CS205 - Class 4

1. As areview, all the matricéswe have looked at up to this point in the clasgehzeen full rank.
a. For matrices with full rank, the first thing to cder is whether or not it is square.

i. If the matrix is square, it is invertible, and Gsias Elimination can be used to get an LU
factorization. Furthermore, if the matrix is symnepositive definite, a faster Cholesky
factorization can be done to get LL

ii. If the matrix is not square, then it is taller thais wide, and in this case we do the QR
factorization to get the solution. We also consdausing the normal equations instead of QR,
but said this was bad since it squares the comditionber. For QR, there are two ways we
consider doing it: Gram-Schmidt and Householde®. ®Bas numerical drift for larger matrices,
so we prefer to use Householder.

b. We will next consider matrices without full rank. ¢onsidering these types of matrices, we will look
at the Singular Value Decomposition and Principam@onent Analysis. In order to talk about these
methods we first review eigenvalues and eigenvector

Eigenvalues and Eigenvectors (Readings Heath pp157-160)

2. For annxn matrix A, Ax=Ax is the standard eigenvalue problem whéres an eigenvalue and x is a left
eigenvector.

a. The right eigenvectors y are definedydyw = Ay" . If y is a right eigenvector of A, then it is dtle
eigenvector ofA", since A’y = Ay.
b. Usually we refer to “left” eigenvectors simply agenvectors while still referring to “right”
eigenvectors as right eigenvectors.
3. Complex matrices
a. Hermitian matrices haveA™ = A where the “H” superscript indicates the complerjagate of the
transpose. Thus, for matrices with real values,0Aly= A", i.e. “H” corresponds to simple
transposition
b. Unitary matrices haveA” A= AA™ =1 .
c. Normal matrices haveA™ A= AA"
4. Recall an eigenvalue is a scalar that satisfigs AX.
a. The set of all eigenvalues of A is called Hpectrum of A, and thespectral radius of A is the
magnitude of its largest magnitude eigenvalo@A) = max |4].

b. An eigenvector is a direction along which the atid a matrix is rather simple. The matrix merely
expands or contracts vectors in that directionqediog to the eigenvalue) leaving the direction
unchanged.

c. For diagonal matrices, the eigenvalues are onitigodal, and the eigenvectors are the columnseof th

. . . 2 0f1 1 2 0f0 0
identity matrix. For example, =2 and =3 |.
0 3|0 0 0 3|1 1

d. For upper triangular and lower triangular matri¢és, eigenvalues appear on the diagonal. For
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e. A symmetric matrix is guaranteed to have real ergkres, i.e. AR, while nonsymmetric matrices

1 1
} =i [i } . Itis easy to see why symmetric (or

[
Hermitian, in general) matrices have real eigersmliLet Ax=1 x, thend <x,x>= A x"x=x" 1 x=
x"Ax= x"APX = Ax"x =4 <x,x>

0 1
can have complex eignevalues. For exarrﬁ)le1 O}[

2 1|s S
f. Eigenvectors can be arbitrarily scaled by a comsfanexample[o 3}[5} = 3[8} for any s. Thus,

we usually require that eigenvectors be normal{pedally in the kL norm). Thus,

2 1)|V2/2 N212 . .
=3 gives the eigenvector in standard form.
0 3||J2/2] [V212

g. Ax=Ax can be written equivalently & — Al )x =0 and there is a nontrivial solution x to this
problem whenA- Al is NOT invertible, or singular, odet(A— Al )= C.
I. Note thatdet(A— Al ) is an n-th degree polynomial and we refer to thasharacteristic
polynomial of A. The roots of theharacteristic equation det(A— Al )= 0 are the eigenvalues

of A.
A = de = (22 )3 A F (Thus the matri
01 0 314 0 3

i deﬂi ﬂ‘

hasA =2,3 as eignevalues.
iii. An nxn matrix A has an n-th degree characteristic polyiabmith n roots, and thus n
eigenvalues. However, there may be multiple rootsomplex roots.
1. Inthe repeated eigenvalue case, if there are fémearly independent eigenvectors
than repeated roots, the eigenvalue and the matsaid to belefective.

