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Secant Formula

Consider the following alternate form of the secant method:

xk+1 =
xk−1f(xk)− xkf(xk−1)

f(xk)− f(xk−1)

This formula leads to an indefinite form (0
0
) as the current iterate asymptotically approaches

the true solution. If x∗ is an analytic root of f(x) s.t. f(x∗) = 0, we can see that xk ≈
xk−1 ≈ x∗ and f(xk) ≈ f(xk−1) ≈ 0 as xk−1, xk → x∗.

This observation is significant, since the aforementioned update formula relies on the
division of two quantities that are very close to zero, which may lead to numerical instability.
Similar behavior may be seen in the more usual form of the secant update formula:

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

Mean Value Theorem

Consider a real-valued function f(x) that is differentiable and continuous on the interval
[xk, xk−1]. Then, the Mean Value Theorem states that:

∃ x̂ ∈ [xk, xk−1] s.t. f(xk)− f(xk−1) = f ′(x̂)(xk − xk−1)

Furthermore, it is clearly the case that f ′(x̂) ≈ f ′(x∗) as xk, xk−1 → x∗.

Fixed-Point Iteration

One nice property of root finding problems is that they can always be reformulated in terms
of an equivalent fixed-point problem. In particular, if we wish to find x such that f(x) = 0,
we can pick an appropriate function g such that g(x) = x ⇔ f(x) = 0. In fact, there are
infinitely many g functions we can pick:

g(x) = x + f(x)

g(x) = x(1 + f(x))

g(x) = xef(x)

g(x) = x + f(x)f ′(x)

The fixed-point formulation may, under certain conditions, be quite convenient. In par-
ticular, we may be able to use fixed-point iteration to find the solution to both problems.
Given some initial guess x0 that’s sufficiently close to the exact solution x∗, we iterate as
follows:

xk = g(xk−1)
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To see that this process will converge to the correct solution, consider the error at the
kth iteration:

ek = xk − x∗

= g(xk−1)− g(x∗)

Now, by the Mean Value Theroem, we have (for some x̂k ∈ [xk−1, x∗]):

g(xk−1)− g(x∗) = g′(x̂k)(xk−1 − x∗)

= g′(x̂k)ek−1

We may now see that it suffices to have |g′(x∗)| < 1. If this is the case, and we pick x0

sufficiently close to x∗, then there exists some constant c such that g′(x̂k) ≤ c < 1 for
k ∈ {0, 1, . . .}. From the above, this gives us:

|ek| = g′(x̂k) |ek−1| ≤ c |ek−1| ≤ . . . ≤ ck |e0|

This will clearly converge if c < 1.

Optimization Criteria

Some possible criteria used to characterize the effect of an optimization step are given below:

1. Does the current guess for x approximate the optimal xmin better than the previous

one? That is |xk+1 − xmin|
?

≷ |xk − xmin|

2. Does the current value f(x) approximate the optimal f(xmin) better than the previous

one? That is |f(xk+1)− f(xmin)|
?

≷ |f(xk)− f(xmin)|

3. Is the size of the update in x decreasing? That is |xk+1 − xk|
?

≷ |xk − xk−1|

4. Is the relative improvement in f(x) decreasing? That is |f(xk+1)− f(xk)|
?

≷ |f(xk)−
f(xk−1)|

The Metric Tensor

In the derivation of the Conjugate Gradient method, we frequently encounter expressions
of the form xTAy = x · Ay where x and y are vectors and A is the symmetric positive
definite matrix representing the coefficients of the linear equations we wish to solve. In
particular, we make extensive use of the concept of A-orthogonality: two vectors x and y
are A-orthogonal (or conjugate with respect to A) if x ·Ay = y ·Ax = 0.
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Recall that the fundamental notion of distance in a vector space can be built from the
definition of an inner product. Given some inner product 〈·, ·〉, we can define (in the usual
fashion):

〈x,y〉 = |x| |y| cos θxy

This gives us a straightforward extension to the notion of length, since we then have:

〈x,x〉 = |x| |x| cos θxx = |x|2

This, in turn, allows us to define the distance along a parameterized curve p(t):

L =

∫ b

a

|p′(t)| dt

Any inner product must satisfy, in general, only the following set of properties:

1. 〈x,y〉 = 〈y,x〉

2. 〈x,x〉 ≥ 0

3. 〈x,x〉 = 0 ⇐⇒ x = 0

4. 〈cx,y〉 = c〈x,y〉

5. 〈x + z,y〉 = 〈x,y〉+ 〈z,y〉

From this rather loose set of constraints, it should be obvious that infinitely many such
inner products exist for any given space. In fact, an inner product is uniquely defined by a
metric tensor, which (for our purposes) can be thought of simply as an n × n matrix g
that induces an associated inner product by:

〈x,y〉g = xTgy

When g = I we have the usual Euclidean dot product, since:

〈x,y〉 = xT Iy = xTy = x · y

From the list of constraints above, we can see that g cannot be a completely arbitray
matrix. Constraint (1) implies that g must be symmetric, and constraint (2) is the very
definition of positive definiteness. With these observations, the concept of conjugacy becomes
more intuitively understandable. Two vectors are conjugate with respect to a symmetric
positive definite matrix A precisely if they are orthogonal under the inner product induced
by A.
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