
CS205 – Class 13
Covered in class: 1, 3, 5
Readings: 6.7, 7.2 to 7.3.3

1. Interpolation
a. polynomial of degree n 2

1 2 3 1
n

ny c c x c x c x    

i. Monomial basis – 1 1 2 2 3 3 1 1n ny c c c c         where the basis 

function are 1( ) j
j x x  for 1,2, , 1j n 

1. Polynomial interpolation given a set of 1n  points ( , )i ix y , 

find the unique n degree polynomial 
2

1 2 3 1
n

ny c c x c x c x     that interpolates them.

2. Solve Ax = y where A is the    1 1n n   Vandermonde 

matrix with rows 2(1, , , , )n
i i ix x x for each data point ( , )i ix y

3. Example: i.e. for (1,3), (2,4), (5,-3) for quadratic we would 

have
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so we get 
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and thus 

the equation is 27 51
3 2 6( )f x x x   which looks like: 

4. But this is not an ideal basis, because as polynomials get 
higher, the functions have lots of overlap.  Plotting 

2 8( ) 1, , ,...,f x x x x we can see this effect: 
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ii. Lagrange interpolation 1 1 2 2 3 3 1 1n ny c c c c         with basis 

functions 
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1. ( ) 1j jx  and ( ) 0j kx  where k j – therefore the 

coefficients are j jc y (easy to compute)

2. No “overlap” problem
3. Evaluation is expensive

4. Example: 1.5 2 2.5 3
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and we get 

1
1 2
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(1 2)(1 3)

x x
x x x  
   

 
and we have 

1 1 1(1) 1, (2) 0, (3) 0     .  We have that the polynomial is 
zero at each of the other data points.  And it is one at the point.  
If we plot all the basis functions we see 
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iii. Newton interpolation 1 1 2 2 3 3 1 1n ny c c c c         with basis 

functions 
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1. No “overlap” problem
2. Divided differences  We initially set [ ]k kf x y at the first 

level. Then the higher levels are based on 
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3. The coefficients are given by 1 2[ , , , ]j jc f x x x 

4. Represents a compromise between Lagrange and monomial 
basis.

iv. High order polynomials tend to be oscillatory
v. Using unequal data points can help, e.g. Chebyshev points

2. A better solution is to use piecewise polynomials – a different polynomial in each 
subinterval 1[ , ]i ix x 

a. Defined using control points ( , )i ix y

b. Piecewise linear – connect the control points with straight lines



3. A better solution is to use piecewise polynomials – a different polynomial in each 
subinterval 1[ , ]i ix x 

a. Simplest is piecewise constant, next is linear.  As order increases number of 
points required increases but the accuracy also increases.

b. One could argue you should go to even higher 
order.

c. Higher order is not necessarily better
i. Once you go to spectral you get infinite accuracy, better than any 

polynomial, but you need to pay with requiring more data and Gibb’s 
phenomena.  There is some smoothness assumption about the function 
you are interpolating. 

ii. In practice higher order methods overly smooth discontinuous 
phenomena.  So they are good for smoother phenomena like 
simulating tree sap.  However, if you had a turbulent flow the 
interesting and important discontinuities would get destroyed.

4. Spline interpolation, little detail here, but for more information Prof. Guibas teaches a 
course on it. (not covered in class)

a. Defined using control points ( , )i ix y

b. Piecewise linear – connect the control points with straight lines
c. Hermite interpolation – specify the function values iy and the derivatives 

'iy at each control point

i. Hermite cubic – cubic polynomial on each subinterval 1[ , ]i ix x 

ii. If there are n control points and 1n  intervals, then there are 1n 
cubics

iii. We need to specify 4( 1)n  parameters, i.e. 4 parameters for each 
cubic

iv. Interpolating the function values iy gives 2( 1)n  conditions, i.e. 2 

for each subinterval
v. Requiring the derivative to be continuous is 2n  conditions, one for 

each interior control point
vi. 4( 1) 2( 1) ( 2)n n n n      more conditions need to be specified

d. Spline a piecewise polynomial of degree k that is differentiable k-1 times
e. Cubic spline continuous 1st and 2nd derivatives at the control points

O(x) Piecewise constant
Piecewise constant

O(x2) Piecewise constant
Linear



i. 2( 1)n  conditions to interpolate the iy

ii. 2n  conditions for continuous 1st derivatives
iii. 2n  conditions for continuous 2nd derivatives
iv. Total of 4 6n  conditions – we need 2 more conditions

1. Hermite cubic spline specify the 1st derivative at 1x and 

nx (endpoints)

2. Periodic cubic spline forcing the 1st and 2nd derivatives to 
match at 1x and nx

3. Natural cubic spline set the 2nd derivative to zero at 1x and nx

4. Set up the equations and solve
f. B splines the basis function k

iB is a piecewise polynomial of degree k

i. Piecewise constant 0( ) 1iB x  for 1[ , )i ix x x  and 0 otherwise

ii. Recursively 1 1
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iii. 1
iB are piecewise linear, 2

iB are piecewise quadratic, 3
iB are piecewise 

cubic, etc.

The 0 1 2, ,B B B polynomials


