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Abstract

The compressible Na vier Stok es equations can b e extended to mo del

m ulti-sp ecies, c hemically reacting gas 
o ws. The result is a large sys-

tem of con v ection-di�usion equations with sti� source terms. In this

pap er w e dev elop the framew ork needed to apply mo dern high accuracy

n umerical metho ds from computational gas dynamics to this extended

system. W e also presen t represen tativ e computational results using

one suc h metho d.

The framew ork dev elop ed here is useful for man y mo dern n umeri-

cal sc hemes. W e �rst presen t an en thalp y based form of the equations

that is w ell suited b oth for ph ysical mo deling and for n umerical imple-

men tation. W e sho w ho w to treat the sti� reactions via time splitting,

and in particular ho w to increase accuracy b y a v oiding the common

practice of appro ximating the temp erature. W e deriv e simple, exact

form ulas for the c haracteristics of the con v ectiv e part of the equations,

whic h are essen tial for application of all c haracteristic-based sc hemes.

W e also sho w that the common practice of using appro ximate analyti-

cal expressions for the c haracteristics can p oten tially pro duce spurious

oscillations in computations.

�

Researc h supp orted in part b y ARP A URI-ONR-N00014-92-J-1890, NSF #DMS 94-

04942, and AR O D AAH04-95-1-0155

1



W e implemen t these dev elopmen ts with a particular high accuracy

c haracteristic-based metho d, the �nite di�erence ENO space discretiza-

tion with the 3rd order TVD Runge-Kutta time discretization [12 ],

com bined with the second order accurate Strang time splitting of the

reaction terms. W e illustrate the capabilities of this approac h with

calculations of a 1-D reacting sho c k tub e and a 2-D com bustor.
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1 In tro d u c t io n

Chemically reacting, high sp eed gas 
o ws arise in a v ariet y of com bustion

problems, suc h as the fueling of a scram-jet engine or the incineration of w aste

in a dump com bustor. The com bination of energetic c hemical reactions and

compressible gas dynamics yields the unique phenomena of detonation and

de
agration. The basic prop erties of these e�ects can b e understo o d via the

Chapman-Jouget theory .

F or theoretical mo deling or n umerical sim ulation of suc h 
o ws, the com-

pressible Navier Stokes equations can b e extended to include m ultiple gas

sp ecies and the appropriate c hemical reactions. The standard approac h is

to consider the total mixture as a single compressible 
uid, with the sp ecies-

a v eraged densit y , momen tum and energy ev olving according to the corre-

sp onding conserv ation la ws. In addition, the mass fraction of eac h sp ecies

ev olv es according to a separate con tin uit y equation. These con tin uit y equa-

tions are strongly coupled through the c hemical reactions, and they also

couple strongly to the equations for the mixture via the e�ect of reactions

on temp erature and pressure.

Since c hemical reactions can cause large lo calized temp erature v ariations

during com bustion, it is imp ortan t to accurately include the temp erature

dep endencies in the equations of state used for the gas sp ecies. The most

tractable mo del that includes a realistic temp erature dep endence is that of a

thermally p erfect gas, for whic h the heat capacities can b e general functions

of temp erature. In practice these functions are based on exp erimen tal data

and they di�er signi�can tly from the ideal gas la w at the higher temp eratures

encoun tered during com bustion.

By considering the mathematical and ph ysical c haracter of the problem,

w e can p ose some general requiremen ts for suitable n umerical metho ds. The

resulting mo del equations form a large system of nonlinear conserv ation la ws

with b oth �rst and second order deriv ativ e terms (from con v ectiv e and dif-

fusiv e transp ort) and zeroth order source terms (from reactions). Because

the di�usiv e terms are w eak, w e exp ect that the spatial transp ort terms will

result in the dev elopmen t of steep fron ts. Because the reactions pro ceed

rapidly once they are triggered, w e exp ect that the source terms will b e sti�

in time. Th us an y n umerical approac h m ust e�ectiv ely handle sti� time

in tegration and steep spatial fron ts.
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Since the sti� source terms require sp ecialized and costly time in tegra-

tion, it is most practical to use a time splitting to isolate their treatmen t

from the rest of the problem. T o handle the steep spatial fron ts, it is natural

to apply mo dern sho c k-capturing n umerical metho ds for the con v ectiv e part

of the conserv ation la ws. These metho ds t ypically require complete analytic

expressions for the c haracteristic data, i.e. the eigen v alues and eigen v ectors

of the linearized con v ectiv e 
ux matrix.

Based on these general considerations, w e exp ect man y n umerical ap-

proac hes will ha v e a common need for a prop er time split form ulation and

analytic expressions for the c haracteristic data. Obtaining b oth these things

w ould seem routine, but in fact the complexit y of the equations mak es b oth

p oten tially di�cult and has led to the use of a v ariet y of simplifying pro ce-

dures whic h ma y cause unan ticipated errors in the computations, as some

of our examples will illustrate. Our primary goal here is to sho w that, with

the equations prop erly form ulated, b oth the time splitting and c haracteristic

data can b e obtained without simplifying assumptions in an unam biguous

and practically useful form. W e also sho w that with these in hand, mo dern

c haracteristic based metho ds do an excellen t job of capturing the phenomena

presen t in c hemically reacting gas 
o ws.

