CS 205 – Class 12

Readings: Same as last *Covered in class*: All

- 1. finding the A-orthogonal directions with Gram-Schmidt
	- a. given a vector V_k , construct s_k by subtracting out the "A-overlap" of V_k with s_1 to s_{k-1} so that $s_k \cdot As_i = 0$ for i=1,k-1

b. we define
$$
s_k = V_k - \sum_{j=1}^{k-1} \frac{V_k \cdot As_j}{s_j \cdot As_j} s_j
$$

i. note that $s_k \cdot As_i = V_k \cdot As_i - \sum_{i=1}^{k-1} \frac{v_k \cdot As_j}{s} s_j \cdot As_i$ $j=1$ $S_j \cdot As_j$ $f_k \cdot As_i = V_k \cdot As_i - \sum_{j=1}^{k-1} \frac{V_k \cdot AS_j}{s_i \cdot As_j} s_j \cdot As_i$ $V_k \cdot As$ $s_k \cdot As_i = V_k \cdot As_i - \sum_{j=1}^{k-1} \frac{V_k \cdot As_j}{s_j \cdot As_j} s_j$. 1 $\frac{1}{2} \frac{k}{s} + \frac{4k}{s}$ $\frac{4k}{s}$ $\frac{4k}{s}$ and then all the terms in the sum vanish

except for one leaving $s_k \cdot As_i = V_k \cdot As_i - \frac{V_k \cdot As_i}{s_i \cdot As_i} s_i \cdot As_i = 0$ *i i* $f_k \cdot As_i = V_k \cdot As_i - \frac{V_k \cdot As_i}{s_i \cdot As_i} s_i \cdot As_i$ $V_k \cdot As$ $s_k \cdot As_i = V_k \cdot As_i - \frac{V_k - \Omega s_i}{I} s_i \cdot As_i = 0$ as desired

c. for $i \geq k$, $s_k \cdot r_i = V_k \cdot r_i - \sum_{j=1}^{k-1}$ $k-1$ V_k \cdot $A S_j$ $\sum_{j=1}^k S_j \cdot As_j$ ³ $i = \sum_{i=1}^k S_i$ $V_k \cdot As$ $s_k \cdot r_i = V_k \cdot r_i - \sum_{i=1}^{k-1} \frac{r_k + rs_j}{r_k} s_i \cdot r_i = V_k \cdot r_i$ $s_i \cdot As$ \overline{a} $\cdot r_i = V_k \cdot r_i - \sum_{j=1}^{k-1} \frac{V_k \cdot As_j}{s_i \cdot As_j} s_j \cdot r_i = V_k \cdot r_i$, where the summation vanishes because the residual

