k.

Finally, a smeared out density profile is computed

ρ(φ) = ρ− +
(

ρ+ − ρ−
)

H(φ) (65)

using the Heaviside function.
For more details on the δ-function formulation, see [17].

14



3.6 Viscous Terms - without δ-functions

Instead of using equations 62 and 65 to define smeared out versions of µ and
ρ, one can simply use the sign of the level set function to determine µ as µ−

or µ+ and to determine ρ as ρ− and ρ+ in a sharp fashion. Then one can
consider updating each fluid independently and pay particular attention to
the jump conditions at the interface. In particular, both µ and ρ are spatially
constant on either side of the interface allowing one to write

µ (uxx + uyy + uzz)

ρ
(66)

µ (vxx + vyy + vzz)

ρ
(67)

and

µ (wxx + wyy + wzz)

ρ
(68)

in place of equations 56, 57, and 58 with the help of ∇ · ~V = 0. Once again,
since the velocities are continuous (see equation 14), the first derivatives can
be computed directly using central differencing along the lines of equations
59, 60, and 61. However, one must be particularly careful when computing
the second derivatives of the velocity, since the first derivatives are discon-
tinuous according to equation 27. In particular, equation 30 is used to aid
in the computation of the second derivatives. (Note that one could directly
compute the second derivatives ignoring the jump conditions. This produces
a numerical method with some degree of smearing.)

To compute the right hand side of equation 30, the continuous veloc-
ity field is transfered from the MAC grid to the grid points with sim-

ple averaging, i.e. ui,j,k =
u

i− 1
2

,j,k
+u

i+1
2

,j,k

2
, vi,j,k =

v
i,j− 1

2
,k

+v
i,j+1

2
,k

2
, and

wi,j,k =
w

i,j,k−1
2

+w
i,j,k+1

2

2
. Next, central differencing is used to compute the

first derivatives at each grid point, e.g. (ux)i,j,k =
ui+1,j,k−ui−1,j,k

2△x
. Then

these first derivatives can be multiplied by the appropriate components of
the normal and tangent vectors at each grid node to complete the calculation
of the right hand side of equation 30 which can be denoted by J rewriting
equation 30 as







[µux] [µuy] [µuz]
[µvx] [µvy] [µvz]
[µwx] [µwy] [µwz]






=







J11 J12 J13

J21 J22 J23

J31 J32 J33






(69)

15



at each grid point.
Note that the unit tangent vectors are used to choose a coordinate sys-

tem where discontinuous derivatives are replaced with continuous deriva-
tives using equations 12 and 13. In fact, this is how equation 29 follows
from equation 28. Once the discontinuous derivatives have been replaced,
the results are transformed back to the Cartesian coordinate system. Since
this entire computation is done at a grid node, one need not worry about
averaging values of J since they live in Cartesian space and are not de-
pendent on the particular choice of T1 and T2 at each node. Since J is a
spatially smooth function, spatial averages of J are well defined and can
be used to define J elsewhere. For example, Ji+ 1

2
,j,k =

Ji,j,k+Ji+1,j,k

2
and

Ji+ 1

2
,j+ 1

2
,k =

Ji,j,k+Ji+1,j,k+Ji,j+1,k+Ji+1,j+1,k

4
.

Once J has been computed, the second derivatives can be computed
using the techniques developed in [11] for computing second derivatives of
the variable coefficient Poisson equation. As a specific example, consider
the discretization of µuxx at xi+ 1

2
,j,k using uM = ui+ 1

2
,j,k and its neighbors

uL = ui− 1

2
,j,k and uR = ui+ 3

2
,j,k. In addition, we will need the averaged

values of φ and J11 at φL = φi− 1

2
,j,k, φM = φi+ 1

2
,j,k, φR = φi+ 3

2
,j,k, JL =

J11

i− 1

2
,j,k

, JM = J11

i+ 1

2
,j,k

, and JR = J11

i+ 3

2
,j,k

so that they are defined in the

same spatial locations as the corresponding u terms. If φL, φM , and φR are
all greater than zero, we define

(µux)L = µ+

(

uM − uL

△x

)

(70)

and

(µux)R = µ+

(

uR − uM

△x

)

(71)

arriving at

(µuxx)i+ 1

2
,j,k =

(µux)R − (µux)L
△x

(72)

in the standard fashion. A similar discretization holds when φL, φM , and
φR are all less than or equal to zero.