2 0][1 1] 2 0|0 0 : .
2. =2 and[ }[ } = 2[ J so the multiple eigenvalue of 2 has two

0 2)0] |0 0 2|1
linearly independent eigenvectors.
2 1] 1] _[1]
3. o 2o =2 0 is the only eignevector relationship for the npl#ieigenvalue 2

here, and thus this matrix is defective.
5. ldea is to compute eigenvalues using matrix forgahee it is in general easier than solvingdegree
polynomial.
a. Must be careful though as we need to preserve $eg@stres solution. i.e. Gaussian-Elimination will
not work.
b. Use a similarity transform that produces a new xatith “same” eigenvalues/eigenvectors.
6. Formally, a matrix A is said to tsmilar to a matrix B, ifB =T AT for a nonsingular matrix T.

a. If A and B are similar, then they have the samemigluesBy=Ay or T*ATy=Ay or
A(Ty) = A(Ty). Note that the eigenvectors of A are Ty wheregythe eigenvectors of B (this

formalizes the notion of “same-ness” from 1(b)).
b. If the matrix A has distinct eigenvalues (no repdatigenvalues), then similarity transforms can be
used to put it into diagonal form where the eigémes can be read from the diagonal and the



eigenvectors are the columns of the identity mafrhen the eigenvectors of A are T times the
columns of the identity matrix, i.e. the columnsTof

If A is real and symmetric, an orthogonal T carubed to put A into diagonal form. Moreover, the
eigenvalues are real valued.

. If Ais complex and Hermitian, a unitary T can ls=d to put A into diagonal form. Moreover, the

eigenvalues are real valued.

If Ais normal, a unitary T can be used to put foidiagonal form.

Any matrix can be put into upper triangular, Stanni, with a unitary T. Then the eigenvalues can be

read off the diagonal of the matrix.

Any matrix can be put intdordan form where the eigenvalues are on the diagonal, andiagonal

elements only occur on the band above the diagowhbnly for defective eigenvalues. For example
2 000

0 2
0 0 3
0 0 0 3

0
1 is in Jordan form where both 2 and 3 are repeatghealues, but only 3 is defective.

7. The condition number for an eigenvalue problemefsneg:d byl/‘yH x‘ where x and y are the normalized right

and left eigenvectors.

a.

b.

C.
d.

e.

If x and y are real valued, they'x = y"x. Note thaty"x =|y|xcosg = cosf whered is the angle

between the eigenvectors.

For symmetric and Hermitian matrices, the left agtt eigenvectors are the same so the condition
number is 1.

Eigenvalues are well conditioned for normal masice

Multiple or “close” eigenvalues can be poorly cdratied, especially if they are defective or “close”
to being defective.

Scaling by a diagonal similarity transform — callatlancing — can improve the condition number of
an eigenvalue problem.

8. Numerical methods for finding eigenvalues and eigetors.

a.

b.

Would like a technique that solves them one ata starting with the largest in magnitude.
Similarity transform is less desirable becausaviég us all of them even we need only a few.
Using the characteristic polynomial is a bad ideaesthe coefficients are ill-conditioned. Moreaver
one should set up a matrix and compute eigenvatu@sler to find the roots of a polynomial
equation.
QR iteration. Initially setA, = Aand then iteratéy, A,, etc. For each k, compute the QR factorization
A =Q R, and then definé),, =RQ, =Q'QRQ, =QAQ,.
I. If the eigenvalues are all distinct, then the converge to a triangular matrix. Moreover, if A
IS symmetric, theA, converge to a diagonal matrix.
ii. This convergence can be accelerated by usiifts of the form A - 0,1 =Q R, and
A..=RQ +0o,l whereg, is arough approximation to an eigenvalue. Iritiahe can use,
for example, the number in the lower right hancheoiof the matrix.

9. ThePower Method allows one to compute the largest eigenvalue ageheector. Starting from a nonzero
vector x,, iterate withx,,, = AX, .



a. To see why this works, assume thatis a linear combination of eigenvectors= Ziaiui where the
u are the eigenvectors of A. Theg = Ax_, = A’X_, =---= A, and so
X = A% =AY au =Y /AU =) aA‘u . Now assuming that the largest eigenvalud, jsve

can writex, = a AU, + Y oAy = Af (ap1+ > a(A /A)kui) and note that the second term

:ZII

vanishes ak — o since|4 /A|<1. Thus ask - ©, X - A‘au,. Moreover(x,) /(%) - A for

any component j of x.
b. If the starting vectorx, = Zia'iui happens to have; =0 for the largest eigenvalue, the method fails.

c. For areal matrix and read,, one can never get complex numbers.

d. The largest eigenvalue may be repeated, in whish ttee final vector may be a linear combination of
the true eigenvectors.
e. After every iteration,x, can be renormalized to stop from growing too large.

f. Shifts can be used to accelerate convergence.
g. Inverse iteration can be used to find the smadlegnvalue. This relies on the fact that the

eigenvalues ofA™ are the reciprocals of those of A. Thus, the Isrgégenvalue of A™ is the
smallest eigenvalue of A.
h. Deflation is a method to remove an eigenvalue from a matiaxce it has been computed. Then the

resulting matrix can be analyzed to compute the laegest eigenvalue, etc.
T
X' AX

10.1f Ax=Ax, then one can form the Rayleigh Quotigit —
X' X

. This is used in a variety of methods for

computing eigenvalues.