W e dev elop our framew ork as follo ws: �rst, w e presen t an en thalp y based

form ulation of the go v erning equations, i.e. the energy equation for the

mixture is written in terms of the en thalp y . V arious other equiv alen t forms

are p ossible, suc h as using temp erature or in ternal energy as the explicit

v ariable, but the en thalp y form ulation is adv an tageous for t w o reasons: it

is con v enien t for ph ysical mo deling, and it results in a system for whic h the

c haracteristics can b e determined analytically in a compact and relativ ely

simple form.

Then, w e sho w ho w to apply time splitting to these equations in order

to isolate the time ev olution of the sti� reaction terms. In the previous

w ork there has b een some am biguit y regarding what terms should b e held

constan t in the reaction p ortion this time split ev olution. F or example, it

has b een a common practice to freeze the temp erature during this step,

but this is not a true time splitting of the mo del equations. Giv en the

strong temp erature dep endence of the reaction rates, this is also a ph ysically

questionable practice. Others ha v e considered adding an additional ODE

for the sim ultaneous ev olution of temp erature with the reaction ODEs, but

this approac h adds unnecessary complication and also requires a decision

ab out whic h thermo dynamic quan tities are b eing held constan t during the

step. In con trast, w e sho w that a prop er time splitting of the sti� reaction
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terms unam biguously requires that certain thermo dynamic quan tities (not

temp erature) b e held constan t during the solution of the reaction ODEs, and

further w e sho w that a simple scalar ro ot �nding pro cedure, suc h as Newton's

metho d, is all that is required to implemen t this prop er time splitting.

Next, w e deriv e simple expressions for the c haracteristic data, i.e. Ja-

cobian matrix of the con v ectiv e 
uxes, and the asso ciated eigen v alues and

eigen v ectors. These are the primary ingredien ts needed to apply a v ariet y

of mo dern high accuracy c haracteristic based metho ds dev elop ed for gas dy-

namics.

Finally , w e illustrate the capabilities of this n umerical approac h. W e

implemen t this framew ork using thermo dynamic and c hemistry data tables

from CHEMKIN, and n umerics consisting of second order Strang time split-

ting with a sti� ODE in tegrator (LSODE) for the reaction equations, 3rd

order TVD Runge-Kutta time in tegration for the con v ection-di�usion terms,

cen tral di�erencing for the di�usiv e terms and 3rd order �nite di�erence ENO

for the c haracteristic based discretization of the con v ection terms. W e ap-

ply this to a one dimensional So d sho c k tub e in the presence of com bustion

reactions, and to a t w o dimensional mo del of a to xic w aste com bustor, and

discuss the results.
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2 Mo d e l Equ a t io n s

2.1 Multiple Sp ecies

The 2-D Euler equations can b e mo di�ed to accoun t for compressible 
o ws

with more than one sp ecies. The 2-D Euler equations for m ulti-sp ecies 
o w

are,
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where E is the energy p er unit v olume, h is en thalp y p er unit mass, N is

the n um b er of sp ecies b eing considered, and Y

i

is the mass fraction of the

i th sp ecies [16]. Note that Y

N
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2.1.1 Energy and En thalp y
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where e is the in ternal energy p er unit mass. W e write the en thalp y p er unit
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where e

i

, p

i

, and h

i

are the in ternal energy , partial pressure, and the en thalp y

p er unit mass of the i th gas resp ectiv ely . W e can lik ewise de�ne,
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as the total en thalp y of the mixture. Using equation 5 to eliminate e in

equation 4 w e can write,
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as our energy equation.

In a p erfe ct gas , the in ternal energy , en thalp y , and sp eci�c heats are

functions of the temp erature only . In this case w e can write,
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for a p erfect gas, where c

p

i

is the sp eci�c heat at constan t pressure of the

i th sp ecies, and c

v

i

is the sp eci�c heat at constan t v olume of the i th sp ecies.

Tw o other relationships whic h hold for a p erfect gas,

dh
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will b e v ery useful [1].

W e can in tegrate b oth sides of the �rst equation in 10 to get

h
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W e can further classify p erfect gases in to t w o categories. A thermal ly p erfe ct

gas is one in whic h the sp eci�c heats are non-constan t functions of temp er-

ature [1 ]. A c aloric al ly p erfe ct gas is one in whic h the sp eci�c heats are

constan t [1 ]. Th us, equation 11 can b e simpli�ed, in the case of a calorically

p erfect sp ecies,
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(0) is the en thalp y p er unit mass at 0 K for the i th sp ecies.

This is also sometimes called the heat of formation. The heat of formation
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for a gas is a constan t and can b e found in the JANAF Thermo c hemical

T ables [13]. W e can rewrite equation 11 for a thermally p erfect sp ecies,
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using the heat of formation.

The �nal result from equation 5,
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de�nes the en thalp y for a mixture of gases. Eac h thermally p erfect sp ecies

utilizes equation 13, while eac h calorically p erfect sp ecies utilizes equation

12. The en thalp y form ulation of the energy equation results in a con v enien t

form for ph ysical mo deling, b ecause the en thalp y is tabulated as a function

of temp erature for man y gases. Also, this form allo ws us to readily mo del

a gas as thermally p erfect in one temp erature regime and calorically p erfect

in another. Suc h 
exibilit y can b e used to in v estigate the e�ects of the

thermally and calorically p erfect assumptions.