Next, suppose that φL ≤ 0 and φM > 0 so that the interface lies in
between the associated grid points. Then

θ =
|φL|

|φL|+ |φM |
(73)

16



can be used to estimate the interface location. That is, the interface splits
this cell into two pieces of size θ△x on the left and size (1 − θ)△x on the
right. At the interface, we denote the continuous velocity by uI and calculate
the jump as

JI = θJM + (1− θ)JL (74)

noting that it is continuous across the interface as well. As discussed in [11],
we discretize the jump condition [µux] = JI as

µ+

(

uM − uI

(1− θ)△x

)

− µ−
(

uI − uL

θ△x

)

= JI (75)

and then solve for uI to get

uI =
µ+uMθ + µ−uL(1− θ)− JIθ(1− θ)△x

µ+θ + µ−(1− θ)
(76)

so that we can write

(µux)L = µ+

(

uM − uI

(1− θ)△x

)

= µ̂

(

uM − uL

△x

)

+
µ̂JIθ

µ−
(77)

where

µ̂ =
µ+µ−

µ+θ + µ−(1− θ)
(78)

defines an effective µ. Similarly, if φL > 0 and φM ≤ 0,

(µux)L = µ−
(

uM − uI

(1− θ)△x

)

= µ̂

(

uM − uL

△x

)

− µ̂JIθ

µ+
(79)

where

µ̂ =
µ−µ+

µ−θ + µ+(1− θ)
(80)

defines an effective µ.
In similar fashion, if φR > 0 and φM ≤ 0, then

θ =
|φR|

|φR|+ |φM |
(81)

17



is used to estimate the interface location with (1−θ)△x on the left and θ△x
on the right. Then

JI = θJM + (1− θ)JR (82)

is used to discretize the jump condition as

µ+

(

uR − uI

θ△x

)

− µ−
(

uI − uM

(1− θ)△x

)

= JI (83)

resulting in

uI =
µ−uMθ + µ+uR(1− θ)− JIθ(1− θ)△x

µ−θ + µ+(1− θ)
(84)

and

(µux)R = µ−
(

uI − uM

(1− θ)△x

)

= µ̂

(

uR − uM

△x

)

− µ̂JIθ

µ+
(85)

where

µ̂ =
µ−µ+

µ−θ + µ+(1− θ)
(86)

defines an effective µ. If φR ≤ 0 and φM > 0,

(µux)R = µ+

(

uI − uM

(1− θ)△x

)

= µ̂

(

uR − uM

△x

)

+
µ̂JIθ

µ−
(87)

where

µ̂ =
µ+µ−

µ+θ + µ−(1− θ)
(88)

defines an effective µ.
For more on the details and motivation behind this method, see [11].

3.7 Poisson Equation

Once ~V ⋆ has been updated with equation 43, the right hand side of equation
47 is discretized using standard central differencing, see e.g. equation 59.
Then the techniques presented in [11] for the variable coefficient Poisson
equation are used to solve equation 47 for the pressure at the grid nodes.

18



Finally, the resulting pressure is used to find ~V n+1 in equation 46. One
should take care to compute the derivatives of the pressure in equation 46
in exactly the same way as they were computed in equation 47 using the
techniques in [11].

The techniques in [11] require a level set function to describe the interface
location. We use φn+1 as opposed to φn, since we wish to find the pressure
that will make ~V n+1 divergence free in equation 46. This implies that both
equation 46 and equation 47 should use ρn+1 = ρ(φn+1). In contrast, some
conventional discretizations of equation 43 use µn = µ(φn) and ρn = ρ(φn)
to discretize the viscous terms. At this point it is instructive to consider
the jump conditions in equations 32, 33, and 34 that keep the interface from
“tearing apart” due to a jump in acceleration. These equations illustrate
that the density used for the Poisson equation and the density used for the
viscous terms should be identical. Therefore, we use ρn+1 when discretizing
the viscous terms as opposed to ρn.

