
Lecture 19

Tuesday, December 4, 2007

Supplementary Reading: Osher and Fedkiw, §18.3, §23.1

1 Heat Equation

The Heat Equation ∂T
∂t = ∇· (k∇T ) is our model parabolic equation, and arises

in several physical simulation applications.

1. We are commonly given initial values for T as T (x, t = 0) = T 0(x) and
boundary conditions for t > 0.

2. In the case where the spatial component of T is one-dimensional, we have
the equation Tt = (kTx)x.

3. Parabolic equations approach a steady state. For example, in the heat
equation we can take Tt = 0, which gives ∇ · (k∇T ) = 0, the Laplace
equation.

Derivation

Starting from conservation of mass, momentum and energy one can derive

ρet + ρ~V · ∇e+ p∇ · ~V = ∇ · (k∇T ) (1)

where

k: thermal conductivity
T : temperature
e: internal energy/unit mass
ρe: internal energy/unit volume
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Ideal Material and Divergence-Free

We first make the ideal material assumption, ie. e and T satisfy the relationship

de = cvdT

and that our domain is divergence-free (∇ · ~V = 0) to simplify equation 1 to

ρcvTt + ρcv ~V · ∇T = ∇ · (k∇T ) (2)

which can be further simplified to the standard heat equation

ρcvTt = ∇ · (k∇T ) (3)

by ignoring the effects of convection, i.e. setting ~V = 0. If k is constant, this
can be written as

Tt =
k

ρcv
4T. (4)

Discretization

Applying explicit Euler time discretization to equation 3 results in

Tn+1 − Tn

4t
=

1
ρcv
∇ · (k∇Tn) (5)

where either Dirichlet or Neumann boundary conditions can be applied on the
boundaries of the computational domain. Assuming that ρ and cv are constants
allows us to rewrite this equation as

Tn+1 − Tn

4t
= ∇ ·

(
k̂∇Tn

)
(6)

with k̂ = k
ρcv

. Standard central differencing (second order accurate) can be used
for the spatial derivatives as in

k̂i+ 1
2 ,j

(
Ti+1,j−Ti,j

4x

)
− k̂i− 1

2 ,j

(
Ti,j−Ti−1,j

4x

)
4x

A time step restriction of

4tk̂
(

2
(4x)2

+
2

(4y)2
+

2
(4z)2

)
≤ 1 (7)

is needed for stability. If we 4x = 4y, then this is

4
4t
4x2

k̂ ≤ 1
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In 3D, the restriction is 6 4t4x2 k̂ ≤ 1 and in general for nD the restriction is

2n 4t4x2 k̂ ≤ 1.
Implicit Euler time discretization

Tn+1 − Tn

4t
= ∇ ·

(
k̂∇Tn+1

)
(8)

avoids this time step stability restriction. This equation can be rewritten as

Tn+1 −4t∇ ·
(
k̂∇Tn+1

)
= Tn (9)

discretizing the ∇ ·
(
k̂∇Tn+1

)
term using central differencing. For each un-

known, Tn+1
i , equation 9 is used to fill in one row of a matrix creating a linear

system of equations. Since the resulting matrix is symmetric, a number of fast
linear solvers can be used (e.g. a PCG method with an incomplete Choleski pre-
conditioner, see Golub and Van Loan [1]). Equation 8 is first order accurate in
time and second order accurate in space, and4t needs to be chosen proportional
to 4x2 in order to obtain an overall asymptotic accuracy of O(4x2). However,
the stability of the implicit Euler method allows one to chose 4t proportional
to 4x saving dramatically on CPU time. The Crank-Nicolson scheme

Tn+1 − Tn

4t
=

1
2
∇ ·

(
k̂∇Tn+1

)
+

1
2
∇ ·

(
k̂∇Tn

)
(10)

can be used to achieve second order accuracy in both space and time with 4t
proportional to 4x. For the Crank-Nicolson scheme,

Tn+1 − 4t
2
∇ ·

(
k̂∇Tn+1

)
= Tn +

4t
2
∇ ·

(
k̂∇Tn

)
(11)

is used to create a symmetric linear system of equations for the unknowns Tn+1
i .

Again, all spatial derivatives are computed using standard central differencing.
Why not always use Crank-Nicholson, as it gives second order accuracy and

no time step restriction? Let us look at the solution as 4t → ∞. Backward
Euler gives

4Tn = 0,

which is the correct steady state solution. Crank-Nicholson gives

4Tn+1 = −4Tn.

In 1D this is
Tn+1
xx = −Tnxx

This shows that the curvature is changing sign at each time step. So the problem
with Crank-Nicholson is that as 4t gets very large, you get oscillations, whereas
with backward Euler, you get the steady-state solution.
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