
CS205 Review Session #1 Notes

1 HW 1.1 Hints

1.1 Addition Example

Recall that the relative error is defined as:

relative error =

∣∣∣∣∣computed result− analytic result

analytic result

∣∣∣∣∣
Consider the relative error induced by the addition of two positive numbers x and y. The
simple act of storing each number in floating-point introduces some error yielding x̄ =
(1 + ε1)x and ȳ = (1 + ε2)y. Performing the addition induces some roundoff error both for
the operation itself as well as the storage of the result, which we will model as (1+ε3)(x̄+ ȳ).
So:

R.E. =

∣∣∣∣∣(1 + ε3)((1 + ε1)x + (1 + ε2)y)− (x + y)

x + y

∣∣∣∣∣
≤

∣∣∣∣∣(1 + ε3)(1 + ε4)(x + y)− (x + y)

x + y

∣∣∣∣∣
= |(1 + ε3)(1 + ε4)− 1|
= |(1 + ε5)

2 − 1|
≤ (1 + εmax)2 − 1

= 2εmax + O(ε2
max)

1.2 Aside

Consider a sequence of multiplied rounding error factors:

(1 + ε1)(1 + ε2) · · · (1 + εk)

It’s clear that the cumulative error can be bounded both above and below by:

(1− εmax)k ≤ (1 + ε1)(1 + ε2) · · · (1 + εk) ≤ (1 + εmax)k

From this bound, we can see that there must exist some ε∗ that satisfies:

(1 + ε∗)
k = (1 + ε1) · · · (1 + εk)
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1.3 Multiplication Series Example

Suppose we wish to calculate the relative error introduced in the computation of xn given
the recurrence:

m1 = x

mk = mk−1x

We know that x will be stored on the computer as x̄ = (1 + ε)x. Thus, we can write the
evaluation as another recurrence

s1 = (1 + ε)x

sk = [sk−1(1 + ε)x](1 + εk)

whose solution is clearly

sn = xn(1 + ε)n(1 + ε2)(1 + ε3) · · · (1 + εn)

which simplifies (for some ε∗) to:

sn = xn(1 + ε∗)
2n−1 = xn(1 + (2n− 1)ε∗ + O(ε2

∗))

So, the relative error is:

RE =
∣∣∣[xn(1 + (2n− 1)ε∗ + O(ε2

∗))− xn]/xn
∣∣∣ ≤ (2n− 1)εmax + O(ε2

max)

2 HW 1.2 Hints

Recall that permutation matrices are identity matrices that have had their rows (or columns)
interchanged. Clearly a permutation matrix permuted by itself will yield the identity.

P(ij)P(ij) = I

P(12)P(12) =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
A permutation matrix that pre-multiplies a matrix will permute the rows as we have seen.
A permutation matrix that is post-multiplied will permute the columns.

AP(12) =

[
a b
c d

] [
0 1
1 0

]
=

[
b a
d c

]

P(12)A =

[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
For part 1, using the definitions, we wish to show that:

LkP
(ij) = P(ij)(I + P(ij)mke

T
k )
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By manipulating first the left hand side:

LkP
(ij) = (I + mke

T
k )P(ij)

= P(ij) + mke
T
k P(ij))

And then the right:

P(ij)(I + P(ij)mke
T
k ) = P(ij) + P(ij)P(ij)mke

T
k )

= P(ij) + mke
T
k

We can see that it remains to show only that:

mke
T
k P(ij) = mke

T
k

For part 2, use part 1.

3 HW 1.3 Hints

• The constants have to be independent of the particular vector x, though they can
depend on the dimension.

• You should be able to solve this applying the definition of equivalence to the matrix
norm equation and get the bounds you want. Think about how to make the matrix
norm induced by vector norm B bigger than the matrix norm induced by vector norm
A using the definition of vector norm equivalence.

4 The Method of Normal Equations

In class, we heard that the method of normal equations can be used to solve the linear
least squares problem. To understand why this is the case, recall that we wish to minimize
||r| |22 = ||b−Ax| |22. So, let us define:

φ(x) = ||r| |22
= rT r

= (b−Ax)T (b−Ax)

= bTb− xTATb− bTAx + xTATAx

= bTb− 2xTATb + xTATAx

To find the minimia of this function, we first take its gradient

∇φ(x) = −2ATb + 2ATAx

and then set it to 0, which gives us

∇φ(x) = 0 = −2ATb + ATAx ⇒ ATAx = ATb

which is precisely the method of normal equations.
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