Note that one can set
[

px

ρ

]

=
[

py

ρ

]

=
[

pz

ρ

]

= 0 when solving the Poisson

equation using the method in [11] in spite of the non-zero jumps in equations
32, 33, and 34. Since the full equations 2, 3 and 4 are continuous across the
interface, one can take the divergence of the full equations without consid-
ering jump conditions, and this is exactly how equation 45 is derived. That
is, jump conditions only need to be considered when discretizing individual
parts of the full equations, and can be ignored when taking the divergence of
the full equations themselves, since the full equations are continuous across
the interface. Moreover, the jumps in the derivatives of the pressure in
equation 45 are already balanced on the right hand side by the appropriate
jumps in the viscous terms which have been included in V ⋆. This gives
further justification to the use of ρn+1 when discretizing the viscous terms.

On the other hand, the jump in pressure defined in equation 19 needs
to be accounted for when solving the Poisson equation with the method in
[11]. Equation 19 is rewritten as

[p⋆]− 2△t [µ]
(

∇u · ~N,∇v · ~N,∇w · ~N
)

· ~N = △tσκ (89)

for use equation 47. The [p⋆] is computed at each grid node. The deriva-
tives of the velocities are computed with standard central differencing of the
averaged nodal velocities analogous to the way that J was computed when
discretizing the viscous terms. The normals are computed using φn to be
consistent with the velocities and the computation of the viscous terms. In
general, the computation of this viscosity related term is not that sensitive

19



since it is continuous across the interface. The curvature is discretized using
φn+1.

In the case of a continuous or smeared out viscosity, the jump in pressure
reduces to [p⋆] = △tσκ. This can be further reduced to [p⋆] = 0 by using
a continuous surface force (CSF) model for the surface tension [1]. In [17],
the CSF model is implemented by adding a term of the form

δσκ ~N

ρ
(90)

to the right hand side of the momentum equations. Here ρ is calculated
along the lines of equation 65, and the smeared out delta function

δ(φ) =











0 φ < −ǫ
1

2ǫ
+ 1

2ǫ
cos

(

πφ
ǫ

)

−ǫ ≤ φ ≤ ǫ

0 ǫ < φ

(91)

is calculated by taking the derivative of the smeared out Heaviside function
in equation 63. Note that φn+1 is used when calculating all the relevant
terms in equation 90.

After discretizing the Poisson equation for the pressure, the resulting
system of linear equations is solved with a preconditioned conjugate gradient
(PCG) method using an Incomplete Choleski preconditioner [8]. The PCG
algorithm is applied once for every Euler time step, or a total of three times
for a third order Runge Kutta cycle.

3.8 Time Step Restriction

Adaptive time stepping is used in the examples section choosing the overall
time step based on convection, viscosity, surface tension and gravity. The
convective time step restriction is given by

△t

( |u|max

△x
+
|v|max

△y
+
|w|max

△z

)

≤ 1 (92)

where |u|max, |v|max, and |w|max are the maximum magnitudes of the ve-
locities. The viscous time step restriction is given by

△t

(

max

{

µ−

ρ−
,
µ+

ρ+

}(

2

(△x)2
+

2

(△y)2
+

2

(△z)2

))

≤ 1 (93)

where the “max” function is defined in the obvious way.

