<u>CS205 – Class 17</u>

Covered in class: All Reading: 9.3.9

1. Backward (Implicit) Euler
$$\frac{y_{k+1} - y_k}{h} = f(t_{k+1}, y_{k+1})$$

- a. 1st order accurate
- b. Backward Euler applied to the model equation $y' = \lambda y$ is $y_{k+1} = y_k + h\lambda y_{k+1}$
 - i. So $y_{k+1} = (1 h\lambda)^{-1} y_k$ and $y_k = (1 h\lambda)^{-k} y_o$
 - ii. The error shrinks when $|(1-h\lambda)^{-1}| < 1$
 - iii. Thus, $-\infty < h\lambda < 0$ is needed for stability
 - iv. i.e. stable for all h or unconditionally stable
- c. Generally need to solve a nonlinear equation to find y_{k+1}
 - i. Can use Newton iteration, i.e. linearize, solve, linearize, solve, etc.
 - ii. For some applications, only one linearize and solve cycle is used
- d. One can take very large time steps since it is stable
 - i. However it is not very accurate
 - ii. As $h \to \infty$, $y_{k+1} = y_k + h\lambda y_{k+1} \to 0 = 0 + h\lambda y_{k+1}$ or $y_{k+1} = 0$
 - iii. This is the long run solution for $y' = \lambda y$ with $\lambda < 0$, but we get there too fast
 - iv. Everything damps out too quick, i.e. not accurate

2. **Trapezoidal rule**
$$\frac{y_{k+1} - y_k}{h} = \frac{f(t_k, y_k) + f(t_{k+1}, y_{k+1})}{2}$$

- a. 2nd order accurate
- b. Trapezoidal rule applied to the model equation is $y_{k+1} = y_k + \frac{h\lambda}{2}(y_k + y_{k+1})$
 - i. So $y_{k+1} = (1 + h\lambda/2)/(1 h\lambda/2)y_k$ and $y_k = (1 + h\lambda/2)^k/(1 h\lambda/2)^k y_o$
 - ii. The error shrinks when $|(1+h\lambda/2)/(1-h\lambda/2)| < 1$
 - iii. Thus, $-\infty < h\lambda < 0$ is needed for stability
 - iv. i.e. unconditionally stable
- c. Generally need to solve a nonlinear equation to find y_{k+1}
 - i. One can take very large time steps since it is stable
 - ii. However it is not very accurate

iii. As
$$h \to \infty$$
, $y_{k+1} = y_k + \frac{h\lambda}{2}(y_k + y_{k+1}) \to 0 = 0 + \frac{h\lambda}{2}(y_k + y_{k+1})$
or $y_{k+1} = -y_k$

- iv. This is NOT the long time solution for $y' = \lambda y$
- v. Bad oscillatory behavior

3. <u>1st order Runge-Kutta</u> is Euler's method $\frac{y_{k+1} - y_k}{h} = f(t_k, y_k)$

4. <u>**2nd order Runge-Kutta**</u> $\frac{y_{k+1} - y_k}{h} = \frac{k_1 + k_2}{2}$

a.
$$k_1 = f(t_k, y_k)$$
 and $k_2 = f(t_k + h, y_k + hk_1)$

5. 4th order Runge-Kutta
$$\frac{y_{k+1} - y_k}{h} = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

a.
$$k_1 = f(t_k, y_k)$$
, $k_2 = f(t_k + h/2, y_k + hk_1/2)$, $k_3 = f(t_k + h/2, y_k + hk_2/2)$ and $k_4 = f(t_k + h, y_k + hk_3)$

6. TVD Runge Kutta

- a. 1st order accurate TVD RK is Euler's method
- b. 2nd order accurate TVD RK is the standard second order accurate RK scheme
 - i. Also known as the midpoint rule, the modified Euler method, and Heun's predictor-corrector method
 - ii. Take two successive forward Euler steps

