CS205 - Class 3

1. So far we have discussed solving Ax=b for squ?* N matricesA. For more generdM*N matrices, there
are a variety of scenarios.

a. Whenm< n, the problem isinder deter mined since there is not enough information to deternaine
unique solution for all the variables. Usually mrplies that there anafinite solutions. However, in
some cases, there may be contradictory equatiadsigto the absence of any solutions.

b. Whenm> n, the problem i®verdeter mined although this in itself doesn’t tell us everythiaigout
the nature of the solution. For example, if enoaghations are linear combinations of each other,
there can still be a unique solution or infinitéusions.

I. We can use the rank of the matrix to enumerat@dissibilities. Recall that theank of a
matrix is the number of linearly independent colsrtimat it has. Thus M* N matrix has at
most a rank of n.

ii. If the rank <n some columns are linear combinations of othersvaaday that the matrix is
rank-deficient and there may be an infinite number of solutions.

iii. On the other hand, if the rankn; i.e. all the columns are linearly independent amdare
guaranteed either a unique solution or no solutiothe case of no solution, there is the notion
of the “closest fit” in deast squares sense. That is, the least squares solution fimel€lbsest
possible solution.

2. When solving systems of equations, we waatb. We define theesidual asr=b-Ax, and note that the
residual gives us some measure of the error. Qfseahe goal is to attars0.
3. Theleast squares method finds thebest-fit or best approximation to the solution in the sehaéthe least

squares solutior minimizes thel, norm of the residual, i.e. it minimiz1||r||2.
4. An example, consider interpolating a given a sehafata points (t. %), with a straight liney = X, + Xt
Here, each data point leads to a new equatiorexample with three data points£3) we obtain
1y X, Y1
14 { i|: Yo |.
X2
1t Ys ®

<
<
<

3 pts the same
. X

» t

v
-

Unique No solution instead do least Infinite solutions
squared “best”

a. Here, if one gave the exact same |(ti 'Yi) three times, then there is really only one pont there
are an infinite number of lines that go through it.

b. If the three points all line on the same line, thwat line is a unique solution to the problem.

c. If the three points do not all lie on a line, threldem is overdetermined and there is no solutien,
no straight line that passes through the pointthigicase, we can look for the best least squares
solution, or the line that passes as close aslgedsi the three points.
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Often when doing computer vision or graphics a@pions you can collect more data to make your
matrix overdetermined. You might find that someatales have no effect as well and you might
decide to drop them.

5. One method of solving both least squared (and @)igroblems are theor mal equations. If the columns of
A are linearly independer A" Ax = A'bhas a unique solution.

a.

b.

C.

ATA is always square as x m) (mx n) =(n x n) and symmetric and positive definite. Thus we can
use Cholesky factorization i. ATA=LL" or LL'x=A"b,

How do we know that the matriX'A is symmetric and positive definite? The symmétrynmediate
from (A'A)" = ATAT'=ATA. There are important classes of matrices thaecepoften in practice that
have the form of AA. Consider any non-zero vector x. ThéA'Ax = y'y >=0 with equality only
when y=Ax is zero, which can only occur if A doe®Nhave full rank.

This sounds too good to be true, and it is. Thelitmm number o' A" A is equal to the condition
number of A squared, which can lead to real problém is already poorly conditioned.

6. OR factorization A=QR where Q is ¢M*N orthogonal matrix with orthonormal columns andsRa %N

upper triangular matrix.

a.
b.

Q'Q = I since columns c¢Q are orthonormal. Likewis®@Q' = I, if Q is a square matrix.
We transformax=b into QRX=Db and then applyin Q" to each side of the equation leads to

Rx=Q'b which can be solved with an upper triangular solve

SolvingAx=b with a QR factorization results in the least sg@gasolution to the problem. To show
this, we know that the normal equations systédw=A'b gives the least squares solutiorkagA’A)
'ATh. If we letA=QRthen we ge A" =(QR)" =R'Q" so

ATA=(R'Q")(QR) =R (Q'QIR=R'IR=R'R and finally
x=(ATATADb=(R'R'R'Q'b=R'RTR'Q'b=R Qb which itRx=Q'b

. Therefore, the least squares solution for theahftroblem Ax=Db coincides with that of the

transformed systel RX = Q'b (which is unique provided that A is not rank defit). Note that using
Gaussian elimination on A does not preserve th& kguares solution.

7. Themaodified Gram-Schmidt method orthonormalizes the columns of a matrixegutting in both Q and R.

a. Algorithm

b.

i. fork=1,n - for each column

ii. Mg = ”ak”z, g‘k = g‘k /rkk (: qk) - rescale the column to unit length

ii. for j=k+1,n -for all the rest of the columns to the right ofuroh k

iv. =& @ (=6.@) &-=r3 (=1d) - orthogonalize each column with

8 (which is actuallyf)

Notice that the way the above loop is written, Aneatrix can be factored “in place”. That is, the
elements of matrix A are replaced with the elemehtratrix Q as this process is carried out. THis i
important for the very large matrices that ofteisen practice.
It is often useful to think about this proceduréhanatrices and to think about these matrices
geometrically. We define a projection matrix Foas which has the property th&=P. Intuitively,
what this means is that once you project onto gEade, projecting there again does nothing (you're
already there).