Tw o common examples are w orth noting. If all the sp ecies are thermally

p erfect,
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where c

p

is the total sp eci�c heat at constan t pressure of the mixture. If all

the sp ecies are calorically p erfect,
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2.1.2 Equation of State

F or a mixture of p erfect gases, eac h gas has partial pressure,
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where R

u

= 8314 J/(kmol K) is the univ ersal gas constan t, and W

i

is the

molecular w eigh t of the i th sp ecies [13 ]. Next w e de�ne R as,
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and w e can write the equation of state for m ulti-sp ecies 
o w,
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whic h is v alid for mixtures of calorically p erfect and thermally p erfect gases

[1 ].

2.1.3 Sp eci�c Heats and Gamma

W e de�ne gamma,
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as the ratio of sp eci�c heats [2]. F or a calorically p erfect gas, 
 is constan t.

It is not unreasonable to assume that air at standard conditions is calorically

p erfect with 
 = 1 : 4. F or a thermally p erfect gas, 
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where the unexp ected form of equation 25 is explained in [8 ]. Gamma for

the mixture is giv en b y ,
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p

and W de�ned in equations 24 and 25 resp ectiv ely [16 , 15]. Note

that for a mixture of calorically p erfect gases, 
 = 
 ( Y

i
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mass fractions. F or a mixture of thermally p erfect gases, 
 = 
 ( Y
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; T ) is a

function of b oth the mass fractions and the temp erature.

2.2 Di�usiv e T ransp ort and Chemical Reactions

The 2-D Euler equations for m ulti-sp ecies 
o w can b e further mo di�ed to ac-

coun t for viscosit y , heat conduction, mass di�usion, and c hemical reactions.

The mo di�ed equations are the 2-D Na vier Stok es equations for m ulti-sp ecies


o w with c hemical reactions,
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where _!

i

is the mass pro duction rate of the i th sp ecies [16 ]. Also
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where � is the mixture viscosit y , k is the mixture thermal conductivit y , and

D

i;m

is the mass di�usivit y of sp ecies i in to the mixture [1 ]. F or the detailed

forms of these terms, see [8 ].
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3 Num e r ic a l Meth o d s

3.1 Numerical Approac h

Consider the 2D Na vier Stok es equations for m ulti-sp ecies 
o w with c hem-

ical reactions giv en b y equation 27. W e solv e these equations using a time

splitting sc heme. W e will use Strang splitting [14 ], whic h is 2nd order ac-

curate, to incorp orate the c hemistry . W e do not use splitting for the 
uid

dynamic equations. The metho d consists of solving t w o separate ordinary

di�eren tial equations whic h ha v e righ t hand sides adding to the righ t hand

side of equation 27,
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where the �rst of these is the 2D Na vier Stok es equations for m ulti-sp ecies


o w without c hemical reactions, and the second is a purely reacting equation.

In one step w e allo w a non-reacting 
uid to con v ect and di�use. In the other

step w e allo w a motionless 
uid to react.

The success of Strang splitting dep ends on the op erators b eing split apart

and on the smo othness of the underlying solution. As an extreme example,

one cannot split apart the t w o spatial con v ection terms of the discretized

2D Euler equations, b ecause the truncation error due to noncomm utivit y of

op erators causes a \blo w-up" of the solution. In our case the splitting w orks

w ell, since the the source terms are not o v erly sti�. If w e had a m uc h more

sti� source term, the time step for an accurate time splitting w ould b ecome

o v erly restrictiv e. In that case, to use a practical time step and prev en t

unresolv ed (in space and time) reaction fron ts from propagating at incorrect

sp eeds, w e w ould need to use a temp erature minimizing pro cedure suc h as

that describ ed in [5, 6 , 16, 11].
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k

i

( T ), of eac h sp ecies dep end on the temp erature. The binary di�usion

co e�cien ts, D

j i

= D

j i

( T ; p ), are functions of the temp erature and pressure.

All of these can b e accurately ev aluated with a c hemical kinetics pac k age,

suc h as CHEMKIN [10].

Consider equation 34. The �rst four equations of this system imply that
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fact that � is constan t along with equation 29, w e see that solving equation

34 reduces to solving the follo wing system of ordinary di�eren tial equations,

0

B

B

B

B

@

Y

1

Y

2

.

.

.

Y

N � 1

1

C

C

C

C

A

t

=

0

B

B

B

B

@

_!

1

( T ;�;Y

1

;Y

2

;:::;Y

N � 1

)

�

_!

2

( T ;�;Y

1

;Y

2

;:::;Y

N � 1

)

�

.

.

.

_!

N � 1

( T ;�;Y

1

;Y

2

;:::;Y

N � 1

)

�

1

C

C

C

C

A

(35)

where � is a constan t. Note that w e ha v e replaced the indep enden t v ariable

p in equation 29 with � , as is explained in [8]. W e solv e this system of

sti� ODE's with a n umerical pac k age [10 ]. F or the full details on n umerical

implemen tation, see [7 ].

It is imp ortan t to note that T is a function of the mass fractions when

solving equation 35. A prop er pro cedure for ev aluating this function for

temp erature is describ ed in section 3.2. Ho w ev er, as long as w e follo w the

pro cedure dictated b y the time splitting, there is no am biguit y ab out ho w to

prop erly treat the temp erature during the c hemical reaction step. Con trary

to common practices, temp erature should not b e frozen during this step, nor

is there a need to deriv e an ODE with whic h to co-ev olv e the temp erature.

