
CS205 – Class 2

Linear Systems Continued

Covered in class: all sections

1. When constructing kM  we needed to divide by ka  which is the element on the diagonal. This could pose 
difficulties if the diagonal element was zero. For example, consider the matrix equation 

0 4 2 2

4 9 3 8

2 3 7 10

x

y

z

−     
     − =     
     − −     

where forming 1M  would lead to a division by 11 0a = . In general, LU factorization 

fails if a small number shows up on the diagonal at any stage.
a. When small numbers occur on the diagonal, one can change rows. In general, one can switch the 

current row k with a row j below it with j > k in order to get a larger diagonal element. This is called 
pivoting. Partial pivoting is the process of switching rows to always get the largest diagonal element, 
and full pivoting consists of switching both rows and columns to always obtain the largest possible 
diagonal element. Note that when switching columns, the order of the elements in the unknown vector 
needs to be changed in the obvious way, i.e. there is a corresponding row switching in the vector of 
unknowns.

b. A permutation matrix can be used to switch rows in a matrix. Permutation matrices can be 
constructed by performing the desired row switch on the identity matrix. For example, a permutation 
matrix that switches the first and third rows of a matrix is obtained by switching the first and third 

rows of the identity matrix. For a 3x3 matrix, 

0 0 1

0 1 0

1 0 0

P

 
 =  
  

.

i.

0 0 1 0 4 2 2 3 7

0 1 0 4 9 3 4 9 3

1 0 0 2 3 7 0 4 2

− − −     
     − = −     
     − −     

ii. Switching two rows twice puts the rows back,  so P is its  own inverse (this  generalizes to 
arbitrary permutation matrices as TPP =−1 since P is an orthogonal matrix; in this simple 2-
row flip case the matrix P happens to be symmetric, therefore PPP T ==−1 )

iii. Partial pivoting gives A=LU with 1 1 1 1n nU M P M P A− −= L  and 1 1 1 1n nL PL P L− −= L  where U is 
upper triangular, but L is a permutation of lower triangular matrix.

iv. It turns out that that we can rewrite L as 1 1 1 1
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nL L L −= L  is lower triangular and 1 1nP P P−= L  is the total permutation matrix.
v. Thus,  we could figure out all the permutations and do those first rewriting Ax=b as PAx=Pb 

and then factorizing into LUx=Pb to solve for x.
2. Certain types of matrices do not require pivoting, e.g. symmetric positive definite and diagonally dominant 

matrices.
a. A matrix is symmetric if A=AT



b. A matrix is positive definite if if 0Tx Ax > for all 0x ≠
c. A matrix is diagonally dominant if the magnitude of the diagonal element is strictly larger than the 

sum of the magnitudes of all the other elements in its row, and strictly larger than the sum of the 
magnitudes of all the other elements its column.

3. The inverse of a matrix can be found by solving AX=I with X= 1A− . In particular, we can first find the 
permutation matrix and write PAX=PI=P, and then obtain the LU factorization to obtain LUX=P. Finally, one 
simply solves k kLUx p= separately for each column of X.

4. The most commonly used vector norms are 1
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5. A vector norm induces a corresponding matrix norm in accordance with the definition: 
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6. The corresponding matrix norms are as follows:

a. 1
max | |j iji

A a= ∑  which is the maximum absolute column sum.

b. max | |i ijj
A a

∞
= ∑ which is the maximum absolute row sum.

c. 2
A  is the square root of the maximum eigenvalue of TA A  (i.e., the largest singular value of A).

d. In some sense all norms are “equivalent”. That is, they are interchangeable for many theoretical 
pursuits.

e. In another sense, however, all norms are not equivalent.  It is important to be aware of what a specific 
norm measures.  All too often a misapplied norm will be used to legitimize undesirable results.  For 
example, minimizing an L2 norm for the nodes one a piece of simulated cloth could yield wildly 
unsatisfactory results.  One node on the moon and the rest on earth should NOT be considered a 
successful simulation.

7. The condition number for solving the problem Ax=b for the matrix A is 
1A A−

 for nonsingular matrices, 

or ∞  for singular matrices. Note that it doesn’t matter what b is.
a. The condition number is always greater than or equal to 1
b. The condition number of the identity is 1
c. The condition number of a singular matrix is infinity

8. View a matrix as warping space toward a dominant eigenvector direction  Repeated applications approach a 
projection onto the line of that eigenvector.  When solving Ax=b your b corresponds to a point in that warped 
space.  As that b gets compressed more toward the line it becomes harder to find the exact x that will 
correspond because a small perturbation in x leads to something very close in b.  Thus a orthogonal (rotation) 
matrix  has a good condition number because it doesn’t stretch space:
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9. If a matrix is both symmetric and positive definite (which happens quite bit), we can obtain a Cholesky 
factorization of A= TLL
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matrix. Then by multiplying out the right hand side we obtain 
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Thus we can solve for 11 11l a= ,  21 21 11/l a l= ,  and ( ) 2

22 22 21l a l= − .

b. Then general algorithm is as follows:
i. for(j=1,n) {

ii.       for(k=1,j-1) for(i=j,n) ij ik jka a a− = ;

iii.             jj jja a= ; for(k=j+1,n) /kj jja a= }

c. In other words it’s the same as 
i. For each column j of the matrix.

ii. Loop over all previous columns k, and subtract a multiple of column k from the current column 
j.

iii. Take the square root of the diagonal entry, and scale column j by that value.
d. Note that this algorithm above factors the matrix “in place”.
e. In the first class we discussed different types of errors (e.g., roundoff, truncation, modeling, etc.).  It is 

very important to be aware of what leading sources of error are when using numerical algorithms.  For 
example, in a seminal cloth simulation paper for computer graphics by Baraff and Witkin they 
encountered a matrix equation, Ax=b, which was difficult to solve.  They simply discarded the non-
symmetric part of A and symmetrized it reducing their problem to one which can use more effective 
techniques like a Cholesky decomposition.

f. One way of symmetrizing a matrix A is taking (A+AT)/2.  Notice that this does not change the 
diagonal entries, and simply averages the off diagonal entries.


