
CS205 Review Session # 3 Notes

Linear Dependence

In order to prove that a set of nonzero vectors are linearly independent, we can assume that
they are linearly dependent and show that this leads to a contradiction. If a set of vectors
V = {vi 6= 0 | i ∈ {1, . . . ,m}} is linearly dependent, the following three conditions all hold:

1. ∃ci ∈ IR (at least two of which are nonzero) such that
∑m

i=1 civi = 0

2. ∃vk ∈ V such that vk =
∑

i6=k civi = 0 with at least one ci 6= 0

3. ∃vk ∈ V that can be written as a linear combination of a linearly independent subset
of V, i.e. vk =

∑`
i=1 civi (with some renumbering), where the choice of {ci} is unique.

This last formulation gives, in some sense, the minimal linearly dependent subset of V,
since the removal of any vector from {vk,v1, . . . ,v`} yields a linearly independent set.

Deflation Matrices

Consider a symmetric n×n matrix A where λ is an eigenvalue of A and q the corresponding
(normalized) eigenvector. We define the deflation of A with respect to (λ,q) to be:

D(λ,q) = A− λqqT

We note that this matrix has the following properties:

1. q ∈ NS(A−λqqT ). Equivalently, we can say that q is now an eigenvector corresponding
to the zero eigenvalue of D(λ,q). To prove this, we have:(

A− λqqT
)
q = Aq− λqqTq = λq− λq = 0

2. Any other eigenvector q∗ of A with associated eigenvalue λ∗ (possibly, but not nec-
essarily, distinct from λ) is now an eigenvector of D(λ,q) with the same associated
eigenvalue λ∗. To prove this, consider:(

A− λqqT
)
q∗ = Aq∗ − λqqTq∗ = λ∗q∗ − 0 = λ∗q∗

The middle step follows from the fact that the eigenvectors of a symmetric matrix are
orthogonal.

3. The characteristic polynomials P (x) = det(A− xI) and PD(x) = det(A− λqqT − xI)
of A and D(λ,q) respectively are identical, except that the the multiplicity of λ as a
root of P has been decreased by one in PD and the multiplicity of the root 0 has been
increased by one.
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To prove this, we first recall that similar matrices have the same characteristic poly-
nomial. Next, we consider the Householder transformation H that reflects q into
e1, i.e. Hq = e1. Since H is an orthogonal matrix by construction, it follows that
HAHT = HAH is similar to A. Additionally, HAH has a very specific structure. In
particular, its first column will have the following form:

HAHe1 = HAHHq = HAq = λHq = λe1

By symmetry, the first row of HAH will be λeT
1 . More generally, we have that:

HAH =


λ 0 · · · 0
0
... M
0


where M is a symmetric (n− 1)× (n− 1) matrix. It is easy to see that H(λqqT )H =
λe1e

T
1 , which implies that:

H(A− λqqT )H =


0 0 · · · 0
0
... M
0


Since similarity transforms do not affect the characteristic polynomial of a matrix, we
observe that the deflation changed exactly one root of P from λ to 0. All other roots
are unaffected and given by the characteristic polynomial of M.

Traces and Determinants

The characteristic polynomial of an n × n matrix A is defined as P (λ) = det(A − λI),
and the roots of this polynomial are the eigenvalues of A. To prove this, note that if
P (λi) = det(A − λiI) = 0, then the matrix A − λiI is singular, and thus the equation
(A − λiI)x = 0 has a nontrivial solution. Rearranging terms, we see that Ax = λix, and
thus λi is an eigenvalue of A. Repeated application of the Fundamental Theorem of
Algebra allows us to rewrite P (λ) as follows:

P (λ) = (−1)n(λ − λ1)(λ − λ1) · · · (λ − λn)

= (−1)n

λn − λn−1
∑

i

λi + λn−2
∑
i6=j

λiλj − · · · + (−1)nλ1λ2 · · ·λn


= (−1)nλn + (−1)n−1λn−1

∑
i

λi + (−1)n−2λn−2
∑
i6=j

λiλj + · · · + λ1λ2 · · ·λn

where each λi is an eigenvalue of A. This formulation tells us that we can derive some
useful information directly from the characteristic polynomial without needing to solve for
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its roots. Namely, we see that the sum of all eigenvalues is equal to the coefficient of λn−1 in
the characteristic polynomial modulo the sign term (−1)n−1. Similarly, the product of the
eigenvalues is equal to the polynomial’s constant term. These values have specific meanings
for symmetric n × n matrices: they are the trace and the determinant of the matrix,
respectively.

Frobenius Norm

An alternative, but equivalent, definition for the Frobenius norm is:

‖A‖F =
√

tr(ATA) =
√

tr(AAT )

To prove this equality, note that:

(ATA)ij =
m∑

k=1

(AT )ikAkj =
m∑

k=1

AkiAkj

Therefore:

tr(ATA) =
n∑

i=1

(ATA)ii =
n∑

i=1

m∑
k=1

AkiAki =
n∑

i=1

m∑
k=1

A2
ki = ‖A‖2

F

The proof for ‖A‖F =
√

tr(AAT ) follows similarly.
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