20



Gravity can be included in the convection estimate noting that |v|max +
|g|△t is a linear approximation to a bound on the vertical component of
the velocity at the end of a time step due to the effects of gravity. Then

△t
(

|v|max+|g|△t
△y

)

≤ 1 leads to △t ≤
(

−|v|max+
√

|v|2max+4|g|△y

2|g|

)

or

△t

2





|v|max

△y
+

√

( |v|max

△y

)2

+
4|g|
△y



 ≤ 1 (94)

as a time step restriction for the velocity in the vertical direction. Rewriting
equation 92 as △tCcfl ≤ 1 and equation 93 as △tVcfl ≤ 1 allows one to
write

△t

2

(

(Ccfl + Vcfl) +

√

(Ccfl + Vcfl)
2 +

4|Fx|
△x

+
4|Fy|
△y

+
4|Fz |
△z

)

≤ 1 (95)

where ~F = (Fx, Fy, Fz) is the net acceleration due to forces such as gravity
and surface tension. Note that equation 95 was derived along the lines of
the gravity estimates above.

The acceleration due to curvature can be written as δσκ
ρ

where the δ-
function has been included since the force only appears on the interface.
In the δ-function formulation this term is added to the right hand side
of the equations for velocity. In the GFM formulation, curvature enters
the equations through [p] = σκ which contributes to the ∇p

ρ term in the

equations for velocity. Noting that numerical δ-functions take the form 1

△x

leads one to σκ
ρ△x

for both formulations. Equation 95 can then be written as

△t





(Ccfl + Vcfl) +
√

(Ccfl + Vcfl)
2 + 4 (Gcfl)

2 + 4 (Scfl)
2

2



 ≤ 1 (96)

where

Gcfl =

√

|g|
△y

(97)

and

Scfl =

√

σ|κ|
min {ρ+, ρ−} (min {△x,△y,△z})2

(98)

21



represent the restrictions due to gravity and surface tension respectively. If
κ is replaced by 1

△x in equation 98, one can see a resemblance between this
equation and the time step restriction given in [1].

In the numerical simulations, a CFL restriction of 1

2
is used. That is,

△t





(Ccfl + Vcfl) +
√

(Ccfl + Vcfl)
2 + 4 (Gcfl)

2 + 4 (Scfl)
2

2



 ≤ 1

2
(99)

is used.

22



4 Examples

In the numerical examples, we use the following constants unless other-
wise specified: g = −9.8m

s2 , σ = .0728kg
s2 , ρwater = 1000 kg

m3 , µwater =

1.137 × 10−3 kg
ms , ρair = 1.226 kg

m3 and µair = 1.78 × 10−5 kg
ms . When eval-

uating the smeared out Heaviside and delta functions in equations 63 and
91 respectively, we use ǫ = 1.5△x. In addition, all calculations were per-
formed in a box with standard no-slip solid wall boundary conditions applied
at the edges of the computational domain unless otherwise specified.

4.1 Example 1

Consider a [−.01m, .01m] × [−.01m, .02m] computational domain which is
initially filled with water except for a circular air bubble of radius 1

300
m

centered at the origin. In order to show the effects of grid refinement, the
calculation was carried out on meshes of size 40 × 60, 80 × 120, 160 × 240
and 320 × 480. Figure 1 shows the four calculations at times of t = 0,
t = .02 , t = .035 , and t = .05 seconds for the smeared out delta function
method. The numerical results are color coded black, red, green and blue
from the coarsest to the finest mesh. The numerical results indicate first
order accurate convergence for the interface location. Note that the top of
the air bubble is in practically the same location for every mesh indicating
that the bubble rise velocity is a rather easy quantity to predict (in this
case) even on a fairly coarse mesh. The area loss for these four calculations
was 24.72%, 8.10%, .55% and −.0068% (area gain) respectively. All area
loss results were computed at the final time of t = .05 seconds. Figure 2
shows the corresponding results for the sharper GFM. Similar to figure 1, the
results indicate first order accurate convergence for the interface location.
Here, the area loss was 17.23%, 5.76%, 1.54% and .0036% respectively.

