CS205 - Class 5

Coveredin class: 1, 3, 4, 5.
Reading: Heath Chapter 4.

Singular Value Decomposition (SVD)

1.

The Singular Value Decomposition is an eigenvaike-decomposition for rectangularx n matrices. It has
the form A=U V" where U is aimxm orthogonal matrixy is annxn orthogonal matrix, an@ is an
mxn diagonal matrix with positive diagonal entriesttaee called theingular values of A. The columns of
U andV are thesingular vectors.

a. Introduced and rediscovered many times: Beltrami@n3, Jordan in 1875, Sylvester in 1889,

Autonne in 1913, Eckart and Young in 1936.
b. Pearson introduced principle component analysiAjRC1901. It uses SVD.
c. Numerical work by Chan, Businger, Golub, Kahan, etc
1 2 3

4 5 6
The singular value decomposition Af= - 8 9 Is given by

10 11 12
141 .825 - .420 - 351 255 O
504 574 .64
344 426 298 .78 0 1.29
-.761 -.057 .646.

547 .028 .664 - .50 0 0O
408 -.816 .40
750 -.371 - .542 .07 0 0O

a. The singular values are 25.5, 1.29, and 0. Thautangalue of 0 indicates that the matrix is rank
deficient. However, even a “small” singular valwiltl indicate a “zero” and a rank deficient matrix.
The singular values of A are the non-negative sgjuaots of the eigenvalues of the symmetric paesisemi-
definite A"A (and als®®A"), and the columns of U and V are the orthonorrigerevectors ofAA" and A™A
respectively. (Note the strong connection to thenab equations and least squares problems).
The condition number of a matrix A with respecthe Euclidean norm i, /0,

a. For a square matrix, the condition number meagheesloseness to singularity. For a rectangular
matrix, the condition number measures the closetoassk deficiency.
The rank of a matrix is equal to the number of mvazingular values that it has. However, if valaes
"close” to “zero” then the condition number, . /o, can be very high essentially making these numbers

max

“zero” as far as rank is concerned.
The columns of V corresponding to “zero” singulatues form an orthonormal basis for the null spHog.

a. The remaining columns of V form an orthonormal bdsr the space perpendicular to the null space

of A.

The columns of U corresponding to the “nonzerogsiar values form an orthonormal basis for the eanig
A.

a. The remaining columns of U form an orthonormal $&sr the space perpendicular to the range of A.
The columns of V corresponding to zero columng oénd the columns of U corresponding to zero rows of
2. along with those zero columns and rows can theontided without changing their product.



a. Applying this to the SVD of A from part 4 gives thee new reduced SVD,
141 825

344 426 | 255 O 504 574 644
547 028 [ 0 129}[— 761 - 057 646}
750 -371
9. SVD is a transformation into a diagonal axis alijspace.
a. Transformb into the space spanned by ,U U3V x =3V x=U"b =b. No information is lost
going fromb to b becausd) T is square and orthogonal
ReplaceV ' x by X to get a dlagonal syste®lV 'x = 3X = b.

Now solve the systeraX = b simply by scaling elements o by the singular values.

The original x is then recovered as= VX.

Essentially the SVD solves the matrix by transfargnihe vectors in a space with eigenvectors along
the unit axis.
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proof: definel = min(m,n) .U the first| columns ofU , £ the squard x| submatrix from the upper left
corner of £, V the firstl columns ofV . Then

o, vi A
A=UsVT =UzV" =(u, - u) - = e ou)
a \v/ oV
1
Ulufvl U TUN e o,
| |
= : : =>| : => ouyv
i=1 m,,1 m,,n i=1
Zau VA ZUU " guyv; o guy,

f. Note that “zero” or “small’g; produce terms that contribute little to the sund that large
o, produce terms that contribute significantly to sloen.

g. Ifthe “zero” or “small” g, are omitted from the summation, one obtains airmwaith lower rank. For

example, if only the first k terms are summed,résult has rank k.
i. Moreover, it can be shown that this new rank k imasrthe closest rank k matrix to A in both
the L, and the Frobenius norm.

ii. This is the key idea in PCA, clustering/data mingthgorithms, etc.
11.The “pseudo-inverse” of a matrix A is defined By =V Y."U " whereY." is obtained fron®. by replacing
all “nonzero” g; with 1/, , and leaving all the zero entrieentically zero.

h. If A is square and nonsingulao(#0), A" =A™,
i. The least squares solution to Ax=bxis A'lb=VZ'U b= Za_m(uﬁb/ai )\/I . (Note X" contains a
transpose)



I. Moreover, smallo; can be dropped from the summation stabilizingsthlation, and

effectively improving the condition number. This @umts to “dropping columns” from the
original matrix A.