at step i is orthogonal to all the previous search directions

- i. when k=i this leads to $s_k \cdot r_k = V_k \cdot r_k$ and $\alpha_k = \frac{s_k \cdot r_k}{s_k} = \frac{v_k \cdot r_k}{s_k}$ $k \left(k \right)$ $\mathbf{A} \mathbf{b}$ $k \left(k \right)$ $s_k \cdot r_k$ $V_k \cdot r_k$ $\alpha_k = \frac{s_k \cdot r_k}{s_k \cdot As_k} = \frac{V_k \cdot r_k}{s_k \cdot As_k}$ (we'll use this below)
- ii. when $k < i$, $0 = V_k \cdot r_i$, i.e. the residual is orthogonal to all the previous V_k as well (we'll use this below)
- 2. Each new direction V is chosen in the steepest decent fashion, i.e. $V_k = -\nabla f(x_k) = r_k$.
	- a. $1^{11.15}k-1$ 1 $k-1$ 1 -1 λ λ -1 \mathbf{r}_{k-1} -1 s_{k-1} . $=\frac{r_{k-1}}{r_{k-1}}$ $k-1$ ^{*l*} $k-1$ \mathbf{r} κ^{-1} \bar{s}_{k-1} \cdot *As* $\alpha_{r-1} = \frac{r_{k-1} \cdot r_{k-1}}{r_{k-1} \cdot r_{k-1}}$
	- b. Starting with $r_k = r_{k-1} \alpha_{k-1} A s_{k-1}$, we have $r_i \cdot r_k = r_i \cdot r_{k-1} \alpha_{k-1} r_i \cdot A s_{k-1}$ or $\alpha_{k-1} r_i \cdot As_{k-1} = r_i \cdot r_{k-1} - r_i \cdot r_k$
	- c. When $i = k$, $\alpha_{k-1} r_k \cdot As_{k-1} = r_k \cdot r_{k-1} r_k \cdot r_k = -r_k \cdot r_k$ and thus 1 1 - $\cdot As_{k-1} = \frac{-r_k \cdot k}{\cdots}$ *k k k* $k \cdot A$ ^{*k*} $r_{k} \cdot r$ $r_k \cdot As_{k-1} = \frac{r_k}{\alpha}$
	- d. When $i > k$, $\alpha_{k-1} r_i \cdot As_{k-1} = r_i \cdot r_{k-1} r_i \cdot r_k = 0$, i.e. $ri \cdot As_{k-1} = 0$
	- e. Thus, $s_k = r_k \sum_{i=1}^{k-1} \frac{r_k r_k}{r_k} s_i = r_k + \frac{r_k r_k}{r_k r_k} s_{k-1}$ $1^{10}k-1$ ΔB_{k-1} 1 $\frac{1}{1} s_j \cdot As_j^{-1} \rightarrow k^{-1} \alpha_{k-1} (s_{k-1} \cdot As_{k-1})^{-1}$ $r_k - \sum_{j=1}^{k-1} \frac{r_k \cdot As_j}{s_j \cdot As_j} s_j = r_k + \frac{r_k \cdot r_k}{\alpha_{k-1} (s_{k-1} \cdot As_{k-1})} s_k$ *k k k k* $j=1$ $S_j \cdot As_j$ ³ $r_k = r_k - \sum_{j=1}^{k-1} \frac{r_k \cdot As_j}{s_j \cdot As_j} s_j = r_k + \frac{r_k \cdot r_k}{\alpha_{k-1}(s_{k-1} \cdot As_{k-1})} s_k$ $s_i = r_k + \frac{r_k \cdot r_k}{r_k}$ $s_i \cdot As$ $r_k \cdot As$ $s_k = r_k - \sum_{j=1}^{k} \frac{r_k + r_k}{s_k + s_k} s_j = r_k + \frac{r_k + r_k}{\alpha_k} s_{k-1}$ since only the last term in the sum is

nonzero (Note how all the dot products disappear except for one!!)

- f. Finally, plugging in the definition of α_{k-1} gives $s_k = r_k + \frac{r_k}{r_k} s_{k-1}$ $1 \quad k-1$ $\begin{array}{c} \n-1 \\ -1 \n\end{array}$ $\begin{array}{c} \n\mathbf{r} \\ \n\mathbf{r} \\ \n\mathbf{r} \n\end{array}$ $=r_k+\frac{r_k\cdot r_k}{r_k}$ $k-1$ \mathbf{k} $r_k = r_k + \frac{r_k \cdot r_k}{r_{k-1} \cdot r_{k-1}} s$ $r_{k} \cdot r$ $s_k = r_k + \frac{\kappa}{k} \frac{r_k}{r_k}$ *s*_{k-1} as desired.
- 3. Conjugate Gradient Method the main idea is to search with conjugate directions a. $s_0 = r_0 = b - Ax_0$ which is the steepest decent direction

b.
$$
a_{k-1} = \frac{r_{k-1} \cdot r_{k-1}}{s_{k-1} \cdot As_{k-1}}
$$

\nc. $x_k = x_{k-1} + \alpha_{k-1} s_{k-1}$ and $r_k = r_{k-1} + \alpha_{k-1} As_{k-1}$ as always

