
CS 205 – Class 12
Readings: Same as last
Covered in class: All

1. finding the A-orthogonal directions with Gram-Schmidt
a. given a vector Vk, construct ks by subtracting out the “A-overlap” of Vk with 1s to 1ks  so that 

0k is As  for i=1,k-1
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and then all the terms in the sum vanish 

except for one leaving 0
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 , where the summation vanishes because the residual 

at step i is orthogonal to all the previous search directions
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(we’ll use this below)

ii. when k < i, 0 k iV r  , i.e. the residual is orthogonal to all the previous kV as well (we’ll use 

this below)

2. Each new direction V is chosen in the steepest decent fashion, i.e. ( )k k kV f x r   .
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b. Starting with 111   kkkk Asrr  , we have 111   kikkiki Asrrrrr  or 

kikikik rrrrAsr   111
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d. When ki  , 0111   kikikik rrrrAsr , i.e. 01  kAsri
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since only the last term in the sum is 

nonzero (Note how all the dot products disappear except for one!!)

f. Finally, plugging in the definition of 1k gives 1
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3. Conjugate Gradient Method - the main idea is to search with conjugate directions
a. 0 0 0s r b Ax   which is the steepest decent direction
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c. 111   kkkk sxx  and 111   kkkk Asrr  as always
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4. Preconditioning

a. If we had an approximate inverse, we can transform Ax=b into 1 1ˆ ˆA Ax A b  or ˆÎx b where I is 
approximately the identity matrix

b. If all the eigenvalues of I are approximately equal to 1, then we have “circles” instead of “ellipses” 
and CG converges much faster because of the duplicate or near duplicate eigenvalues

c. That is, preconditioning works great!
d. Diagonal or Jacobi preconditioning scales the quadratic form along the coordinate axis to make it 

better conditioned (whereas it would be optimal to scale along the eignevector axis)
e. Incomplete Choleski preconditioning does a Choleski factorization with the caveat that only the 

nonzero entries are modified, i.e. all the zeros remain zeroes

5. Constrained Optimization (not covered in class)
a. Minimize ( )f x


subject to constraints ( ) 0g x 

 

i. Here nx R


and ( ) 0g x 
 

is as system of m n equations

ii. One can show that a solution x


must satisfy ( ) ( )T
gf x J x  

 

1. ( )gJ x


is the Jacobian matrix of g

2. 


is an m-vector of Lagrange multipliers
3. This condition says that we cannot reduce the objective function without violating the 

constraints

iii. Define ( , ) ( ) ( )TL x f x g x  
   

1. The critical points are found by setting 
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2. Suppose for simplicity that g is a linear function.  Then the Hessian is 
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   where the x partial derivatives of ( )T
gJ x 


vanish because 

g is linear.
a. Note that H is not positive definite
b. It turns out that positive definiteness is only needed on the tangent space to the 

constraint surface, i.e. on the null space of gJ .

iv. Consider 2 2
1 2( ) .5 2.5f x x x  with 1 2( ) 1 0g x x x   
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3. so we solve 
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The gradient of the function is perpendicular to the constraint surface at the constrained 
minimum.

6. Linear Programming (not covered in class)

a. Minimize c x
 

subject to constraints Ax b


and 0x 


b. The feasible region is a convex polyhedron in n-dimensional space
c. The minimum must occur at one of the vertices of the polyhedron
d. Simplex method - systematically examine a sequence of vertices to find the one yielding the minimum


