
CS205 – Class 9

Covered in class: All
Reading: Shewchuk Paper on course web page

1. Conjugate Gradient Method   – this covers more than just optimization, e.g. we’ll use it later as an iterative 
solver to aid in solving pde’s

2. Let’s go back to linear systems of equations Ax=b.
a. Assume that A is square, symmetric, positive definite
b. If A is dense we might use a direct solver, but for a sparse A, iterative solvers are better as they only 

deal with nonzero entries

c. Quadratic Form 
1

( )
2

T Tf x x Ax b x c= − +

d. If A is symmetric, positive definite then f(x) is minimized by the solution x to Ax=b!

i.
1 1

( )
2 2

Tf x Ax A x b Ax b∇ = + − = −  since A is symmetric

ii. ( ) 0f x∇ =  is equivalent to Ax=b

1. this makes sense considering the scalar equivalent 21
2( )f x ax bx c= − +  where the line 

of symmetry is /x b a=  which is the solution of ax=b and the location of the maximum 
or minimum

iii. The Hessian is H=A, and since A is symmetric, positive definite so is H, and a solution to 
( ) 0f x∇ = , or Ax=b is a minimum
1. note that symmetric negative definite A lead to maxima
2. in the scalar case 2( ) 1/ 2f x ax bx c= − + , H=[a] and when a>0 the parabola is concave 

up and  /x b a=  represents a minima

3. [Note: Even if A is not symmetric, the Hessian ( )1
2

TH A A= +  is symmetric itself, as 

expected since the quadratic function we considered has continuous second derivatives]
iv. Moreover, since H=A is constant, f(x) has a bowl shape everywhere – 
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v. Consider this in 1D.  We have 
21 1

2 2( )

'( )

f x xax bx c ax bx c

f x ax b

= − + = − +
= −

 so minimum is x=b/a. 

Then the second derivative sign is analogous to the positive or negative definiteness of the 

general matrix case.  Here 
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vi. f(x)=1/2 * 2 * x^2-3x-10 minimum is at b/a=3/2.

3. Steepest Decent – for Ax=b 
a. We look in the direction f b Ax r−∇ = − = . As we have shown, the residual direction is the steepest 

decent direction!
b. Another way to think about the residual is r b Ax= − =  ( )exact exactAx Ax A x x Ae= − = − = −  where 

exacte x x= −  is the error. Thus, the residual is the error transformed by A into the space where b 
resides.  

c. f r Ae−∇ = = −  so the search direction is predicted by r, not by e, whereas e is the correct search 
direction . Note that in 1d the directions of e and r are coincident, but in multi-d this problem manifests 
itself. The residual may or may not be a good measure of error. Consider 1D example with r=ae. 
Suppose r=10-8.  Then e could be arbitrarily large as we make a smaller (where a is the concavity).

d. Recall that we choose α using a 1D minimization problem
i. The solution occurs where the new ( )f x∇  is orthogonal to the search line, 

1. i.e. go in the direction until you reach a spot where direction is tangent to level curves 
2. i.e. ( )to f x⊥ ∇
3. i.e. ( ) kf x s∇ ⊥  where sk is search direction at iteration k

4. i.e. ( ) 0kf x s∇ ⋅ =  

5. i.e. 1( ) 0k kf x r+∇ ⋅ =  

6. i.e. 1 0k kr r+ ⋅ = .

ii. If we knew the absolute error ke , we could use it to write: 

1 ( )k k k k k k k exactx x s x e x x xα α α+ = + = − = − −  gives 1k exactx x+ =  for 1α = . 

iii. However, using 1 0k kr r+ ⋅ =  implies 1( ) 0k kb Ax r+− ⋅ =  or ( ( )) 0k k kb A x r rα− + ⋅ = or 

( ) ( ) 0k k k kb Ax r Ar rα− ⋅ − ⋅ =  or 0k k k kr r r Arα⋅ − ⋅ =  so that 
T

k k k k
T

k k k k

r r r r

r Ar r Ar
α ⋅= =

⋅

e. So, the steepest decent method applied to Ax=b is k kr b Ax= − , 
T

k k
T

k k

r r

r Ar
α = , 1k k kx x r α+ = +

f. Sometimes people iterate on the residual directly using 1 1 ( )k k k k k kr b Ax b A x r r Arα α+ += − = − + = −  to 

find the kr , while still updating 1k k kx x r α+ = +  along the way (although x no longer feeds back into 
the algorithm)



i. The advantage of this is that we no longer need the extra multiplication by A in k kr b Ax= − . 

Both the computation of 
T

k k
T

k k

r r

r Ar
α =  and 1k k kr r Arα+ = −  use the same kAr