In order to illustrate the behavior of the method on larger unstable bub-
bles, the same calculations were carried out on a [−1m, 1m] × [−1m, 2m]
computational domain with a circular air bubble of radius 1

3
m centered at

the origin. Here, the surface tension forces are too small to dominate the
inherent Kelvin-Helmholtz and Rayleigh-Taylor instabilities due to density
and velocity differences respectively. Figure 3 shows the four calculations
at times of t = 0, t = .2, t = .35, and t = .5 seconds for the delta function
method with area loss results of −1.42%, .30%, −.82% and −.51% respec-
tively. Figure 4 shows the corresponding results for the GFM where the area
loss was 4.07%, 1.78%, .18% and −.94% respectively. While the numerical

23



results demonstrate a certain “consistency” under grid refinement, they do
not (and can not) converge, since the underlying solution is unstable. Note
that higher order accurate finite difference schemes such as ENO and WENO
have nonsymmetric stencils and do not necessarily produce symmetric nu-
merical results.

4.2 Example 2

Consider a [−.01m, .01m] × [−.02m, .01m] computational domain which is
initially filled with air except for a circular water droplet of radius 1

300
m

centered at the origin. In order to show the effects of grid refinement, the
calculation was carried out on meshes of size 40×60, 80×120, 160×240 and
320 × 480. Figure 5 shows the four calculations at times of t = 0, t = .02,
t = .035, and t = .05 seconds for the delta function method with area
loss results of −6.38%, −5.78%, −4.12% and −2.39% respectively. Figure 6
shows the corresponding results for the GFM where the area loss was 2.23%,
.64%, .0089% and −.0091% respectively. The numerical results are color
coded black, red, green and blue from the coarsest to the finest mesh. The
numerical results indicate first order accurate convergence for the interface
location for both methods. Note that the calculations agree surprisingly well
on the sequence of meshes until the drop approaches the bottom wall of the
container indicating that drop velocity is a rather easy quantity to predict
(in this case) even on a fairly coarse mesh.

In order to illustrate the behavior of the method on larger unstable
droplets, the same calculations were carried out on a [−1m, 1m]× [−1m, 2m]
computational domain with a circular water droplet of radius 1

3
m centered

at the origin. Here, the surface tension forces are too small to dominate the
inherent Kelvin-Helmholtz and Rayleigh-Taylor instabilities due to density
and velocity differences respectively. Figure 7 shows the four calculations
at times of t = 0, t = .2, t = .35, and t = .5 seconds for the delta function
method with area loss results of 5.37%, 3.93%, 2.36% and .38% respectively.
Figure 8 shows the corresponding results for the GFM where the area loss
was 21.06%, 3.38%, 6.24% and 6.03% respectively. While the numerical re-
sults demonstrate a certain “consistency” under grid refinement, they do not
(and can not) converge, since the underlying solution is unstable. Note that
higher order accurate finite difference schemes such as ENO and WENO have
nonsymmetric stencils and do not necessarily produce symmetric numerical
results.

24



4.3 Example 3

Figures 3, 4, 7 and 8 might require some further explanation for the novice
reader unfamiliar with the behavior of numerical methods on unstable prob-
lems. Note that figure 4 contains a higher degree of instability than figure 3
and that figure 8 contains a higher degree of instability than figure 7 indi-
cating that the GFM contains a higher degree of instability than the delta
function method. The standard explanation of this behavior can be traced to
the artificial numerical dissipation inherent in the numerical method. Since
the delta function smears out the interface, it incorrectly damps out physical
flow features producing a more stable result on the unstable problems.

We emphasize that the higher degree of instability demonstrated by the
GFM is due to the more accurate interface representation and not due to
nonphysical parasitic flows. Consider a [0m, .04m] × [0m, .04m] computa-
tional domain initially filled with water except for a circular air bubble of
radius .01m centered in the middle of the domain. Here we set gravity to
zero in order to demonstrate the ability of our scheme to accurately compute
sharp pressure jumps across the interface using the numerical algorithm in
[11]. Figure 9 shows the initial data as compared to the solution at t = .05
seconds on a 40 × 40 mesh. These two solutions lie directly on top of each
other. The interface is not visibly distorted by parasitic flows in part because
our scheme is able to sharply resolve the pressure jump as shown in figure
10. Figure 11 shows the initial data plotted on top of the exact solution
for the delta function method. Note that the results are comparable with
the GFM even though the pressure is smeared out as shown in figure 12.
However, the largest velocity produced by the GFM is around 1 × 10−4 m

s

while the largest velocity produced by the delta function method is 1000
times larger at .1m

s indicating that it is the delta function method that is
more likely to suffer from nonphysical parasitic flows due to the nonphysical
smearing of the interface. Note that the exact solution has an identically
zero velocity field.

