
CS205 - Class 4 
 

1. As a review, all the matrices A we have looked at up to this point in the class have been full rank. 
a. For matrices with full rank, the first thing to consider is whether or not it is square. 

i. If the matrix is square, it is invertible, and Gaussian Elimination can be used to get an LU 
factorization. Furthermore, if the matrix is symmetric positive definite, a faster Cholesky 
factorization can be done to get LLT. 

ii.  If the matrix is not square, then it is taller than it is wide, and in this case we do the QR 
factorization to get the solution. We also considered using the normal equations instead of QR, 
but said this was bad since it squares the condition number. For QR, there are two ways we 
consider doing it: Gram-Schmidt and Householder. G.S. has numerical drift for larger matrices, 
so we prefer to use Householder. 

b. We will next consider matrices without full rank. In considering these types of matrices, we will look 
at the Singular Value Decomposition and Principal Component Analysis. In order to talk about these 
methods we first review eigenvalues and eigenvectors. 

 
Eigenvalues and Eigenvectors (Readings Heath pp157-160) 
 
2. For an nn×  matrix A, Ax xλ=  is the standard eigenvalue problem where λ  is an eigenvalue and x is a left 

eigenvector. 
a. The right eigenvectors y are defined byT Ty A yλ= . If y is a right eigenvector of A, then it is a left 

eigenvector of TA , since TA y yλ= . 
b. Usually we refer to “left” eigenvectors simply as eigenvectors while still referring to “right” 

eigenvectors as right eigenvectors. 
3. Complex matrices 

a. Hermitian matrices have HA A=  where the “H” superscript indicates the complex conjugate of the 
transpose. Thus, for matrices with real values only, H TA A= , i.e. “H” corresponds to simple 
transposition 

b. Unitary matrices have H HA A AA I= = . 
c. Normal matrices have H HA A AA=  

4. Recall an eigenvalue is a scalar that satisfies Ax xλ= . 
a. The set of all eigenvalues of A is called the spectrum of A, and the spectral radius of A is the 

magnitude of its largest magnitude eigenvalue. ( ) maxi iAρ λ= . 

b. An eigenvector is a direction along which the action of a matrix is rather simple. The matrix merely 
expands or contracts vectors in that direction (according to the eigenvalue) leaving the direction 
unchanged. 

c. For diagonal matrices, the eigenvalues are on the diagonal, and the eigenvectors are the columns of the 

identity matrix. For example, 
2 0 1 1

2
0 3 0 0

     =     
     

 and 
2 0 0 0

3
0 3 1 1

     =     
     

. 

d. For upper triangular and lower triangular matrices, the eigenvalues appear on the diagonal. For 

example, 
2 1 1 1

2
0 3 0 0

     =     
     

 and 
2 1 1 1

3
0 3 1 1

     =     
     

. 



e. A symmetric matrix is guaranteed to have real eigenvalues, i.e. Rλ ∈ , while nonsymmetric matrices 

can have complex eignevalues. For example  
0 1 1 1

1 0
i

i i

     =     −     
.  It is easy to see why symmetric (or 

Hermitian, in general) matrices have real eigenvalues. Let Ax=λ x, thenλ <x,x>= λ xHx=xH λ x= 

xHAx= xHAHx = λ xHx =λ <x,x> 

f. Eigenvectors can be arbitrarily scaled by a constant, for example 
2 1

3
0 3

s s

s s

     =     
     

 for any s. Thus, 

we usually require that eigenvectors be normalized (usually in the L2 norm). Thus, 

2 1 2 / 2 2 / 2
3

0 3 2 / 2 2 / 2

     =    
        

 gives  the eigenvector in standard form. 

g. Ax xλ=  can be written equivalently as ( ) 0A I xλ− =  and there is a nontrivial solution x to this 
problem when A Iλ− is NOT invertible, or singular, or det( ) 0A Iλ− = . 

i. Note that det( )A Iλ−  is an n-th degree polynomial and we refer to it as the characteristic 
polynomial of A. The roots of the characteristic equation det( ) 0A Iλ− =  are the eigenvalues 
of A. 

ii.  
2 1 1 0 2 1

det det (2 )(3 ) 0
0 3 0 1 0 3

λ
λ λ λ

λ
 −       

− = = − − =       −       
. Thus the matrix 









30

12
 

has 2,3λ =  as eignevalues. 
iii.  An nn×  matrix A has an n-th degree characteristic polynomial with n roots, and thus n 

eigenvalues. However, there may be multiple roots or complex roots. 
1. In the repeated eigenvalue case, if there are fewer linearly independent eigenvectors 

than repeated roots, the eigenvalue and the matrix is said to be defective. 

2. 
2 0 1 1

2
0 2 0 0

     
=     

     
 and 

2 0 0 0
2

0 2 1 1

     
=     

     
so the multiple eigenvalue of 2 has two 

linearly independent eigenvectors. 

3. 
2 1 1 1

2
0 2 0 0

     
=     

     
 is the only eignevector relationship for the multiple eigenvalue 2 

here, and thus this matrix is defective. 
5. Idea is to compute eigenvalues using matrix form because it is in general easier than solving a n-degree 

polynomial. 
a. Must be careful though as we need to preserve least squares solution. i.e. Gaussian-Elimination will 

not work. 
b. Use a similarity transform that produces a new matrix with “same” eigenvalues/eigenvectors. 

