
CS205 Review Session #7 Notes

Useful Decompositions

Consider an n× n matrix A that is symmetric positive semi-definite and has a nullspace of
dimension p < n. We wish to factor A into MÃM where the columns of the n × (p − n)
matrix M form an orthonormal basis for col(A) = row(A). It may help to first consider a
concrete example:

A =

 2 −1 0
−1 2 0
0 0 0

 =

 1 0
0 1
0 0

[
2 −1
−1 2

] [
1 0 0
0 1 0

]
= MÃM

T

This particular choice for Ã and M is not necessarily unique. We can also write:

A =

 2 −1 0
−1 2 0
0 0 0

 =

 1√
2
− 1√

2
1√
2

1√
2

0 0

[
1 0
0 3

][
1√
2

1√
2

0

− 1√
2

1√
2

0

]

One way to construct this factorization in general is to compute the spectral decomposi-
tion A = QΛQT of A and trim of some of the unnecessary columns of Q.

We can show, however, that no matter what method we use to determine A = MÃM
T
,

if the columns of M form an orthonormal basis for the column space of A, Ã must have
several desirable properties. In particular:

1. Ã has full rank. To see why this is so, let x̃ ∈ IRn−p be an arbitrary vector. Then
Mx̃ ∈ col(A) = row(A). This means that A(Mx̃) = 0 ⇐⇒ x̃ = 0 since the nullspace
of a matrix is the orthogonal complement of its row space. This implies that, for general
x̃:

AMx̃ 6= 0⇒MÃM
T
Mx̃ 6= 0⇒MÃx̃ 6= 0⇒ Ãx̃ 6= 0

Therefore Ã has only the trivial nullspace, and thus has full rank.

2. Ã is symmetric. A = MÃM
T ⇒ Ã = M

T
AM, which is symmetric since A is.

3. Ã is positive definite. Ã must be positive semi-definite since x̃T Ãx̃ = (Mx̃)
T
A(Mx̃) ≥

0. However, xTAx = 0 in general if and only if x ∈ NS(A). Since we chose M to have
columns that form an orthonormal basis for col(A), Mx̃ ∈ col(A) = NS(A)⊥ and so
x̃T Ãx̃ > 0.

4. The eigenvalues of Ã are exactly the non-zero eigenvalues of A. To see that this is the
case, consider an eigenvector x̃ of Ã and its associated eigenvalue λ̃:

Ãx̃ = λx̃⇒ ÃM
T
Mx̃ = λx̃⇒MÃM

T
Mx̃ = λMx̃⇒ A(Mx̃) = λ(Mx̃)
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More Subspace Decompositions

Consider any of the (possibly infinite) solutions to the matrix equation Ax = b where
A is symmetric. We recall that we can express each such solution as a sum x = xc +xn

where xc ∈ col(A) = row(A) and xn ∈ NS(A).

Now, consider a solution that lies entirely within the column space of A, that is, a
solution of the form xc where Axc = b.

(a) xr is unique. To see that this is the case, assume that Axr1 = b and Axr2 = b
where xr1,xr2 ∈ col(A). Clearly (xr1 − xr2) ∈ col(A), but we also have that
A(xr1−xr2) = Axr1−Axr2 = b−b = 0, which implies that (xr1−xr2) ∈ NS(A),
yielding a contradiction.

(b) x = xr + xn is also a solution to Ax = b for any xn ∈ NS(A). To see that this
is true, consider A(xr + xn) = Axr + Axn = b + 0 = b.

Particular Polynomials

The generic form of a quadratic polynomial is:

p(x) = c2x
2 + c1x + c0

However, deriving a system of equations for the constraints p′(a) = f ′(a), p′(b) =
f ′(b), p(a+b

2
) = f(a+b

2
) for some generic f(x) is quite cumbersome if we express p(x) in

this manner.

Instead, we may substitute a different quadratic polynomial g(x) that benefits from
the symmetry of the given constraints:

g(x) = c2

(
x− a + b

2

)2

+ c1

(
x− a + b

2

)
+ c0

Remember also that for a non-composite rule, the degree is given as the maximum
degree of a polynomial that is exactly integrable using the particular rule. Note that
it is enough to test exact integrability of the simple monomials (1, x, x2, x3, . . .) since,
by linearity, any linear combination of exactly integrable functions will be exactly
integrable as well.
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