Daniel S. Johnson

Phone: 224-688-7435 Website: physbam.stanford.edu/~dansj/ Email: dan.johnson@cs.star	nford.edu Github: dsjohns2
Education	
Stanford University, Stanford, CA	June 2023
PhD: Computer Science, Stanford Graduate Fellow MS: Computer Science	
University of Illinois at Urbana-Champaign, Urbana-Champaign, IL	May 2018
Bachelor of Science: Computer Science, with Highest Honors	GPA: 3.93/4.00
Minor: Mathematics	
Experience	
InstaDeep/BioNTech, San Francisco, CA	July 2023 - Present
 Collaborating with clients (including a large insurance corporation) to transition to data-driven de 	ecision-making utilizing ML/DL
Meta, Menlo Park, CA	June 2022 - September 2022
SOFTWARE ENGINEER INTERN - AUTOML	· · · · · · · · · · · · · · · · · · ·
 Developed multi-stage inference algorithm that handling 50% of data on a simple ML model (LRw Implemented algorithm in production environment 	Bins) embedded in product code
 Implemented robust tests showing a 1.3x latency speedup and 30% reduction of CPU resource us 	age
• This is a major improvement for a production environment making millions of inferences per seco	ond
 Published paper at AutoML 2023 (video link) 	
Stanford Artificial Intelligence Laboratory Fedkiw Lab, Stanford, CA	September 2018 - June 2023
 Wrote thesis on smoothing discontinuous physical phenomena for differentiability in learning 	
Construct mathematical framework behind combination eulerian/lagrangian fluids optimization	project
Passed all 6 PhD qualifying exams for the ICME Program	
Deep Learning (CS230), Math in ML (CS205L), Graphics (CS148) Course Assistant	
Nvidia, Santa Clara, CA Software Engineer - Omniverse (Part time)	December 2021 - June 2022
Developed GauGAN plugin for Nvidia Omniverse	
Worked toward temporally consistent vid2vid using semantically segmented 3D objects and scene	e generated point clouds as input
Nvidia, Santa Clara, CA	June 2021 - September 2021
• Improve physics simulation of ultrasonic waves (BRDF and specular bouncing)	
 Train and improve parking obstacle avoidance network (ultrasonic data to evidence grid map) 	
 Integrate parking planner into physics simulation (Isaac Sim) 	
Intel, Santa Clara, CA	June 2020 - September 2020
DEEP LEARNING AND GPU INTERN Developed analytical multi-frame super-resolution algorithm	
Investigated algorithm pipeline in the context of deep learning	
National Center for Supercomputing Applications (NCSA) LIGO Project, Urbana, IL	February 2017 - July 2018
COMPUTATIONAL PHYSICS INTERN	
 Recognized as Outstanding Intern by Director of NCSA 	
Hybrid Illinois Device for Research and Applications (HIDRA) Fusion Reactor, Urbana, IL	January 2015 - June 2018
Senior Undergraduate Research Student	-
Selected Publications (see website for full list)	
1. D. Johnson , I. L. Markov, "Efficient Multi-stage Inference on Tabular Data." AutoML, Sep. 2023.	
 D. Johnson, R. Fedkiw, "Addressing Discontinuous Root-Finding for Subsequent Differentiab Problems, and Control." Preprint, May 2023. 	ility in Machine Learning, Inverse
3. D. Johnson et al., "Software-based Automatic Differentiation is Flawed." Preprint, May 2023.	
4. Z. Geng, D. Johnson , R. Fedkiw, "Coercing Machine Learning to Output Physically Accurate Res	sults." JCP, Nov. 2019.
Selected Honors & Awards (see website for full list)	
2018-2023 Stanford Graduate Fellowship, Stanford University College of Engineering	Stanford, CA
2017 - 2018 Knight of St. Patrick, University of Illinois College of Engineering	Champaign, IL
2017 - 2018 C.W. Gear Outstanding Undergraduate Student, UIUC CS Department	Champaign, IL
2016 - 2017 Crowe Horwath LLP Outstanding Computer Science Student, UIUC CS Departm	ent Champaign, IL

Skills _____

Programming C/C++, Python, ETEX, Parallel Computing (CUDA, OpenMP, MPI), WebGL, Linux, Unity, Blender, VR

Relevant Courses Num. Linear Algebra, Num. Optimization, Convex Optimization, Parallel Programming, Discrete Math