1.
$$\frac{y_{k+1} - y_k}{h} = f(t_k, y_k)$$
 and $\frac{y_{k+2} - y_{k+1}}{h} = f(t_{k+1}, y_{k+1})$

iii. Average the initial and final state

1.
$$y_{k+1} = \frac{1}{2}y_k + \frac{1}{2}y_{k+2}$$

- iv. Same as above, but here one can see the averaging at work
- v. If the solution is well behaved for each Euler step, then since linear interpolation is well behaved, the result is well behaved

c. 3rd order accurate TVD RK

i. Take two successive forward Euler steps

1.
$$\frac{y_{k+1} - y_k}{h} = f(t_k, y_k)$$
 and $\frac{y_{k+2} - y_{k+1}}{h} = f(t_{k+1}, y_{k+1})$

ii. Average the initial and final state

1.
$$y_{k+1/2} = \frac{3}{4}y_k + \frac{1}{4}y_{k+2}$$

iii. Take another Euler step

1.
$$\frac{y_{k+3/2} - y_{k+1/2}}{h} = f(t_{k+1/2}, y_{k+1/2})$$

iv. Then average yet again

1.
$$y_{k+1} = \frac{1}{3}y_k + \frac{2}{3}y_{k+3/2}$$

- 7. Multivalue methods efficiently use lower accuracy on higher derivatives
 - a. Consider the Taylor expansion $x^{n+1} = x^n + \Delta t x_t^n + \frac{\Delta t^2}{2} x_{tt}^n + O(\Delta t^3)$ i.e. consider case where we have $x_t = v$, $x_{tt} = a$ or $v_t = a$.
 - i. If $x^n has O(\Delta t^r)$ errors than $x_t^n can have O(\Delta t^{r-1})$ errors without ruining the accuracy, similarly $x_{tt}^n can have O(\Delta t^{r-2})$ errors
 - ii. e.g., 3^{rd} order accurate \vec{x} can be obtained with a 2^{nd} order accurate \vec{v} and 1^{st} order accurate \vec{a}

iii. Solving $\begin{pmatrix} \vec{x} \\ \vec{v} \end{pmatrix}$ as a standard system is overkill on \vec{v}

b. Standard constant acceleration equations

i.
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$$
 quadratic position

- ii. $\vec{v}^{n+1} = \vec{v}^n + \Delta t \vec{a}^n$ linear velocity
- iii. $\vec{a}^{n+1} = \vec{a}^n$ constant acceleration (that is constant from time n to just before time n+1)
- 8. Newmark Method most famous multivalue method in *computational mechanics*
 - a. Actually a lot of methods in disguise

b.
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \Big[(1 - 2\beta) \vec{a}^n + 2\beta \vec{a}^{n+1} \Big]$$

c. $\vec{v}^{n+1} = \vec{v}^n + \Delta t \Big[(1 - \gamma) \vec{a}^n + \gamma \vec{a}^{n+1} \Big]$

- d. Choice of β , γ parameters makes a specific method.
 - i. $\beta = \gamma = 0$ standard *constant acceleration* case (above)
 - ii. $\beta = 1/2$, $\gamma = 1$ constant, implicit acceleration

1.
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^{n+1}$$

- 2. $\vec{v}^{n+1} = \vec{v}^n + \Delta t \vec{a}^{n+1}$
- 3. Second equation is the same as 1st order accurate backward Euler

4. First equation is
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \left(\frac{\vec{v}^n + \vec{v}^{n+1}}{2}\right)$$
 which is the 2nd

order accurate midpoint rule

- 5. Overall still 1st order accurate iii. Exists a theorem states: 2nd order accuracy is obtained *if and only if* $\gamma = 1/2$
- iv. $\beta = 1/4$, $\gamma = 1/2$ Trapezoidal rule 2nd order accurate
 - 1. Again, constant acceleration, but this time using the midpoint acceleration

2.
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \left(\frac{\vec{a}^n + \vec{a}^{n+1}}{2} \right)$$

3. $\vec{v}^{n+1} = \vec{v}^n + \Delta t \left(\frac{\vec{a}^n + \vec{a}^{n+1}}{2} \right)$

