CS205 Review Session #7 Notes

Useful Decompositions

Consider an n X n matrix A that is symmetric positive semi-definite and has a nullspace of
dimension p < n. We wish to factor A into MAM where the columns of the n x (p — n)
matrix M form an orthonormal basis for col(A) = row(A). It may help to first consider a
concrete example:
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This particular choice for A and M is not necessarily unique. We can also write:
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One way to construct this factorization in general is to compute the spectral decomposi-
tion A = QAQ” of A and trim of some of the unnecessary columns of Q.
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We can show, however, that no matter what method we use to determine A = MAM |
if the columns of M form an orthonormal basis for the column space of A, A must have
several desirable properties. In particular:

1. A has full rank. To see why this is so, let X € IR"? be an arbitrary vector. Then
Mx € col(A) = row(A). This means that A(MX) =0 <= x = 0 since the nullspace
of a matrix is the orthogonal complement of its row space. This implies that, for general
X:

AMX #0= MAM MX #0= MAX£0 = AX #0
Therefore A has only the trivial nullspace, and thus has full rank.

2. A is symmetric. A = MAM" = A= MTAM, which is symmetric since A is.

3. A is positive definite. A must be positive semi-definite since X7 A% = (Mi)TA(Mf() >
0. However, x” Ax = 0 in general if and only if x € NS(A). Since we chose M to have
columns that form an orthonormal basis for col(A), MX € col(A) = NS(A)* and so
xTAx > 0.

4. The eigenvalues of A are exactly the non-zero eigenvalues of A. To see that this is the
case, consider an eigenvector X of A and its associated eigenvalue A:

A% = )% = AM Mx = \x = MAM Mg = \M% = A(MX) = A\(MX)



More Subspace Decompositions

Consider any of the (possibly infinite) solutions to the matrix equation Ax = b where

A is symmetric. We recall that we can express each such solution as a sum x = x.+x,
where x, € col(A) =row(A) and x,, € NS(A).

Now, consider a solution that lies entirely within the column space of A, that is, a
solution of the form x,. where Ax. = b.

(a) x, is unique. To see that this is the case, assume that Ax,; = b and Ax,., = b
where x,1,X,0 € col(A). Clearly (x,1 — X;2) € col(A), but we also have that
A(x,1—X2) = Ax,1 — AX,2 = b—b = 0, which implies that (x,; —x,2) € NS(A),
yielding a contradiction.

(b) x = x, + x, is also a solution to Ax = b for any x, € NS(A). To see that this
is true, consider A(x, +x,) = Ax, + Ax, =b+ 0 =Db.

Particular Polynomials
The generic form of a quadratic polynomial is:
p(7) = 2 + 17 + ¢

However, deriving a system of equations for the constraints p'(a) = f'(a),p'(b) =

f(b), p(2£) = f(2£L) for some generic f(z) is quite cumbersome if we express p(z) in
this manner.

Instead, we may substitute a different quadratic polynomial g(x) that benefits from
the symmetry of the given constraints:
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Remember also that for a non-composite rule, the degree is given as the mazimum
degree of a polynomial that is exactly integrable using the particular rule. Note that
it is enough to test exact integrability of the simple monomials (1, x, 22 23,...) since,
by linearity, any linear combination of exactly integrable functions will be exactly
integrable as well.




