
CS205 - Class 3 
 
1. So far we have discussed solving Ax=b for square nn ×  matrices A. For more general nm ×  matrices, there 

are a variety of scenarios. 
a. When m < n, the problem is underdetermined since there is not enough information to determine a 

unique solution for all the variables. Usually m<n implies that there are infinite solutions. However, in 
some cases, there may be contradictory equations leading to the absence of any solutions. 

b. When m > n, the problem is overdetermined although this in itself doesn’t tell us everything about 
the nature of the solution. For example, if enough equations are linear combinations of each other, 
there can still be a unique solution or infinite solutions. 

i. We can use the rank of the matrix to enumerate the possibilities. Recall that the rank of a 
matrix is the number of linearly independent columns that it has. Thus a nm ×  matrix has at 
most a rank of n. 

ii.  If the rank < n some columns are linear combinations of others and we say that the matrix is 
rank-deficient and there may be an infinite number of solutions. 

iii.  On the other hand, if the rank = n, i.e. all the columns are linearly independent and we are 
guaranteed either a unique solution or no solution. In the case of no solution, there is the notion 
of the “closest fit” in a least squares sense. That is, the least squares solution finds the closest 
possible solution. 

2. When solving systems of equations, we want Ax=b.  We define the residual as r=b-Ax, and note that the 
residual gives us some measure of the error.  Of course the goal is to attain r=0. 

3. The least squares method finds the best-fit or best approximation to the solution in the sense that the least 

squares solution x minimizes the 2L norm of the residual, i.e. it minimizes 2r . 

4. An example, consider interpolating a given a set of m data points, ( , )i it y , with a straight line 1 2y x x t= + . 
Here, each data point leads to a new equation, for example with three data points (m=3) we obtain  
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a. Here, if one gave the exact same pair ),( ii yt  three times, then there is really only one point and there 
are an infinite number of lines that go through it. 

b. If the three points all line on the same line, then that line is a unique solution to the problem. 
c. If the three points do not all lie on a line, the problem is overdetermined and there is no solution, i.e. 

no straight line that passes through the points. In this case, we can look for the best least squares 
solution, or the line that passes as close as possible to the three points. 
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d. Often when doing computer vision or graphics applications you can collect more data to make your 
matrix overdetermined.  You might find that some variables have no effect as well and you might 
decide to drop them. 

5. One method of solving both least squared (and unique) problems are the normal equations.  If the columns of 
A are linearly independent, T TA Ax A b= has a unique solution. 

a. ATA  is always square as (n x m) (m x n) =(n x n) and symmetric and positive definite.  Thus we can 
use Cholesky factorization i.e. TT LLAA =  or bAxLL TT = . 

b. How do we know that the matrix ATA is symmetric and positive definite?  The symmetry is immediate 
from (ATA)T = ATATT=ATA.  There are important classes of matrices that come up often in practice that 
have the form of ATA.  Consider any non-zero vector x.   Then xTATAx = yTy >=0 with equality only 
when y=Ax is zero, which can only occur if A does NOT have full rank. 

c. This sounds too good to be true, and it is. The condition number of TA A  is equal to the condition 
number of A squared, which can lead to real problems if A is already poorly conditioned. 

6. QR factorization A QR=  where Q is a nm ×  orthogonal matrix with orthonormal columns and R is a nn ×  
upper triangular matrix. 

a. QTQ = I since columns of Q  are orthonormal. Likewise QQT = I, if Q is a square matrix. 

b. We transform Ax=b into QRx b=  and then applying 
TQ  to each side of the equation leads to 

TRx Q b=  which can be solved with an upper triangular solve. 
c. Solving Ax=b with a QR factorization results in the least squares solution to the problem. To show 

this, we know that the normal equations system ATAx=ATb gives the least squares solution as x=(ATA)-

1ATb.  If we let A=QR then we get ( )T T T TA QR R Q= = so 
( )( ) ( )T T T T T T TA A R Q QR R Q Q R R IR R R= = = =  and finally 

1 1 1 1( ) ( )T T T T T T T T Tx A A A b R R R Q b R R R Q b R Q b− − − − −= = = =  which is
TRx Q b= . 

d. Therefore, the least squares solution for the initial problem Ax=b coincides with that of the 

transformed system 
TRx Q b=  (which is unique provided that A is not rank deficient). Note that using 

Gaussian elimination on A does not preserve the least squares solution. 
7. The modified Gram-Schmidt method orthonormalizes the columns of a matrix A resulting in both Q and R. 

a. Algorithm 
i. for k=1,n   -  for each column 

ii.         2kk kr a= r

, kkkk raa /
rr =  ( )kq

r=   -  rescale the column to unit length 

iii.           for j=k+1,n  -  for all the rest of the columns to the right of column k 

iv.                 jkkj aar
rr ⋅=  ( )jk aq

rr ⋅= , kkjj ara
rr =−  ( )kkjqr

r=   -  orthogonalize each column with 

ka
r

(which is actually kq
r

) 
b. Notice that the way the above loop is written, the A matrix can be factored “in place”.  That is, the 

elements of matrix A are replaced with the elements of matrix Q as this process is carried out. This is 
important for the very large matrices that often arise in practice. 