4.4 Example 4

Consider a [−1m, 1m]×[−1m, 1m]×[−1m, 2m] computational domain which
is initially filled with water except for a spherical air bubble of radius 1

3
m

centered at the origin. The calculation was carried out on a 60 × 60 × 90
Cartesian mesh using the GFM. Figure 13 shows 12 evenly spaced snapshots
(△t = .05) of the solution from t = 0 to t = .55 seconds.

25



4.5 Example 5

Consider a [−1m, 1m]× [−1m, 1m]× [−2m, 1m] computational domain con-
sisting of water below z = −1m and air above z = −1m. In addition, a
spherical water droplet of radius 1

3
m is centered at the origin. The calcu-

lation was carried out on a 60 × 60 × 90 Cartesian mesh using the GFM.
Figure 14 shows the solution at t = 0, .35, .45, .50, .55, .80, .95, 1.00, 1.05,
1.15, 1.25, and 1.35 seconds.

4.6 Example 6

In order to illustrate the potential of this new method, figure 15 shows water
waves generated by the impact of a solid object. Note that the solid object is
not rendered so that the surrounding flow field can be more easily visualized.
Figure 16 shows the results obtained when a rather large box is filled with
water.

26



−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = 0)

−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = .02)

−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = .035)

−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = .05)

Figure 1: Small Air Bubble - Delta Function Method

27



−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = 0)

−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = .02)

−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = .035)

−5 0 5

x 10
−3

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3 levelset(t = .05)

Figure 2: Small Air Bubble - Ghost Fluid Method

28



−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = 0)

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = .2)

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = .35)

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = .5)

Figure 3: Large Air Bubble - Delta Function Method

29



−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = 0)

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = .2)

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = .35)

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
levelset(t = .5)

Figure 4: Large Air Bubble - Ghost Fluid Method

30



−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = 0)

−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = .02)

−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = .035)

−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = .05)

Figure 5: Small Water Droplet - Delta Function Method

31



−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = 0)

−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = .02)

−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = .035)

−5 0 5

x 10
−3

−15

−10

−5

0

5
x 10

−3 levelset(t = .05)

Figure 6: Small Water Droplet - Ghost Fluid Method

32



−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = 0)

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = .2)

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = .35)

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = .5)

Figure 7: Large Water Droplet - Delta Function Method

33



−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = 0)

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = .2)

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = .35)

−0.5 0 0.5

−1.5

−1

−0.5

0

0.5
levelset(t = .5)

Figure 8: Large Water Droplet - Ghost Fluid Method

34



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
levelset

Figure 9: Steady State Air Bubble - Ghost Fluid Method

35



0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.005
0.01

0.015
0.02

0.025
0.03

0.035

−2

−1

0

1

2

3

4

5

6

pressure

Figure 10: Steady State Air Bubble - Ghost Fluid Method

36



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
levelset

Figure 11: Steady State Air Bubble - Delta Function Method

37



0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.005
0.01

0.015
0.02

0.025
0.03

0.035

−2

−1

0

1

2

3

4

5

6

pressure

Figure 12: Steady State Air Bubble - Delta Function Method

38



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 13: Large Air Bubble - Ghost Fluid Method

39



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 14: Large Water Droplet - Ghost Fluid Method

40



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 15: Water Waves Generated by the Impact of an (invisible) Solid
Object - Ghost Fluid Method

41



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 16: Filling a Box With Water - Ghost Fluid Method