Instead, temp erature is an implicit function of the mass fractions, as w ell

as the other conserv ed v ariables that are held constan t during this part of

the splitting. All that is required is to prop erly ev aluate the temp erature

as a function of these quan tities, whenev er a v alue is required. Since the

functional relationship is implicit, this amoun ts to �nding the ro ot of a scalar

equation for the temp erature.

3.2 Solving for T emp erature

It is necessary to compute the temp erature from the conserv ed v ariables.

W e get an expression for the temp erature b y com bining the energy equation

13



with the equation of state. Com bining equation 28 with equation 20 yields,

T =

� E +

� ( u

2

+ v

2

)

2

+ �h ( T )

�

�

P

N

i =1

Y

i

R

i

�

= C

1

+ C

2

h ( T ) (36)

where C

1

and C

2

are constan ts if the conserv ed v ariables are �xed. Note

that h ( T ) is de�ned in equation 14.

If w e ha v e a calorically p erfect gas, then equation 36 can b e written in

the form,

T =

C

3

1 � C

4

c

p

(37)

where C

3

and C

4

are constan ts if the conserv ed v ariables are �xed. In this

case w e ha v e an explicit equation for the temp erature.

Ho w ev er, if w e ha v e a thermally p erfect gas, equation 36 is implicit for

the temp erature. W e rewrite equation 36 as,

f ( T ) = T � C

1

� C

2

h ( T ) = 0 (38)

for a thermally p erfect gas. Note that,

d f ( T )

dT

= 1 � C

2

dh ( T )

dT

= 1 � C

2

c

p

( T ) = 1 �

c

p

( T )

R

=

� 1


 � 1

(39)

where 
 is a function of temp erature. Since 
 is alw a ys greater than one,

this sho ws that f ( T ) is a strictly decreasing function of temp erature.

W e can solv e equation 38 with Newton-Raphson iteration [3 ] applied to

the temp erature. The iteration is of the form,

T

n +1

= T

n

� f ( T

n

)

�

T

n

� T

n � 1

f ( T

n

) � f ( T

n � 1

)

�

(40)

where the temp erature from the last time step is used for T

0

and w e set

T

� 1

= T

0

+ 1. Since Newton Raphson iteration is not guaran teed to con v erge,

it is b etter to use it for only a few iterations. W e use it for 5 iterations, then

switc h to bisection [3 ] if w e are not within an acceptable error tolerance. In

practice, Newton Raphson has alw a ys con v erged in at most 5 iterations.

In order to do the ab o v e iteration for the temp erature, w e need to b e

able to calculate the en thalp y h ( T ). T o obtain a con v enien t form, in tegrate

equation 10 starting from T = 298 K to get

h

i

( T ) = h

298

i

+

Z

T

298

c

p

i

( s ) ds (41)
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where h

298

i

is the en thalp y p er unit mass at 298 K for sp ecies i . This is also

sometimes called the heat of formation at 298K, whic h is a standard constan t

that can b e found in the JANAF Thermo c hemical T ables [13 ]. If w e assume

that w e ha v e a calorically p erfect gas, then w e could use 298 K to ev aluate

our constan t v alue for c

p

i

, de�ning this notationally as c

p

298

i

. Then equation

41 b ecomes,

h

i

( T ) = h

298

i

+ c

p

298

i

( T � 298) (42)

for a calorically p erfect gas with r efer enc e temp er atur e of 298 K .

T o sp eed up the actual implemen tation, w e construct a table of h

i

( T ) for

eac h sp ecies including ev ery in teger temp erature b et w een 298 K and 4800 K .

W e appro ximate the in tegral to desired accuracy , using CHEMKIN to giv e

us the v alues of c

p

i

( T ) when needed. This is done once at the b eginning of

the co de. During computation, if w e need h

i

( T ) for a non-in tegral v alue of

the temp erature, w e in terp olate linearly .

Simple mo di�cation of this table for h

i

( T ) enables calculations of calori-

cally p erfect mixtures. One could also ha v e certain gases b e thermally p erfect

with others calorically p erfect. F urther, a single gas could b e thermally p er-

fect in one temp erature range and calorically p erfect in another temp erature

range.
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4 Eigen v a lu e s and Eige n v e c t o r s

Man y mo dern n umerical metho ds for compressible gas 
o ws require complete

c haracteristic data|i.e. the eigensystem of the linearized con v ectiv e 
ux

matrix|as an essen tial part of the n umerical discretization. F or practical

calculations, analytical expressions are required for the eigensystem, rather

than general but costly iterativ e n umerical pro cedures.

Ho w ev er, for equations describing the 
o w of man y in teracting sp ecies,

the con v ection terms for momen tum and energy can b e far from simple,

due to the complicated equation of state. Finding the Jacobian matrix of

the con v ectiv e 
ux with resp ect to the conserv ed v ariables can b e a tedious

calculation, and solving analytically for the corresp onding eigensystem ma y

seem imp ossible. Th us, it is tempting to try and simplify these calculations

b y dropping small terms or treating non-constan t terms as appro ximately

constan t. But this practice can lead to unexp ected n umerical di�culties.

The nature of these di�culties can b e understo o d as follo ws. If the

eigensystem is sligh tly p erturb ed, the corresp onding c haracteristic �elds are

mixed. Consider a p ositiv e eigen v alue �eld whic h has b een incorrectly mixed

with a negativ e eigen v alue �eld. One-sided up wind di�erencing on this mixed

�eld will result in one-sided do wn wind di�erencing on the �eld whic h is

incorrectly represen ted b y the eigen v alue. This will result in �elds that ha v e

their con v ection discretized as a linear com bination of up wind and do wn wind

di�erencing. Ev en though the do wn wind p ortion ma y b e \small", it can

still con tribute a signi�can t oscillatory error near discon tin uities (sho c ks or

con tacts).

