
CS205 - Class 7 
 
Nonlinear Equations Continued 
 
1. We usually solve nonlinear equations with iterative methods: 1x , 2x , 3x  … nx  stopping when the error, 

k k exacte x x= − , is small, i.e. when ke ε< . 

a. The convergence rate is determined by looking at the equation 1
r

k ke C e+ =  with 0C ≥  in the limit 

as k → ∞ . 
i. If 1r = , then we need 1C <  to guarantee convergence. In this case we say that the convergence 

rate is linear. 
ii.  If  r > 1 we say that the convergence rate is superlinear. 
iii.  If  r = 2 we say that the convergence rate is quadratic. 
iv. These terms state how fast we converge once convergence is occurring. However, there is no 

guarantee of converging to the root we want, or to any root in general. 
1. Moreover, recall that our nonlinear function might be an approximation to what we 

really want, so how many digits of accuracy we need is important in deciding how fast 
things need to converge. 

2. fixed point iteration  - iterate 1 ( )k kx g x+ =  to find ( )x g x=  

a. locally convergent if '( *) 1g x < , i.e. if the initial guess ox  is close enough to *x  the method will 

converge 
i. 1 1 * ( ) ( *) '( )( *) '( )k k k k k k ke x x g x g x g x x g eθ θ+ += − = − = − =  for kθ  between kx  and *x  as 

determined by the Mean Value Theorem. Show that if ( ) 0* =′ xg  and ( )xg ′′  is bounded, then 
convergence is in fact quadratic 

ii.  if all the '( ) 1kg Cθ ≤ < , then 2
1 2

k
k k k oe C e C e C e− −≤ ≤ ≤ ≤L  so that as k → ∞ , 

0kC → and 0ke →  

b. only converges if the initial guess is close enough to the solution 
c. functions may be very expensive to evaluate - try to evaluate them as few times as possible and save the 

old values for future use 

3. Newton’s method 1

( )

'( )
k

k k
k

f x
x x

f x+ = −  

a. careful when '( *) 0f x = , i.e. poorly conditioned 

b. stop when ( )kf x ε<  which is equivalent to 1 '( )k k
k

x x
f x

ε
+ − <  

c. uses the tangent line to estimate the zero - draw a picture of this 
d. quadratic convergence in general, but only linear convergence for multiple roots. 
e. both ( )kf x  and '( )kf x need to be evaluated each iteration and '( )kf x  may be expensive.  Think of 

f(x) possibly being a computer program that is difficult to get derivatives from. 

4. secant method 1
1

1

( )
( ) ( )

k k
k k k

k k

x x
x x f x

f x f x
−

+
−

 −= −  − 
 



a. Newton method with the slope estimated by a secant line 1

1

( ) ( )
'( ) k k

k
k k

f x f x
f x

x x
−

−

−≈
−

  

b. don’t need to evaluate '( )kf x   

i. moreover only one ( )kf x  evaluation for each iteration 

ii.  other secant methods that do not use two previous iterates to compute the secant line are twice 
as costly for function evaluations 

iii.  superlinear convergence with 1.618r =  
1. almost always beats Newton since only a couple more iterations are needed at half the 

cost  
5. bisection method – guaranteed to converge to a root in he interval, as opposed to the fixed point iteration 

methods, e.g. Newton and secant 
a. find an interval [ , ]a b  with ( ) ( ) 0f a f b <  that contains the solution 

i. note that ( ) ( ) 0f a f b =  implies ( ) 0f a =  or ( ) 0f b =  and we’re done 
b. find the midpoint ( ) / 2m a b= + , and then if ( ) ( ) 0f a f m < set b=m, otherwise set a=m since 

( ) ( ) 0f b f m < , 
i. note that ( ) 0f m = implies we are done 

c. given an error tolerance ε , continue until b a ε− <  
d. the interval size decreases by ½ each iteration, so it is linearly convergent with C=1/2 
e. only ( )f m  needs to be evaluated each iteration 
f. mixed methods – e.g. bisection for safety and secant for speed 

i. start with a bracketing interval [ , ]a b  and set ox a= and 1x b=  

ii.  apply the secant method to find 1kx +  from kx and 1kx −  

iii.  if 1 [ , ]kx a b+ ∈  set 1km x +=  and update the bracketing interval [ , ]a b  using the bisection method, 

that is if ( ) ( ) 0f a f m < set b=m, otherwise ( ) ( ) 0f b f m <  where you set a = m 

iv. if 1 [ , ]kx a b+ ∉  or ( ) ( )f b f a−  is too small to apply the secant method, apply the bisection 

method with the usual ( ) / 2m a b= +  and then set kx a= and 1kx b+ =  

v. note that 1kx a− =  and kx b=  implies that 1kx +  comes from linear interpolation 

vi. needs only one ( )kf x function evaluation per iteration 

 
Readings: Heath 5.6 
 
Systems of Nonlinear Equations 
 
6. Let’s turn our attention back to systems of nonlinear equations, i.e. A(x)=b or F(x)=0. 

a. Here the Jacobian matrix, J(x), is rather useful as a linearization of the nonlinear problem. 
b. Here we define /ij i jJ F x= ∂ ∂  where each equation of F(x)=0 is written individually as ( ) 0iF x = , and 

each jx  is the j-th component of the x vector. 

c. For example, consider 1 1 2( ) sin 4 0F x x x= + + =  and ( )2

2 1 2( ) 0F x x x= + =  which can be written in 

matrix form as 
( )

1 2

2

1 2

sin 4
( ) 0

x x
F x

x x

+ + 
= = + 

. Then the Jacobian matrix is 2

1

1 cos
( )

2 1

x
J x

x


= 
 

. 



d. Note that J(x), that is J, generally depends on the x vector. 
e. In general, we write J(x)=F’(x) and note that the Jacobian is the multidimensional generalization of 

f’(x). 
f. Thus conditioning in multiple dimensions depends on the Jacobian matrix just as conditioning for 

scalars depends on f’(x). 
g. Moreover, we desire a nonsingular J, at least “locally” to the solution, in order to proceed. 

7. Newton’s method for F(x)=0 is 1
1 ( ) ( )k k k kx x J x f x−

+ = − . 

a. Note that 1/ '( )kf x  is replaced by 1( )kJ x− . 

b. Instead of computing the inverse, we solve the linear system ( ) ( )k k kJ x y f x= −  where 1k k ky x x+= − . 

i. That is, we first solve the linear system to find the increment ky  and then calculate 

1k k kx x y+ = +  

ii.  Now one can see why J needs to be nonsingular for kx  “close” to the solution *x , i.e. because 

we need to solve the linear system 
c. This can be very computationally expensive since one has to repeatedly solve a linear system. 
d. Also, one might worry about robustness in case any one of the linear system solvers fails 
e. More times than not, one has to repeatedly solve linearly systems, i.e. it’s not a one time deal. That’s 

precisely why it is important to look for symmetry, sparsity, and structure in problem formulations. 
f. There are secant-like methods in multiple dimensions that compute the Jacobian matrix in pieces “on 

the fly”. 
i. Broyden’s Method 

1. start with 0J I=  

2. solve ( )k k kJ y f x= −  and set 1k k kx x y+ = +  as usual 

3. 1
1

( ( ) ( ) ) T
k k k k k

k k
k k

F x F x J y y
J J

y y
+

+
− −= +

⋅
 


