<u>CS205 – Class 5</u>

Covered in class: 1, 3, 4, 5. *Reading: Heath Chapter* 4.

Singular Value Decomposition (SVD)

- 1. The Singular Value Decomposition is an eigenvalue-like decomposition for rectangular $m \times n$ matrices. It has the form $A = U \sum V^T$ where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix, and \sum is an $m \times n$ diagonal matrix with positive diagonal entries that are called the *singular values* of A. The columns of U and V are the *singular vectors*.
 - a. Introduced and rediscovered many times: Beltrami in 1873, Jordan in 1875, Sylvester in 1889, Autonne in 1913, Eckart and Young in 1936.
 - b. Pearson introduced principle component analysis (PCA) in 1901. It uses SVD.
 - c. Numerical work by Chan, Businger, Golub, Kahan, etc.

2. The singular value decomposition of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$
 is given by

- a. The singular values are 25.5, 1.29, and 0. The singular value of 0 indicates that the matrix is rank deficient. However, even a "small" singular value could indicate a "zero" and a rank deficient matrix.
- 3. The singular values of A are the non-negative square roots of the eigenvalues of the symmetric positive semidefinite $A^{T}A$ (and also AA^{T}), and the columns of U and V are the orthonormal eigenvectors of AA^{T} and $A^{T}A$ respectively. (Note the strong connection to the normal equations and least squares problems).
- 4. The condition number of a matrix A with respect to the Euclidean norm is $\sigma_{\text{max}} / \sigma_{\text{min}}$.
 - a. For a square matrix, the condition number measures the closeness to singularity. For a rectangular matrix, the condition number measures the closeness to rank deficiency.
- 5. The rank of a matrix is equal to the number of nonzero singular values that it has. However, if values are "close" to "zero" then the condition number $\sigma_{max} / \sigma_{min}$ can be very high essentially making these numbers "zero" as far as rank is concerned.
- 6. The columns of V corresponding to "zero" singular values form an orthonormal basis for the null space of A.
 - a. The remaining columns of V form an orthonormal basis for the space perpendicular to the null space of A.
- 7. The columns of U corresponding to the "nonzero" singular values form an orthonormal basis for the range of A.

a. The remaining columns of U form an orthonormal basis for the space perpendicular to the range of A.
8. The columns of V corresponding to zero columns of ∑ and the columns of U corresponding to zero rows of ∑ along with those zero columns and rows can then be omitted without changing their product.

- a. Applying this to the SVD of A from part 4 gives us the new reduced SVD,
- .141 .825
- 9. SVD is a transformation into a diagonal axis aligned space.
 - a. Transform *b* into the space spanned by U^T , $U^T U \Sigma V^T x = \Sigma V^T x = U^T b = \hat{b}$. No information is lost going from *b* to \hat{b} because U^T is square and orthogonal.
 - b. Replace $V^T x$ by \hat{x} to get a diagonal system, $\Sigma V^T x = \Sigma \hat{x} = \hat{b}$.
 - c. Now solve the system $\Sigma \hat{x} = \hat{b}$ simply by scaling elements of \hat{b} by the singular values.
 - d. The original x is then recovered as $x = V\hat{x}$.
 - e. Essentially the SVD solves the matrix by transforming the vectors in a space with eigenvectors along the unit axis.

10.
$$A = U \sum V^T = \sum_i \sigma_i u_i v_i^T$$

proof: define $l = \min(m, n)$, \hat{U} the first l columns of U, $\hat{\Sigma}$ the square $l \times l$ submatrix from the upper left corner of Σ , \hat{V} the first l columns of V. Then

$$A = U\Sigma V^{T} = \hat{U}\hat{\Sigma}\hat{V}^{T} = \begin{pmatrix} u_{1} & \cdots & u_{l} \end{pmatrix} \begin{pmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{l} \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ \vdots \\ v_{l}^{T} \end{pmatrix} = \begin{pmatrix} u_{1} & \cdots & u_{l} \end{pmatrix} \begin{pmatrix} \sigma_{1}v_{1}^{T} \\ \vdots \\ \sigma_{l}v_{l}^{T} \end{pmatrix}$$
$$= \begin{pmatrix} \sum_{i=1}^{l} \sigma_{i}u_{i}^{1}v_{i}^{1} & \cdots & \sum_{i=1}^{l} \sigma_{i}u_{i}^{1}v_{i}^{n} \\ \vdots & \vdots \\ \sum_{i=1}^{l} \sigma_{i}u_{i}^{m}v_{i}^{1} & \cdots & \sum_{i=1}^{l} \sigma_{i}u_{i}^{m}v_{i}^{n} \end{pmatrix}$$
$$= \sum_{i=1}^{l} \begin{pmatrix} \sigma_{i}u_{i}^{1}v_{i}^{1} & \cdots & \sigma_{i}u_{i}^{1}v_{i}^{n} \\ \vdots & \vdots \\ \sigma_{i}u_{i}^{m}v_{i}^{1} & \cdots & \sigma_{i}u_{i}^{m}v_{i}^{n} \end{pmatrix}$$
$$= \sum_{i=1}^{l} \sigma_{i}u_{i}v_{i}^{T} \cdots \sigma_{i}u_{i}^{m}v_{i}^{n} \end{pmatrix}$$

- f. Note that "zero" or "small" σ_i produce terms that contribute little to the sum, and that large σ_i produce terms that contribute significantly to the sum.
- g. If the "zero" or "small" σ_i are omitted from the summation, one obtains a matrix with lower rank. For example, if only the first k terms are summed, the result has rank k.
 - i. Moreover, it can be shown that this new rank k matrix is the closest rank k matrix to A in both the L_2 and the Frobenius norm.
 - ii. This is the key idea in PCA, clustering/data mining algorithms, etc.
- 11. The "pseudo-inverse" of a matrix A is defined by $A^+ = V \sum^+ U^T$ where \sum^+ is obtained from \sum by replacing all "nonzero" σ_i with $1/\sigma_i$, and leaving all the zero entries *identically zero*.
 - h. If A is square and nonsingular ($\sigma_i \neq 0$), $A^+ = A^{-1}$.
 - i. The least squares solution to Ax=b is $x = A^+ b = V \Sigma^+ U^T b = \sum_{\sigma_i \neq 0} (u_i^T b / \sigma_i) v_i$. (Note Σ^+ contains a transpose)

i. Moreover, small σ_i can be dropped from the summation stabilizing the solution, and effectively improving the condition number. This amounts to "dropping columns" from the original matrix A.