CS205 - Class 7

Nonlinear Equations Continued

1. We usually solve nonlinear equations with iterativethodsx,, X,, X, ... X, stopping when the error,
8 = X = Xaew IS SMal, i.e. whetlg | <.
=C|lg|" with C=0 in the limit

a. Theconvergence ratds determined by looking at the equatif®),,

ask - .
i. If r=1,then we need <1 to guarantee convergence. In this case we sayhabnvergence
rate islinear.
ii. If r>1we say that the convergence ratsugerlinear.
iii. If r=2 we say that the convergence ratguadratic.
iv. These terms state how fast we converge once cogiveggs occurring. However, there is no
guarantee of converging to the root we want, @y root in general.
1. Moreover, recall that our nonlinear function migletan approximation to what we
really want, so how many digits of accuracy we nisathportant in deciding how fast
things need to converge.

2. fixed point iteration - iteratex,,, = g( %) to find x= g(x)
a. locally convergenif |g'(x*)| <1, i.e. if the initial guess, is close enougto x* the method will

converge
L 8u=X%u—X=dx)-@¢X=40)( x— *='06) ¢for 6 betweenx, andx* as
determined by the Mean Value Theoreshow that ifg'(x*) =0 and g”(x) is bounded, then
convergence is in fact quadratic
ii. if all the|g'(6)|< C<1, then|g|< Clg_|< C| g, |<--< C]| ¢ sothat ak — o,
C* - Oand|g| - 0
b. only converges if the initial guessdkse enougtto the solution
c. functions may b&ery expensive evaluate - try to evaluate them as few timgsossible and save the

old values for future use

3. Newton’s method X, = X, _ Fx)

(%)
a. careful whenf '(x*) =0, i.e. poorly conditioned

b. stop when| f (x,)| <& which is equivalent tdx,,, = %,| <m
k

c. uses the tangent line to estimate the zeh@aw a picture of this
d. quadratic convergence in general, but only linesvergence for multiple roots.

e. both f(x,) and f '(x,) need to be evaluated each iteration drigk,) may be expensive. Think of
f(x) possibly being a computer program that is difficalget derivatives from.
X T X j

F (%) = F(%)

4. secant methodx,,, = X, — f(XK)(



F(%) = F(X)
Xe = Xt

a. Newton method with the slope estimated by a sdeamtf '(x, ) =

b. don’t need to evaluaté '(x,)
i. moreover only onef (x,) evaluation for each iteration

ii. other secant methods that do not use two previetestés to compute the secant line are twice
as costly for function evaluations
lii. superlinear convergence with=1.618
1. almost always beats Newton since only a couple nterations are needed at half the
cost
5. bisection method- guaranteed to converge to a root in he inteasabpposed to the fixed poitdration
methods, e.g. Newton and secant
a. find an interval[a, bl with f(a) f(b) <0 that contains the solution

i. note thatf(a) f(b) =0 implies f(a)=0 or f(b)=0 and we're done
b. find the midpointm=(a+ /2, and then iff (a) f (m) <0set b=m, otherwise set a=m since
f(b) f(m<O0,
i. note thatf (m) =0implies we are done

given an error tolerance, continue untilbb—a<e¢
the interval size decreases by ¥ each iteratioit,isdinearly convergent with C=1/2
only f(m) needs to be evaluated each iteration

mixed methods— e.g. bisection for safety and secant for speed
I. start with a bracketing interv@h, b] and setx, =aandx, =b

ii. apply the secant method to fing,; from x, and x,_,

. if x.,,0[a b setm= x,, and update the bracketing interyaJb] using the bisection method,
that is if f(a) f(m) <Oset b=m, otherwisd (b) f(m) <0 where you seta=m

iv. if x,,0[a B or f(b)- f(a) is too small to apply the secant method, applybikection
method with the usuah=(a+ /2 and then sek, =aand x,,, =b

v. note thatx,_, = a and x, = b implies thatx,,, comes from linear interpolation

~®a0

vi. needs only ond (x,) function evaluation per iteration

Readings Heath 5.6
Systems of Nonlinear Equations

6. Let’s turn our attention back to systems of nordinequations, i.e. A(x)=b or F(x)=0.
a. Here theJacobianmatrix, J(x), is rather useful as a linearizatidthe nonlinear problem.
b. Here we definel; =dF /0x where each equation of F(x)=0 is written indivilpas F (x) =0, and

eachyx; is the j-th component of the x vector.
c. For example, considef,(x) = x, +sinx, + 4= 0 and F,(x) = (x )’ + % = 0 which can be written in

1 cosx,
2x, 1 )

X, +Sinx, +

(%) +

4
matrix form asF (x) :[ j =0. Then the Jacobian matrix H X) = (



e.

f.

g.

Note that J(x), that is J, generally depends orxtector.

In general, we write J(x)=F'(x) and note that theabian is the multidimensional generalization of
f'(x).

Thus conditioning in multiple dimensions dependghmnJacobian matrix just as conditioning for
scalars depends on f'(x).

Moreover, we desire a nonsingular J, at least flgtto the solution, in order to proceed.

7. Newton’s method for F(x)=0 i%,,, = x, = J(x) f( %) -
a. Note thatl/ f '(x,) is replaced byl ™(x,) .

b.

oo

Instead of computing the inverse, we solve thealisystemJ(x )y, =— f(x) wherey, =X, — X.
i. That is, we first solve the linear system to fihd tncrementy, and then calculate

Xk+1 = Xk + yk
ii. Now one can see why J needs to be nonsingulax,fdclose” to the solutiorx* , i.e. because
we need to solve the linear system
This can be very computationally expensive since lwas to repeatedly solve a linear system.
Also, one might worry about robustness in casgone of the linear system solvers fails
More times than not, one has to repeatedly sohesalily systems, i.e. it's not a one time deal. Bhat
precisely why it is important to look for symmesparsity, and structure in problem formulations.
There are secant-like methods in multiple dimersitiat compute the Jacobian matrix in pieces “on
the fly”.
i. Broyden’s Method
1. startwithJ, =1

2. solveJ,y, =- f(x) and setx,,, = X + Y, as usual

3. 9, =3, +{F) = FO) = Iy ¥
yk [yk