c. It is often useful to think about this procedure with matrices and to think about these matrices 
geometrically.  We define a projection matrix P as one which has the property that P2=P.  Intuitively, 
what this means is that once you project onto a subspace, projecting there again does nothing (you’re 
already there). 

d. Consider the matrix 
T

k kI q q− r r

.  It is easy to verify the fact that it is a projection matrix using the fact 

that kq
r

is a unit vector.  It has the effect of zeroing out the component of a vector that is in the 



direction of kq
r

.  The idea of Gram-Schmidt is to project to force orthogonality and then normalize to 
force normality. 

e. The resulting kq
r

 are the columns of Q and the kjr with kj ≥  are the entries of the upper triangular R. 

f. Consider 
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i. Here 5111 == ar
r

 and we rescale the first row to unit length as 
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ii.  Then we compute the overlap between this column and the other two columns as 
52112 −=⋅= aqr

rr

 and 53113 =⋅= aqr
rr

. Note that we now have the first (top) row of R. Next we 

subtract out the overlap with the first column using j kj ka r q− =r r

 to obtain 
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iii.  We then move to the second column where 2222 == ar
r

  and we rescale the second row to unit 

length 
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iv. Then we compute the overlap between this column and the remaining third column as 

43223 −=⋅= aqr
rr

. Then we subtract out the overlap using j kj ka r q− =r r

 to obtain 
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v. We then move to the third column where 2333 == ar
r

 and we rescale the third row to unit 

length 
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 and our final Q matrix is 
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8. Transition to Householder.  So far, we’ve seen two different ways of finding a least squares solution, namely 
the normal equations and the (modified) Gram-Schmidt method.  Using the normal equations squares the 
condition number of the A matrix, which could be bad to begin with.  The Gram-Schmidt method does not 
suffer from the same numerical problems, but can still be unstable.  If the columns of A are “nearly linearly-
dependent,” then this method can suffer from numerical instabilities. The QR decomposition is exactly what 
the Gram-Schmidt procedure does couched in the language of matrix factorization.  There is an algorithm to 
performs the QR factorization that does not suffer from the numerical instabilities mentioned above and this is 
the one that is quite often used by practitioners. 

9. A Householder transform is defined by
T

T
vv

vv
IH

2−= for some vector 0v ≠ . Note that 1TH H H −= =  , 

and thus H is orthogonal. 

a. For a vector a , we define kH  using 2
ˆ ˆ( )k k kv a S a a e= +  where ˆ (0, ,0, , , )Tk ma a a= L L  and 

( ) 1kS a = ±  is the sign function. Then kH a  zeroes out the entries of a  below ka . 

b. Let 
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c. Note that v
vv

av
aHa

T

T2−=   so we never need to form H explicitly, but instead only need to find the 

vector v . 

d. 
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e. In order to use the householder transform to compute the QR factorization of a matrix A, we define 

kH  using k
k

kk
k

k eaaSav
2

)()( ˆ)(ˆ +=  where ( )T
mkkk

k aaa ,,,0,,0ˆ )(
LL= . When applying kH  to the 

matrix A, kH A  is obtained by applying kH  to every column of A. 

f. Overall, we obtain 1 0n

R
H H A
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L . Then applying 1
T T

nQ H H= L  (all the H’s are orthogonal and so 

is their product) to both sides of the equation results in 0

R
A Q
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g. Thus, to solve Ax=b, we write 0

R
Q x b
 

= 
 

, and 1
ˆ

0
T

n

R
x Q b H H b b

 
= = = 

 
L , and then solve 

ˆ
0

R
x b

 
= 

 
 with an upper triangular solve. That is, starting with Ax=b, we simply apply 1

T
nQ H H= L  

to each side, one kH  at a time to obtain ˆ
0

R
x b
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, and then solve this upper triangular problem. 

h. Note that here Q becomes a m x m matrix instead of m x n, but only first n columns are meaningful for 
A, because the rest m-n columns will be multiplied with a zero sub-matrix. 

i. Again, thinking geometrically, we can see that the Householder transformations are actually 
reflections about the hyperplane orthogonal to v.  This can be seen by H subtracting off twice the 
component of x in the direction of v.  

      
j. We motivated this entire QR discussion by solving an overdetermined system of linear equations. 

Often there will be no solution.  There are too many constraints, but we can still strive for the best 
solution, the least-squares solution.  We have shown that factorization preserves the least squares 
solution while Gaussian elimination fails to do so. The intuition behind this fact is that the matrix Q 
shuffles the equations in such a way that the least squares solution exactly solves the first n equations, 
while leaving the minimum amount of slack in the remaining m-n equations.   Gaussian elimination 
fails to shuffle the equations in a way that keeps the norm of the residual at a minimum.   
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