Consider the matri! =G0k . Itis easy to verify the fact that it is a prjen matrix using the fact
that Ok is a unit vector. It has the effect of zeroing the component of a vector that is in the
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direction of Gk . The idea of Gram-Schmidt is to project to foocghogonality and then normalize to
force normality.

e. The resultin¢G are the columns of Q and t'q with i 2K are the entries of the upper triangular R.

Considet A=

'3 -3
2 -1 1
2 -1 -1
2 -3 3
2 -3 5
o
4
Here fi =& =5 and we rescale the first row to unit lengtt G = & /1, =| 4|
4
4

Then we compute the overlap between this columnitaadther two columns as
r, =6 &, =-5 andfs = G [&; =5 Note that we now have the first (top) row of Rextiwe

6 0 O
4 1 -1
subtract out the overlap with the first column gféj_ =10 to obtain| 4 1 -3,
4 -1 1
4 -1 3]
We then move to the second column wt 2 :||5z|| =2 and we rescale the second row to unit
0
5
length 0, =8,/r,=| 5 |
-5
__ '5_
Then we compute the overlap between this columnttdemaining third column as
(6 0 O]
4 5 1
s =G, (8 = -4 Then we subtract out the overlap us& ~ =G to obtain| 4 5 -1].
4 -5 -1
4 -5 1




v. We then move to the third column whi'ss =||&] =2 and we rescale the third row to unit

0 6 0 0
5 4 5 5 5 -5 5
length G =&/7:3 = =.5| and our final Q matrixi| 4 5 —5landR={0 2 -4}
-5 4 -5 -5 0O 0 2
5 4 -5 5

8. Transition to Householder. So far, we've seen different ways of finding a least squares solutimemely
the normal equations and the (modified) Gram-Schmethod. Using the normal equations squares the
condition number of the A matrix, which could bellia begin with. The Gram-Schmidt method does not
suffer from the same numerical problems, but calrbst unstable. If the columns of A are “neaiydarly-
dependent,” then this method can suffer from nucaémstabilities. The QR decomposition is exatthat
the Gram-Schmidt procedure does couched in theibagegof matrix factorization. There is an algomtto
performs the QR factorization that does not suffem the numerical instabilities mentioned abovd #nis is
the one that is quite often used by practitioners.

2
9. A Householder transform is defined bH =1 ‘WWT for some vectoV# 0, Note thatH =H" =H ™,

and thus H is orthogonal.

a.

For a vecto @, we defineHx usingV% =8+ 5(a)[a], & whered=(0--,04 ;- a,) and

S(a.) =*1 js the sign function. TheHi@ zeroes out the entries @i below & .

2 2 1 5
Leta=|1 .ThenV1=é+S(ai)||é“2@1= 1{+S(2}V9|0(=|1].
2 2 0 2

2V'a . . ,
Note thatHa=a- "y vV so we never need to form H explicitly, but inst@aly need to find the

vectorV.
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In order to use the householder transform to comfhée QR factorization of a matrix A, we define
Hy using % =&% +S(akk)Hé(k) ‘Zek whered® =(0,-- 0,82, )" . When applyincH to the

matrix A, HA is obtained by applyin H« to every column of A.

R
Overall, we obtaitHn---HA= O] Then applyinc@ = H;{ ---H; (all the H’s are orthogonal and so

R
is their product) to both sides of the equatiomtesn A= Q{O]



R R -
g. Thus, to solve Ax=b, we writQ[o}X =b, and[o}x =Q'b=H,-~-Hb=b and then solve

R -
[O}X =b with an upper triangular solve. That is, startwvith Ax=b, we simply appI)QT =H,--H,

A

R
to each side, onHi at a time to obtai [0}( =b and then solve this upper triangular problem.

h. Note that her& becomes anx m matrix instead of x n, but only firstn columns are meaningful for
A, because the restn columns will be multiplied with a zero sub-matrix.

I. Again, thinking geometrically, we can see thatliweiseholder transformations are actually
reflections about the hyperplane orthogonal td kiis can be seen by H subtracting off twice the
component of x in the direction of v.

j- We motivated this entire QR discussion by solvingpaerdetermined system of linear equations.
Often there will be no solution. There are too gnaonstraints, but we can still strive for the best
solution, the least-squares solution. We have shbat factorization preserves the least squares
solution while Gaussian elimination fails to do $be intuition behind this fact is that the mai@x
shuffles the equations in such a way that the le@sares solution exactly solves the first n egquati
while leaving the minimum amount of slack in thenegning m-n equations. Gaussian elimination
fails to shuffle the equations in a way that ketiygsnorm of the residual at a minimum.