4.1 Example: Separating Bo x Problem

Consider the follo wing t w o one w a y w a v e equations and their resp ectiv e

solutions,

u

t

� u

x

= 0 ; u ( x; t ) = u

0

( x + t ) (43)

v

t

+ v

x

= 0 ; v ( x; t ) = v

0

( x � t ) (44)

where the initial data u

0

and v

0

are giv en in �gure 1. The solutions to

these equations mo v e left and righ t as sho wn b y the arro ws in �gure 1. No w
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consider c hanging the v ariables b y letting w = v + u and z = v � u . This

yields a system of di�eren tial equations

 

w

z

!

t

+

 

z

w

!

x

= 0 (45)

with initial data w

0

= v

0

+ u

0

and z

0

= v

0

� u

0

. Also note that the solution

of this system is

w ( x; t ) = v

0

( x � t ) + u

0

( x + t ) (46)

z ( x; t ) = v

0

( x � t ) � u

0

( x + t ) (47)

whic h is ob vious from the c hange of v ariables. Figure 2 sho ws the initial

data for w whic h consists of t w o op en unit b o xes de�ned on ( � 1 ; 0)

S

(0 ; 1).

As time ev olv es the b o xes tra v el in opp osite directions, as depicted b y the

arro ws in �gure 2.

Consider the follo wing Jacobian matrix and asso ciated eigensystem.

J =

 

0 (1 � � )

2

(1 + � )

2

0

!

(48)

�

1

= � 1 + �

2

; �

2

= 1 � �

2

(49)

~

L

1

=

�

1 + �

2

;

� 1 + �

2

�

;

~

L

2

=

�

1 + �

2

;

1 � �

2

�

(50)

~

R

1

=

 

1

1+ �

� 1

1 � �

!

;

~

R

2

=

 

1

1+ �

1

1 � �

!

(51)

If w e set � = 0, then this is the Jacobian and eigensystem for the con v ection

term in equation 45. Otherwise, a nonzero � giv es a p erturbation of the

Jacobian matrix. This yields a di�eren t eigensystem, and is designed so as

to mimic ignoring small terms when computing complicated Jacobians.

W e will no w solv e equation 45 n umerically with 3rd order ENO on the

con v ection terms, and 3rd order TVD Runge-Kutta in time. W e set � = 0,

whic h yields the true eigensystem. Figure 3 sho ws the results for the b o x

mo ving to the righ t. Results for the b o x mo ving to the left are symmetric.

17



W e also solv e with �

2

= : 01, �

2

= : 05, and �

2

= : 1. These giv e a 1%, 5%, and

a 10% p erturbation of the eigen v alues resp ectiv ely . Again �gure 3 sho ws the

results for the b o x on the righ t. The b o x on the left has symmetric results.

One can see that ENO and TVD Runge-Kutta admit signi�can t oscilla-

tions ev en on small p erturbations of the Jacobian matrix. It is therefore not

advisable to alter a Jacobian matrix in order to simplify the computation of

an eigensystem.
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u

v

1

1

-1

1

x

x

velocity=1

velocity=-1

Figure 1: Initial data for the t w o indep enden t w a v e equations, resulting in

simple translation to the left and to the righ t.

19



-1 1

x

1

w

velocity=-1 velocity=1

Figure 2: Initial data for the separating b o x problem, as seen in one of the

mixed �elds. The ev olution will split this initial b o x in to t w o separate b o xes

tra v eling in opp osite directions.
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0

0.5

1

1.5

true eigensystem

0 0.5 1 1.5 2
0

0.5

1

1.5

1% deviation

0 0.5 1 1.5 2
0

0.5

1

1.5

5% deviation

0 0.5 1 1.5 2
0

0.5

1

1.5

10% deviation

Figure 3: Numerical solutions for the separating b o x problem, sho wing the

oscillations that result from using an appro ximate eigensystem, deviating

from the true eigensystem b y the amoun ts sho wn. The results for the b o x

to the righ t are sho wn, while the b o x to the left has a symmetric result.
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4.2 2-D Euler with Multiple Sp ecies

Consider the con v ectiv e part of the conserv ation equations 1, 2, and 3. This is

a system of N + 3 equations, so there will b e N + 3 eigen v alues with asso ciated

eigen v ectors. F or the eigen v alues and eigen v ectors of the Jacobian matrix of

~

F (

~

U ) in equation 2, set A = 1 and B = 0 b elo w. F or the eigen v alues and

eigen v ectors of the Jacobian matrix of

~

G (

~

U ) in equation 2, set A = 0 and

B = 1 b elo w.

Based on equations 14 and 13, w e can calculate the follo wing deriv ativ es

of �h with resp ect to the conserv ed v ariables,

d ( �h )

d�

= h

N

+ �c

p

dT

d�

(52)

d ( �h )

d ( �u )

= �c

p

dT

d ( �u )

(53)

d ( �h )

d ( �v )

= �c

p

dT

d ( �v )

(54)

d ( �h )

dE

= �c

p

dT

dE

(55)

d ( �h )

d ( �Y

i

)

= h

i

� h

N

+ �c

p

dT

d ( �Y

i

)

(56)

where equation 56 holds for i = 1 to N � 1.

