
CS205 Review Session #2 Notes

Symmetric matrices and dot product

Lemma An n× n matrix A is symmetric ⇐⇒ ∀x,y ∈ IRn x ·Ay = y ·Ax

Proof In the forward direction, if A is symmetric we have:

x ·Ay = xTAy = (xTAy)T = yTATx = yTAx = y ·Ax

For the converse, recall that ei is the i-th cartesian basis vector. Taking x = ei and
y = ej and then the reverse, we have:

ei · Aej = eT
i Aej = Aij

ej · Aei = eT
j Aei = Aji

Thus Aij = Aji for all i, j and A is symmetric.

Lemma If A,B are symmetric n× n matrices and ∀x ∈ IRn xTAx = xTBx then A = B

Proof First, take x = ei:
eT

i Aei = eT
i Bei ⇒ Aii = Bii

Similarly, taking x = ei + ej gives:

(ei + ej)
T A(ei + ej) = (ei + ej)

T B(ei + ej)

Aii + Ajj + Aij + Aji = Bii + Bjj + Bij + Bji

2Aij = 2Bij

Fundamental Subspaces

Recall that an n × n matrix A is just a basis for a vector space. If the columns of A are
all linearly independent, then A is a basis for IRn. If some columns are linear combinations
of others, then the maximal subset of columns that are linearly independent forms a basis
for a subspace. The subspace spanned by the columns is called the column space of the
matrix, and is given as col(A) = {Ax | x ∈ IRn}. The rank of A is the number of linearly
independent columns, and when A has full rank col(A) = IRn.

When A is rank deficient, it is said to have a non-trivial null space. The null space
of a matrix A is defined to be NS(A) = {x ∈ IRn | Ax = 0}. If NS(A) = {0} then, we
say that A has a trivial null space. In general, A has a trivial null space if A is square
and non-singular. The minimum number of columns that must be removed from a matrix
to make the remaining columns linearly independent is called the nullity or kernel of the
matrix.
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Now let us consider the more general case where A is m×n. This allows us to more clearly
understand the dual nature of the column space (given by col(A) = {Ax ∈ IRm | x ∈ IRn})
and the null space (given by NS(A) = {x ∈ IRn | Ax = 0}) of A by examining their
respective dimensions. In particular, the Rank-nullity theorem states that rank(A) +
nullity(A) = n. The definitions for the column space and null space of AT follow directly.

The net result of this analysis leads us to conclude that there are four fundamental
subspaces. The first and the second are the column space and null space defined above. The
next is the row space, which is the column space of AT or the space spanned the rows of
A. The last fundamental subspace is the left null space of A which is the null space of
AT . The null space of A and row space of A are subspaces of IRn, while the left null space
of A and column space of A are subspaces of IRm.

The Fundamental Theorem of Linear Algebra states that the column space of A
and the null space of AT are orthogonal complements of one another:

col(A) = NS(AT )⊥

This means that ∀x ∈ col(A) ∀y ∈ NS(AT ) xTy = 0. Additionally, the dimension of A’s
column space will be rank(A) and the dimensional of AT ’s null space will be m− rank(A).
Similarly, the row space of A is the orthogonal complement of the null space of A. Of course,
if A = AT , the row space and the column space are the same.

Why is this important? Given an m×n matrix A, we can use this analysis to decompose
an arbitrary vector x ∈ IRm into x = x1 + x2 where x1 = Ay (for some y ∈ IRn) and
ATx2 = 0. Similarly, we can decompose an arbitrary z ∈ IRn into z = z1 + z2 with
z1 = ATw (for some w ∈ IRm) and Az2 = 0. Moreover we know that xT

1 x2 = 0 and
zT

1 z2 = 0 because these spaces are complimentary.

Projection and Reflection

Consider a vector subspace V of IRn. Its normal complement is the vector space V ⊥, which
contains all vectors of IRn that are normal to some vector of V . We know that every vector
x ∈ IRn can be decomposed as:

x = x1 + x2, x1 ∈ V, x2 ∈ V ⊥

The projection matrix P onto the subspace V operates on x as follows:

Px = P(x1 + x2) = Px1 + Px2 = x1 + 0 = x1

The reflection matrix R with respect to the subspace V has the following effect on x:

Rx = R(x1 + x2) = Rx1 + Rx2 = x1 + (−x2) = x1 − x2
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Diagonally Dominant Matrices

We have seen that diagonally dominant matrices are a class of generally well-conditioned
matrices. In particular they do not require pivoting during Gaussian elimination in order
to enforce stability. Note, however, that our definition of diagonal dominance may differ
slightly from the literature.

As an exercise, we will prove that 2 × 2 diagonally dominant matrices with positive
diagonal elements are positive definite. Consider the matrix:

A =

[
a11 a12

a21 a22

]

with a11, a22 > 0. Diagonal dominance for this matrix translates to

a11 = |a11| > |a12|, |a21|
a22 = |a22| > |a12|, |a21|

If x = (x1, x2)
T , we have:

xTAx = a11x
2
1 + a12x1x2 + a21x1x2 + a22x

2
2

≥ |a11||x1|2 + |a22||x2|2 − (|a12|+ |a21|)|x1||x2|

This implies that:

2xTAx ≥ 2|a11||x1|2 + 2|a22||x2|2 − 2(|a12|+ |a21|)|x1||x2|
> (|a12|+ |a21|)|x1|2 + (|a12|+ |a21|)|x2|2 − (2|a12|+ 2|a21|)|x1||x2|
= |a12|(|x1| − |x2|)2 + |a21|(|x1| − |x2|)2 ≥ 0

Which is precisely the criteria positive definiteness.

3