6. Formally, a matrix A is said to be similar to a matrix B, if 1B T AT−= for a nonsingular matrix T. 
a. If A and B are similar, then they have the same eigenvalues. By yλ=  or 1T ATy yλ− =  or 

( ) ( )A Ty Tyλ= . Note that the eigenvectors of A are Ty where y are the eigenvectors of B (this 

formalizes the notion of “same-ness” from 1(b)). 
b. If the matrix A has distinct eigenvalues (no repeated eigenvalues), then similarity transforms can be 

used to put it into diagonal form where the eigenvalues can be read from the diagonal and the 



eigenvectors are the columns of the identity matrix. Then the eigenvectors of A are T times the 
columns of the identity matrix, i.e. the columns of T. 

c. If A is real and symmetric, an orthogonal T can be used to put A into diagonal form. Moreover, the 
eigenvalues are real valued. 

d. If A is complex and Hermitian, a unitary T can be used to put A into diagonal form. Moreover, the 
eigenvalues are real valued. 

e. If A is normal, a unitary T can be used to put A into diagonal form. 
f. Any matrix can be put into upper triangular, Shur form, with a unitary T. Then the eigenvalues can be 

read off the diagonal of the matrix. 
g. Any matrix can be put into Jordan form where the eigenvalues are on the diagonal, and off diagonal 

elements only occur on the band above the diagonal and only for defective eigenvalues. For example 
2 0 0 0

0 2 0 0

0 0 3 1

0 0 0 3

 
 
 
 
 
 

is in Jordan form where both 2 and 3 are repeated eigenvalues, but only 3 is defective. 

7. The condition number for an eigenvalue problem is defined by 1/ Hy x  where x and y are the normalized right 

and left eigenvectors. 
a. If x and y are real valued, then xyxy TH = . Note that θθ coscos == xyxyT   where θ  is the angle 

between the eigenvectors. 
b. For symmetric and Hermitian matrices, the left and right eigenvectors are the same so the condition 

number is 1. 
c. Eigenvalues are well conditioned for normal matrices. 
d. Multiple or “close” eigenvalues can be poorly conditioned, especially if they are defective or “close” 

to being defective. 
e. Scaling by a diagonal similarity transform – called balancing – can improve the condition number of 

an eigenvalue problem. 
8. Numerical methods for finding eigenvalues and eigenvectors. 

a. Would like a technique that solves them one at a time starting with the largest in magnitude.  
Similarity transform is less desirable because it gives us all of them even we need only a few. 

b. Using the characteristic polynomial is a bad idea since the coefficients are ill-conditioned. Moreover, 
one should set up a matrix and compute eigenvalues in order to find the roots of a polynomial 
equation. 

c. QR iteration. Initially set 0A A= and then iterate 1A , 2A , etc. For each k, compute the QR factorization 

kk kA Q R= , and then define 1 k k k

H H
k k k k k k kA R Q Q Q R Q Q A Q+ = = = . 

i. If the eigenvalues are all distinct, then the kA  converge to a triangular matrix. Moreover, if A 

is symmetric, the kA  converge to a diagonal matrix. 

ii.  This convergence can be accelerated by using shifts of the form 
kk k kA I Q Rσ− =  and 

1 kk k kA R Q Iσ+ = +  where kσ  is a rough approximation to an eigenvalue. Initially one can use, 

for example, the number in the lower right hand corner of the matrix. 
9. The Power Method allows one to compute the largest eigenvalue and eigenvector. Starting from a nonzero 

vector 0x , iterate with 1k kx Ax+ = . 



a. To see why this works, assume that 0x  is a linear combination of eigenvectors 0 i ii
x uα=∑  where the 

iu  are the eigenvectors of A. Then 2
1 2 0

k
k k kx Ax A x A x− −= = = =L  and so  

0
k k k k

k i i i i i i ii i i
x A x A u A u uα α α λ= = = =∑ ∑ ∑ . Now assuming that the largest eigenvalue is 1λ , we 

can write ( )( )1 1 1 1 1 1 12 2
/

kk k k
k i i i i i ii i

x u u u uα λ α λ λ α α λ λ
= =

= + = +∑ ∑  and note that the second term 

vanishes as k → ∞  since 1/ 1iλ λ < . Thus as k → ∞ , 1 1 1
k

kx uλ α→ . Moreover ( ) ( )1 1/k kj j
x x λ− →  for 

any component j of x. 
b. If the starting vector 0 i ii

x uα=∑ happens to have 0iα =  for the largest eigenvalue, the method fails. 

c. For a real matrix and real 0x , one can never get complex numbers. 

d. The largest eigenvalue may be repeated, in which case the final vector may be a linear combination of 
the true eigenvectors. 

e. After every iteration, kx  can be renormalized to stop kx  from growing too large. 

f. Shifts can be used to accelerate convergence. 
g. Inverse iteration can be used to find the smallest eigenvalue. This relies on the fact that the 

eigenvalues of 1A−  are the reciprocals of those of A. Thus, the largest eigenvalue of  1A−  is the 
smallest eigenvalue of A. 

h. Deflation is a method to remove an eigenvalue from a matrix A once it has been computed. Then the 
resulting matrix can be analyzed to compute the next largest eigenvalue, etc. 

10. If Ax xλ= , then one can form the Rayleigh Quotient 
T

T

x Ax

x x
λ = . This is used in a variety of methods for 

computing eigenvalues. 
 