These deriv ativ es of �h are v alid for b oth a mixture of thermally p er-

fect gases and a mixture of calorically p erfect gases. F urther, they are v alid

for an y mixture of gases in whic h c

p;i

is de�ned as a function of temp er-

ature for eac h sp ecies. One could construct a table of c

p;i

's whic h ob eys

an y com bination of thermally p erfect and calorically p erfect assumptions.

W e use CHEMKIN [10 ] to compute realistic v alues for c

p;i

. F or some lo w er

temp eratures where CHEMKIN do es not ha v e data, w e extrap olate using a

calorically p erfect assumption.
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F rom equation 3 w e can write,

p = � E +

� ( u

2

+ v

2

)

2

+ �h (57)

and tak e deriv ativ es with resp ect to the conserv ed v ariables to obtain,

dp

d�

=

� ( u

2

+ v

2

)

2

+ h

N

+ �c

p

dT

d�

(58)

dp

d ( �u )

= u + �c

p

dT

d ( �u )

(59)

dp

d ( �v )

= v + �c

p

dT

d ( �v )

(60)

dp

dE

= � 1 + �c

p

dT

dE

(61)

dp

d ( �Y

i

)

= h

i

� h

N

+ �c

p

dT

d ( �Y

i

)

(62)

where equation 62 holds for i = 1 to N � 1. Note that w e ha v e used equations

52 { 56. No w tak e deriv ativ es with resp ect to the conserv ed v ariables of

equation 20 to obtain,

dp

d�

= R

N

T + �R

dT

d�

(63)

dp

d ( �u )

= �R

dT

d ( �u )

(64)

dp

d ( �v )

= �R

dT

d ( �v )

(65)

dp

dE

= �R

dT

dE

(66)
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dp

d ( �Y

i

)

= ( R

i

� R

N

) T + �R

dT

d ( �Y

i

)

(67)

whic h w e can use to eliminate the deriv ativ es of T in equations 58 { 62. W e

can than solv e for the deriv ativ es of p to obtain,

dp

d�

= ( 
 � 1)(

u

2

+ v

2

2

� h

N

+

c

p

R

N

T

R

) (68)

dp

d ( �u )

= ( 
 � 1)( � u ) (69)

dp

d ( �v )

= ( 
 � 1)( � v ) (70)

dp

dE

= ( 
 � 1) (71)

dp

d ( �Y

i

)

= ( 
 � 1)( � h

i

+ h

N

+

c

p

( R

i

� R

N

) T

R

) (72)

whic h w e will need b elo w.

The Jacobian matrix can b e written as,

^u I + J F + J B (73)

with,

J F =

�

dp

d�

~

J

f

dp

d ( �u )

~

J

f

dp

d ( �v )

~

J

f

dp

dE

~

J

f

dp

d ( �Y

1

)

~

J

f

� � �

dp

d ( �Y

N � 1

)

~

J

f

�

(74)

J B =

�

1

~

J

b

u

~

J

b

v

~

J

b

H

~

J

b

Y

1

~

J

b

� � � Y

N � 1

~

J

b

�

T

(75)

where I is the N + 3 b y N + 3 iden tit y matrix, and

~

J

f

=

0

B

B

B

B

B

B

B

B

B

B

@

0

A

B

^u

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

A

;

~

J

b

=

0

B

B

B

B

B

B

B

B

B

B

@

� ^u

A

B

0

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

A

(76)
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The eigen v alues of this Jacobian matrix are,

�

1

= ^u � c (77)

�

2

= � � � = �

N +2

= ^u (78)

�

N +3

= ^u + c (79)

The left eigen v ectors

~

L

p

, are the ro ws of the follo wing matrix.

0

B

B

B

B

B

B

B

B

B

B

B

@

b

2

2

+

^u

2 c

+

b

3

2

�

b

1

u

2

�

A

2 c

�

b

1

v

2

�

B

2 c

b

1

2

� b

1

z

1

2

� � �

� b

1

z

N � 1

2

1 � b

2

� b

3

b

1

u b

1

v � b

1

b

1

z

1

� � � b

1

z

N � 1

^v B � A 0 0 � � � 0

� Y

1

0 0 0

.

.

.

.

.

.

.

.

.

.

.

. I

� Y

N � 1

0 0 0

b

2

2

�

^u

2 c

+

b

3

2

�

b

1

u

2

+

A

2 c

�

b

1

v

2

+

B

2 c

b

1

2

� b

1

z

1

2

� � �

� b

1

z

N � 1

2

1

C

C

C

C

C

C

C

C

C

C

C

A

(80)

The righ t eigen v ectors

~

R

p

, are the columns of the follo wing matrix.

0

B

B

B

B

B

B

B

B

B

B

@

1 1 0 0 � � � 0 1

u � Ac u B 0 � � � 0 u + Ac

v � B c v � A 0 � � � 0 v + B c

H � ^uc H �

1

b

1

� ^v z

1

� � � z

N � 1

H + ^uc

Y

1

Y

1

0 Y

1

.

.

.

.

.

.

.

.

. I

.

.

.

