
CS205 – Class 8 
 

Covered In Class: 1, 3, 4, 5, 6 

Reading: Heath Chapter 6 

 

1. Optimization – given an objective function f , find relative maxima or minima. Note that since max f  = 

min f  it is enough to only consider minima. 

a. We’ll start with scalar functions f of one variable for now. 

b. unconstained – any x n
R  is acceptable 

c. constrained – minimize f  on a subset S R  

d. usually find local minima, since global minima are hard to find 

i. one option is to find many local minima and compare them to find a global minimum 

e. Not equivalent to solving for f(x) = 0. There might exist no such x or the minimum may be attained 

somewhere f(x) < 0. 

f. poorly conditioned  since '( ) 0f x   at a minimum, i.e. locally flat (similar to a multiple root) – error 

tolerance should be more like   as opposed to   

g. given a critical point where '( ) 0f x  , we can use the sign of the second derivative to determine 

whether we have a local minimum, a local maximum, or an inflection point 

i. if ''( ) 0f x  , concave up, minimum 

ii. if ''( ) 0f x  , concave down, maximum 

iii. otherwise when the second derivative vanishes, we have an inflection point, i.e. neither a 

minimum nor a maximum 
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h. unimodal – [ , *]a x  is monotonically decreasing and [ *, ]x b  is monotonically increasing *x  is the 

minimum – most schemes need a unimodal interval in order to converge 

2. golden section search  - Using the magic number ( 5 1) / 2    ≈ .618 satisfying 2 1    

a. starting with an interval [ , ]a b , find 1 (1 )( )x a b a     and 2 ( )x a b a    

b. if 1 2( ) ( )f x f x , discard 1[ , ]a x  and set 1a x , 1 2x x  and 2 ( )x a b a    (using the updated value 

of a) noting that 1 (1 )( )x a b a     (again, for the updated value of a) is still true (this is the reason 

for the magic number) 

c. otherwise discard 2[ , ]x b  and set 2b x , 2 1x x  and 1 (1 )( )x a b a     (using the updated value of 

a) noting that 2 ( )x a b a    (again, for the updated value of a) is still true (this is the reason for the 

magic number) 

d. stop when b a    



e. linearly convergent with .618C   

3. Newton’s Method 1
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    since we’re looking for '( ) 0f x   instead of ( ) 0f x   

a. in general 'f  is hard to find, here ''f   is needed as well which is even worse 

i. secant type methods can be used to replace the second derivative with first derivatives 

ii. one could also replace all the first derivative with function evaluations 

b. mixed methods can be used, for example combining Newton iteration with golden section search. 

4. In multiple spatial dimensions, we need to find a vector function x  that minimizes ( )y f x  

a. Instead of solving the scalar equation '( ) 0f x   to find potential solutions, we need to solve the 

system of equations ( ) 0f x  . That is 1/ ( ) 0f x x   ,  … , / ( ) 0if x x   , … ,  / ( ) 0nf x x    where 

there is one equation for each ix  

b. once a potential solution is found we need to classify it as a maximum, minimum, or neither 

i. in 1D we looked at ''( ) 0f x   

ii. in multiD, we look at the Hessian matrix, H(x), of 2
nd

 partial derivatives where 
2 /ij i jH f x x     

iii. If f has continuous second partial derivatives, the order of differentiation does not matter, i.e. 
2 2/ /ij i j j i jiH f x x f x x H         , and H is symmetric 

iv. At a critical point where the system corresponding to ( ) 0f x  , we have: 

1. if H is positive definite, then x is a local minimum of f 

2. if H is negative definite, then x is a local maximum of f 

3. otherwise H is indefinite and x is a saddle point 

v. In 1D H=[f’’(x)], and this is positive or negative definite if f’’(x) is positive or negative, 

respectively. Also, when f’’(x)=0, it is indefinite.  (Aside: a major theme of the course is that 

intuition is built through examining the scalar case) 

vi. There are many ways to see if a symmetric matrix is positive definite, e.g. compute the 

eigenvalues and see if they are all positive, although this is one of the more expensive ways 

vii. Think of this as walking down hill.  But of course, if you never go uphill you can fall into local 

minima. 

5. steepest descent method - look in the f  direction, i.e. the direction where f  is decreasing fastest 

 

a. look for a minimum on the parametric line ( ) ( )k kx t x f x t   

b. that is, find the min ( ( ))f x t  = min ( ( ) )k kf x f x t  = min g(t) where g is a one dimensional function 

of the one dimensional parameter t 

i. use a 1D solver 



c. given *t  that minimizes g(t), set 1 ( ) *k k kx x f x t    and continue iterating 

d. stop when f  is small 

6. Conjugate Gradient Method – brief introduction 

a. steepest descent can converge slow due to repeated searching in the same direction, i.e. overlapping 

components in the search direction 

b. conjugate gradient method – avoids repeated searches in the same direction making it faster than 

steepest descent 

c. steepest descent in vector notation 1k k kx x s     where the search direction is ( )k ks f x   and   

comes from the 1D minimization of ( ) ( ( )) ( )k kF f x f x s      

d. use ( )o os f x   so the first step is the same for both methods 
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f. theoretically, the exact solution is obtained after at most n  (# of dimensions) iterations for quadratic 

functions 

g. because of numerical errors, every n  iterations, start over with ( )k ks f x   

h. The conjugate gradient method covers more than just optimization, e.g. we’ll use it later as an iterative 

solver to aid in solving PDE’s 

 