d.
$$
s_k = r_k + \frac{r_k \cdot r_k}{r_{k-1} \cdot r_{k-1}} s_{k-1}
$$

- 4. Preconditioning
	- a. If we had an approximate inverse, we can transform Ax=b into $\hat{A}^{-1}Ax = \hat{A}^{-1}b$ or $\hat{I}x = \hat{b}$ where \hat{I} is approximately the identity matrix
	- b. If all the eigenvalues of \hat{I} are approximately equal to 1, then we have "circles" instead of "ellipses" and CG converges much faster because of the duplicate or near duplicate eigenvalues
	- c. That is, preconditioning works great!
	- d. Diagonal or Jacobi preconditioning scales the quadratic form along the coordinate axis to make it better conditioned (whereas it would be optimal to scale along the *eignevector* axis)
	- e. Incomplete Choleski preconditioning does a Choleski factorization with the caveat that only the nonzero entries are modified, i.e. all the zeros remain zeroes
- 5. Constrained Optimization (not covered in class)
	- a. Minimize $f(\vec{x})$ subject to constraints $\vec{g}(\vec{x}) = 0$
		- i. Here $\vec{x} \in R^n$ and $\vec{g}(\vec{x}) = 0$ is as system of $m \le n$ equations
		- ii. One can show that a solution \vec{x} must satisfy $-\nabla f(\vec{x}) = J_g^T(\vec{x})\vec{\lambda}$ T \overrightarrow{I}
			- 1. $J_g(\vec{x})$ is the Jacobian matrix of g
			- 2. $\vec{\lambda}$ is an m-vector of *Lagrange multipliers*
			- 3. This condition says that we cannot reduce the objective function without violating the constraints
		- iii. Define $L(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \vec{\lambda}^T g(\vec{x})$
			- 1. The critical points are found by setting $\nabla L(\vec{x}, \vec{\lambda}) = \begin{vmatrix} \nabla f(\vec{x}) + J_s^T(\vec{x}) \lambda \\ -\vec{0} \end{vmatrix} = \vec{0}$ (\vec{x}) $L(\vec{x}, \vec{\lambda}) = \begin{bmatrix} \nabla f(\vec{x}) + J_s^T(\vec{x}) \end{bmatrix}$ $\nabla L(\vec{x}, \vec{\lambda}) = \begin{vmatrix} \nabla f(\vec{x}) + J_s^T(\vec{x})\vec{\lambda} \\ g(\vec{x}) \end{vmatrix} =$ $\left[\begin{array}{cc} g(x) & \end{array} \right]$ $(\vec{x}, \vec{\lambda}) = \begin{bmatrix} \nabla f(\vec{x}) + J_g^T(\vec{x}) \vec{\lambda} \\ \nabla \vec{x} \end{bmatrix} = \vec{0}$
			- 2. Suppose for simplicity that g is a linear function. Then the Hessian is

 $(\vec{x}, \vec{\lambda}) = \begin{vmatrix} H_f(\vec{x}) & J_g^T(\vec{x}) \ J_g(\vec{x}) & 0 \end{vmatrix}$ $f(x)$ g_g *g* $H_{f}(\vec{x})$ $J_{g}^{T}(\vec{x})$ $H(\vec{x})$ λ) = $J(\vec{x})$ $(\vec{x}, \vec{\lambda}) = \begin{bmatrix} H_f(\vec{x}) & J_g^T(\vec{x}) \\ J_g(\vec{x}) & 0 \end{bmatrix}$ where the x partial derivatives of $J_g^T(\vec{x})\vec{\lambda}$ vanish because

g is linear.

- a. Note that H is not positive definite
- b. It turns out that positive definiteness is only needed on the tangent space to the constraint surface, i.e. on the null space of J_{φ} .

iv. Consider
$$
f(x) = .5x_1^2 + 2.5x_2^2
$$
 with $g(x) = x_1 - x_2 - 1 = 0$

1.
$$
L(\vec{x}, \vec{\lambda}) = .5x_1^2 + 2.5x_2^2 + \lambda (x_1 - x_2 - 1)
$$

The gradient of the function is perpendicular to the constraint surface at the constrained minimum.

- 6. Linear Programming (not covered in class)
	- a. Minimize $\vec{c} \cdot \vec{x}$ subject to constraints $A\vec{x} = \vec{b}$ and $\vec{x} \ge \vec{0}$
	- b. The feasible region is a convex polyhedron in n-dimensional space
	- c. The minimum must occur at one of the vertices of the polyhedron
	- d. *Simplex method* systematically examine a sequence of vertices to find the one yielding the minimum