Y

N � 1

Y

N � 1

0 Y

N � 1

1

C

C

C

C

C

C

C

C

C

C

A

(81)

Here I is the N � 1 b y N � 1 iden tit y matrix, and

q

2

= u

2

+ v

2

; ^u = Au + B v ; ^v = Av � B u (82)

c =

r


 p

�

(83)

b

1

=


 � 1

c

2

; b

2

= 1 + b

1

q

2

� b

1

H (84)

b

3

= b

1

N � 1

X

i =1

Y

i

z

i

; z

i

=

� 1


 � 1

�

dp

d ( �Y

i

)

�

(85)
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5 Num e r ic a l Exa m p le s

5.1 1-D Chemically Reacting \SOD" Sho c k T ub e

W e consider a one-dimensional test problem with c hemical reactions. W e

ha v e a sho c k hitting a solid w all b oundary and re
ecting o�. After a dela y a

reaction w a v e kic ks in at the b oundary . This reaction w a v e pic ks up steam

and merges with the sho c k causing a split in to 3 w a v es. F rom w all to out
o w

(left to righ t) these w a v es are a rarefaction, a con tact discon tin uit y , and a

detonation w a v e.

W e apply the 1-D Euler equations for m ulti-sp ecies 
o w with c hemical

reactions. Assume that w e ha v e a 2 = 1 = 7 molar ratio of H

2

=O

2

= Ar . All

gases in v olv ed are assumed to b e thermally p erfect. W e use a full c hemical

mec hanism , see [8] for details.

W e use the follo wing initial data

� = : 072

k g

m

3

; u = 0

m

s

(86)

p = 7173

J

m

3

(87)

on the left side of the sho c k. Then w e use a n umerical algorithm [7 ] to

calculate conditions on the righ t side whic h are consisten t with the Rankine-

Hugoniot equations for a sho c k. This yields initial data of

� = : 18075

k g

m

3

; u = � 487 : 34

m

s

(88)

p = 35594

J

m

3

(89)

on the righ t side of the sho c k. W e use a 12 cm domain for a time of 230 �s ,

400 uniform grid cells, and 2300 equal time steps. A re
ectiv e b oundary

condition at the w all is implemen ted b y adding ghost cells.

W e will examine the solution after a total of 1900 time steps, and af-

ter 2300 time steps. The results are sho wn in �gures 4 and 5. Next, w e
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run the co de under the calorically p erfect assumptions. W e use a r efer enc e

temp er atur e of 298 K . The results are sho wn in �gures 6 and 7. The calori-

cally p erfect assumptions driv e the reaction, and cause a ma jor di�erence in

ev olution of the solution.

5.2 2-D Com bustor Sim ulation

Consider the 2-D Na vier Stok es equations for m ulti-sp ecies 
o w with c hem-

ical reactions. All gases in v olv ed are assumed to b e thermally p erfect. See

[8 ] for details on the c hemical mec hanism.

W e ha v e a 4 cm b y 3 cm domain, with 64 b y 48 cells. The time step

tak en w as 10 �s . The initial data w as a motionless mixture with ( T ; p ) =

(700 K ; 36100 P a ). The mixture consists of a 2/7 molar ratio of O

2

/ Ar gas.

There is an in
o w of size .4375 cm at the b ottom and an out
o w of equal

size at the top. A t the in
o w, w e inject a 4/7 molar ratio of H

2

/ Ar , at

10

m

sec

with ( T ; p ) = (1166 K ; 121000 P a ).

The results for the v elo cit y �eld are sho wn. The v ectors are color co ded

to b etter illustrate the solution. RED arro ws are for regions of the 
o w

whic h ha v e a high enough concen tration of H

2

gas to b e considered fuel.

BLUE arro ws are for regions whic h ha v e enough O

2

gas to dilute the fuel for

com bustion. YELLO W arro ws are for com bustion regions. W e use O H as

the detector gas, as is common in actual engineering exp erimen ts. GREEN

arro ws are for regions of the 
o w whic h ha v e undergone near complete re-

action. These regions are comp osed of "w aste" materials, primarily w ater

v ap or. The color co ding is adjusted using thresholds whic h giv e one the idea

of the underlying c hemistry . A giv en cell ma y con tain up to 9 gases.

Figure 8 (left) sho ws the initial injection of the h ydrogen gas. The �rst

set of v ortices split to the righ t and left in �gure 8 (righ t), after impact with

the top of the con tainer. They then con tin ue in a circular t yp e path as can

b e seen in �gure 9 (left). In �gure 9 (righ t), one can see that the smaller

v ortices are b eing destro y ed b y the global 
o w. In particular, note that the

second pair of v ortices is no w a "half mo on" shap e at the b ottom of the

page.

Figure 10 (righ t and left) sho ws the ignition of the main v ortices. The

ignition quic kly spreads throughout the con tainer as can b e seen in �gure

11 (left). The amoun t of fuel and o xygen whic h w as w asted, not part of the

main reaction, can b e seen in �gure 11 (righ t).
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Figure 4: Thermally P erfect Solution (1900 steps). The reaction w a v e and

the sho c k are tra v eling form left to righ t. The sho c k is still in the lead, but

losing ground.
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Figure 5: Thermally P erfect Solution (2300 steps). The reaction w a v e has

o v ertak en the sho c k, with the result splitting in to three distinct w a v es. F rom

left to righ t: a rarefaction w a v e, a con tact discon tin uit y , and a detonation

w a v e.
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Figure 6: Calorically P erfect Solution (1900 steps). The calorically p erfect

assumptions driv e the reaction and cause the reaction w a v e to prematurely

o v ertak e the sho c k.
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Figure 7: Calorically P erfect Solution (2300 steps). The calorically p erfect