42



5 Conclusions and Future Work

The numerical experiments performed in this paper indicate that the our
new numerical method preforms quite well in both two and three spatial
dimensions. Numerical comparisons with the delta function approach pro-
posed in [17] confirm this as well. In this paper, fully two phase water and
air mixtures were considered. In future work, we will consider extending our
approach to treat free surface flows where the air is replaced with a vacuum.
For more information on free surface flows, see [9], [3] and [4] where marker
particles were used to track the free surface. We note that free surface flows
admit a Poisson equation for the pressure which is significantly different
than the one discussed in this paper for fully two phase flow. Therefore, in
the case of a free surface, one may want to consider methods similar to that
proposed in [18] when solving for the pressure.

43



References

[1] Brackbill, J.U., Kothe, D.B. and Zemach, C., A Continuum Method for
Modeling Surface Tension, J. Comput. Phys. 100, 335-354 (1992).

[2] Chang, Y.C., Hou, T.Y., Merriman, B. and Osher, S., A Level Set For-
mulation of Eulerian Interface Capturing Methods for Incompressible
Fluid Flows, J. Comput. Phys. 124, 449-464 (1996).

[3] Chen, S., Johnson, D. and Raad, P., Velocity Boundary Conditions
for the Simulation of Free Surface Fluid Flow, J. Comput. Phys. 116,
262-276 (1995).

[4] Chen, S., Johnson, D., Raad, P. and Fadda, D., The Surface Marker
and Micro Cell Method, Int. J. for Num. Methods in Fluids 25, 749-778
(1997).

[5] Chorin, A.J. Numerical Solution of the Navier-Stokes Equations, Math.
Comp. 22, 745-762 (1968).

[6] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S., A Non-Oscillatory
Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost
Fluid Method), J. Comput. Phys. 152, 457-492 (1999).

[7] Fedkiw, R. and Liu, X.-D., The Ghost Fluid Method for Viscous Flows,
Progress in Numerical Solutions of Partial Differential Equations, Ara-
chon, France, edited by M. Hafez, July 1998.

[8] Golub, G. and Van Loan, C., Matrix Computations, The Johns Hopkins
University Press, Baltimore, 1989.

[9] Harlow, F.H. and Welch, J.E. Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with a Free Surface,
The Physics of Fluids 8, 2182-2189 (1965).

[10] Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Pergamon Press,
NY, 1978.

[11] Liu, X.-D., Fedkiw, R. and Kang, M., A Boundary Condition Capturing
Method for Poisson’s Equation on Irregular Domains, J. Comput. Phys.
160, 151-178 (2000).

44



[12] Osher, S. and Sethian, J.A., Fronts Propagating with Curvature De-
pendent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J.
Comput. Phys. 79, 12-49, (1988).

[13] Peyret, R. and Taylor, T.D., Computational Methods for Fluid Flow,
Springer-Verlag, NY, 1983.

[14] Peskin, C., Numerical Analysis of Blood Flow in the Heart, J. Comput.
Phys. 25, 220-252 (1977).

[15] Peskin, C. and Printz, B., Improved Volume Conservation in the Com-
putation of Flows with Immersed Elastic Boundaries, J. Comput. Phys.
105, 33-46 (1993).

[16] Shu, C.W. and Osher, S., Efficient Implementation of Essentially Non-
Oscillatory Shock Capturing Schemes, J. Comput. Phys. 77, 439-471
(1988).

[17] Sussman, M., Smereka, P. and Osher, S., A Level Set Approach for
Computing Solutions to Incompressible Two-Phase Flow, J. Comput.
Phys. 114, 146-154 (1994).

[18] Tau, E.Y. A Second Order Projection Method for the Incompressible
Navier-Stokes Equations in Arbitrary Domains, J. Comput. Phys. 115,
147-152 (1994).

[19] Unverdi, S.O. and Tryggvason, G., A Front-Tracking Method for Vis-
cous, Incompressible, Multi-Fluid Flows, J. Comput. Phys. 100, 25-37
(1992).

45


