
CS205 – Class 18
Covered in Class: 1, 2, 3, 4
Readings: Heath 11.1-11.2

Partial Differential Equations

1. There are three types of PDE’s
a. Elliptic, Hyperbolic, Parabolic

2. The Laplace Equation is 
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 is the model elliptic equation

a. For PDE’s we often use subscript notation for derivatives.  E.g. in 2D it is 

xx yyp p f  , in 1D it is xxp f .

b. Let’s look at a simpler case where f=0. 
c. In 1D we have 0xxp  .  The solution analytically is a straight line, i.e., 

p ax b  .
d. To determine the exact formula for p we need certain constraints. Those 

usually come in the form of boundary conditions, i.e. constraints on the value 
of p or its derivatives for values of x belonging to the boundary of the 
domain in which we want to solve.

e. We can also have boundary conditions which involve the derivatives of the 
function p , called Neumann boundary conditions. We note that 

   0 1p p b   , thus if we supply Neumann conditions for all boundary 

points then the function p is only determined up to an additive constant. In 
order to determine the exact function p we must supply Dirichlet conditions 
for at least one of the boundary points
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which represents the 
solution to the 1D Laplace equation.

1. We can get it by specifying two Dirichlet conditions 
(0) 2p  and (1) 3p  .

2. We can also get it by specifying one Dirichlet p(0)=2 and one 
Neumann p’(0)=1 (or indeed anywhere in 1D i.e. ( ) 1xp t  for 

any t).
3. Specifying both Neumann end points i.e. (0)xp and (1)xp is 

troublesome.  



a. They need to be the same, because our solution is a 
line.  Similar restrictions occur in multi-D.  This is 
called the compatibility condition.

b. Additionally only can determine p up to constant which 
is not so bad as many applications only require the 
derivative of p.

f. In more than one dimensions, we need to supply one condition for each node 
on the boundary of our domain, i.e. a rectangle in 2-D or a rectangular box in 
3-D

3. Solving Laplace’s Equation Numerically 
a. In the more general case of the elliptical PDE p f  we can no longer 

analytically compute the solution, therefore we resort to numerical techniques 
to approximate it

b. In 1-D, we can use the central difference approximation for the second 

derivative to get 1 1
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for each node i in our grid.

c. Unlike an ODE the solution is determined by the values on the boundaries.  
As above, moving the end point Dirichlet condition will change the whole 
line.  Laplace’s equation is an example of a Boundary Value Differential 
Equation.

d. Rewriting this as 2
1 12i i i ip p p x f     we get the following system of 

coupled linear equations 
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note that some coefficients fall “outside” the matrix, specifically those that 
would multiply the values of 0p and 1np  . If we supply Dirichlet boundary 

conditions for those, we could move those term to the right hand side to get 
2

1 1 0
2

2 2

2
1 1

2
1

2 1

1 2 1

1 2 1

1 2
n n

n n n

p x f p

p x f

p x f

p x f p
 



     
       
     
   

    
            

    . The matrix multiplying the 

unknown function values is a very sparse symmetric, negative definite matrix. 
Therefore, an iterative method such as preconditioned conjugate gradient 
would be very efficient in solving it (after a multiplication by 1 to make it 
positive definite).

e. If we alternatively provide Neumann boundary conditions for, say, the 
leftmost boundary of our domain we can use the following approximation 
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and replace the first equation of 

our system with 2
2 1 1 2ip p x f xp     . In that case the corresponding linear 

system would be 
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resulting matrix is still symmetric and negative definite, so the same solution 
procedure applies.

f. If both boundary conditions were supplied as Neumann, the resulting system 

would be
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singular system! The matrix A on the left hand side has a null space, which 

can be seen easily as  1 1 1 0
T

A   . If we have a given solution p of 

the PDE above, then for any vector z on the null space of A the function 
p z  is also a solution that satisfies the boundary conditions.  To see this 

consider ( ) 0A p z Ap Az f f        .
g. Luckily, the dimension of the null space of A is just 1 and there exists a 

version of conjugate gradient that can solve for p up to a constant vector 

 1 1 1
T  . That is we get a family of solutions that differ by a constant 

function. This will suffice if we only care about the derivatives of p and not 
about its value.

h. As a side note, it is important to consider the positions of the boundary 
conditions.  Dirichlet conditions are located with p.  Neumann conditions 
however are placed at the half grid points.

i. In two or more dimensions, we follow a similar discretization of the Laplacian 
operator. Specifically in 2-D we get 
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. The resulting linear 

system has only five nonzero coefficients in each line of the matrix A and can 
be solved with the same techniques as in the 1-D case.



j. Dirichlet boundary conditions are specified at the cell centers while Neumann 
conditions are specified at the cell edges.  For example on the left of the cell 

ijp we could specify dirichlet 1, #i jp   or Neumann 1
2 ,( ) #x i jp  
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Dirichlet Boundary Condition

p i,j

i-1/2,j(p    )

NeumannBoundary Condition

x

k. If all the borders are Neumann then the null space of all 1’s i.e. 
(1,1, ,1) 0TA  .

l. Again, the sparsity is a key issue.  If you have a 100 by 100 grid.  It has 108

entries but only 5x104 entries are non-zero (5 entries per unknown).
m. Use Preconditioned Conjugate Gradient with an incomplete Cholesky 

preconditioner to solve efficiently.