assumptions driv e the reaction and force a non-ph ysical accelerated ev olution

of the solution.
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Figure 8: V elo cit y �eld in the com bustor problem at times 1000 and 3000

microseconds. The jet of H

2

gas (red) is con tin uously injected in to the O

2

gas (blue) in the c ham b er, resulting in v ortex shedding.
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Figure 9: V elo cit y �eld in the com bustor problem at times 6000 and 9000

microseconds. The primary v ortices dev elop, en train H

2

and O

2

and enhance

mixing.
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Figure 10: V elo cit y �eld in the com bustor problem at times 9300 and 9900

microseconds. The mixture ignites in t w o primary v ortices and a com bustion

fron t, indicated b y the presence of O H (y ello w), spreads out w ard, lea ving

b ehind the com bustion pro duct H

2

O (green).
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Figure 11: V elo cit y �eld in the com bustor problem at times 10800 and 12000

microseconds. There is widespread burning, with m uc h of the O

2

consumed

in the pro cess.
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6 Conc l u s io n

W e ha v e presen ted an en thalp y-based form ulation of the equations for m ulti-

sp ecies compressible c hemically reacting 
o w that is particularly w ell suited

to n umerical mo deling with mo dern high accuracy metho ds.

W e ha v e sho wn ho w to prop erly time split these equations in order to

e�cien tly in tegrate the sti� reaction terms while a v oiding inaccurate or un-

necessary common practices suc h as freezing the temp erature, or in tro ducing

a temp erature ODE.

W e ha v e deriv ed new, simple expressions for the c haracteristics of the

con v ectiv e p ortion of the equations, whic h allo w the application of man y

mo dern c haracteristic-based n umerical metho ds.

W e ha v e used these equations, time splitting and c haracteristics together

with the �nite di�erence ENO discretization to p erform high accuracy cal-

culations of represen tativ e 1-D and 2-D problems.

The framew ork and n umerical results presen ted here sho w that the mo d-

ern high accuracy n umerical metho ds dev elop ed for gas dynamics can b e

usefully extended to the m uc h more complicated problem of c hemically re-

acting gas 
o ws, and that these metho ds can e�ectiv ely capture the complex

com bustion phenomena presen t in these 
o ws.

Ac k n o w le d g m e n t s

W e w ould lik e to thank Ann Karagozian, Bjorn Engquist, Chris Anderson,

Ow en Smith, and Da v e Chopp for helpful commen ts, insigh ts and criticisms

during the course of this w ork.

34



Refe r e n c e s

[1] Anderson, John D., Hyp ersonic and High T emp er atur e Gas Dynamics ,

McGra w-Hill, 1989.

[2] Anderson, John D., Mo dern Compr essible Flow , McGra w-Hill, 1990.

[3] A tkinson, Kendall E., A n Intr o duction to Numeric al A nalysis , Wiley ,

1989.

[4] Don, W. and Quillen, C., Numeric al Simulation of Sho ck-Cylinder In-

ter actions, Part I: R esolution , (preprin t), 1994.

[5] Engquist, B. and Sjogren, B., Numeric al Appr oximation to Hyp erb olic

Conservation L aws with Sti� T erms , UCLA CAM Rep ort 89-07, Marc h

1989.

[6] Engquist, B. and Sjogren, B., R obust Di�er enc e Appr oximations to Sti�

Inviscid Detonation Waves , UCLA CAM Rep ort 91-03, Marc h 1991.

[7] F edkiw, Ronald P ., A Survey of Chemic al ly R e acting, Compr essible

Flows , UCLA (Dissertation), 1996.

[8] F edkiw, R., Merriman, B., and Osher, S., Numeric al metho ds for a

mixtur e of thermal ly p erfe ct and/or c aloric al ly p erfe ct gase ous sp e cies

with chemic al r e actions , UCLA CAM Rep ort 96-1, Jan uary 1996,

h ttp://www.math.ucla.edu/ap plied /cam /inde x.h tm l.

[9] Katzer, E. and Osher, S., E�cient Implementation of Essential ly Non-

Oscil latory Schemes for Systems of Nonline ar Hyp erb olic Di�er ential

Equations , UCLA CAM Rep ort 88-14, Ma y 1988.

[10] Kee, Miller and Je�erson, CHEMKIN: A Gener al Purp ose Pr oblem

Indep endent, T r ansp ortable F ortr an Chemic al Kinetics Co de Package ,

SAND 80-8003 Sandia National Lab oratories, Marc h 1986.

[11] Oran, E.S. and Boris, J.P ., Numeric al Simulation of R e active Flow , El-

sevier, 1987.

35



[12] Sh u, C.W. and Osher, S., E�cient Implementation of Essential ly Non-

Oscil latory Sho ck Capturing Schemes II (two) , UCLA CAM Rep ort 88-

12, April 1988.

[13] Stall, D.R. and Prophet, H., JANAF Thermo chemic al T ables , National

Standard Reference Data Series, 1971.

[14] Strikw erda, John C., Finite Di�er enc e Schemes and Partial Di�er ential

Equations , W adsw orth and Bro oks, 1989.

[15] T on, Vinh, A Numeric al Metho d for Mixing/Chemic al ly R e acting Com-

pr essible Flow with Finite R ate Chemistry , UCLA (Dissertation), 1993.

[16] T on, V., Karagozian, A., Engquist, B., and Osher, S., Numeric al Simu-

lation of Inviscid Detonation Waves , UCLA CAM Rep ort 91-22, Octo-

b er 1991.

36