4. first equation is equivaluent to $\vec{x}^{n+1} = \vec{x}^n + \Delta t \left(\frac{\vec{v}^n + \vec{v}^{n+1}}{2} \right)$

v. $\beta = 0$, $\gamma = 1/2$ central differencing

1.
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$$

2.
$$\vec{v}^{n+1} = \vec{v}^n + \Delta t \left(\frac{\vec{a}^n + \vec{a}^{n+1}}{2} \right)$$

- 3. Called central differencing because both the acceleration and the velocity can be expressed as centered finite differences
- 4. $\vec{v}^{n+1} = \frac{\vec{x}^{n+2} \vec{x}^n}{2\Lambda t}$ can be derived by adding $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$ to $\vec{x}^{n+2} = \vec{x}^{n+1} + \Delta t \vec{v}^{n+1} + \frac{\Delta t^2}{2} \vec{a}^{n+1}$ and rearranging to obtain $\frac{\vec{x}^{n+2} - \vec{x}^n}{2\Delta t} = \frac{\vec{v}^{n+1}}{2} + \frac{1}{2} \left(\vec{v}^n + \Delta t \left(\frac{\vec{a}^n + \vec{a}^{n+1}}{2} \right) \right)$

and then realizing that the last term is identical to \vec{v}^{n+1}

5. $\vec{a}^{n+1} = \frac{\vec{x}^{n+2} - 2\vec{x}^{n+1} + \vec{x}^n}{\Delta t^2}$ can be derived by subtracting $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$ from $\vec{x}^{n+2} = \vec{x}^{n+1} + \Delta t \vec{v}^{n+1} + \frac{\Delta t^2}{2} \vec{a}^{n+1}$

and reorganizing to obtain

$$\frac{\vec{x}^{n+2} - 2\vec{x}^{n+1} + \vec{x}^n}{\Delta t^2} = \left(\frac{\vec{v}^{n+1} - \vec{v}^n}{\Delta t}\right) + \left(\frac{\vec{a}^{n+1} - \vec{a}^n}{2}\right) \text{ and then noting}$$

that $\frac{\vec{v}^{n+1} - \vec{v}^n}{\Delta t} = \frac{\vec{a}^n + \vec{a}^{n+1}}{2}$

9. Staggering the position and velocity

- a. Define the velocity at the half grid points so that $\vec{v}^{n+1/2} = \frac{\vec{x}^{n+1} \vec{x}^n}{\Delta t}$ is second
 - order accurae
 - i. Note that \vec{x}^n is still at the grid points
 - ii. If we define $\vec{v}^{n+1} = \frac{\vec{v}^{n+1/2} + \vec{v}^{n+3/2}}{2} = \frac{\vec{x}^{n+2} \vec{x}^n}{2\Delta t}$, then this is exactly central differencing for velocity
 - iii. We can rewrite this as an update formula for position $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^{n+1/2}$

b. The acceleration is also at the grid points, and $\frac{\vec{v}^{n+3/2} - \vec{v}^{n+1/2}}{\Lambda t} = \vec{a}^{n+1}$ is second order accurate

i. Note that this is also equivalent to $\frac{\left(\frac{\vec{x}^{n+1} - \vec{x}^n}{\Delta t}\right) - \left(\frac{\vec{x}^{n+1} - \vec{x}^n}{\Delta t}\right)}{dt} = \vec{a}^{n+1}$

or
$$\frac{\vec{x}^{n+2} - 2\vec{x}^{n+1} + \vec{x}^n}{\Delta t^2} = \vec{a}^{n+1}$$
 which is second order accurate for a second derivative

- ii. Again, as in the velocity case, this is just central differencing
- iii. We can rewrite this as an update formula for acceleration $\vec{v}^{n+3/2} = \vec{v}^{n+1/2} + \Delta t \vec{a}^{n+1}$
- c. The acceleration is evaluated at the grid points using

$$\vec{a}^{n+1} = \vec{a}(\vec{x}^{n+1}, \vec{v}^{n+1}) = \vec{a}\left(\vec{x}^{n+1}, \frac{\vec{v}^{n+1/2} + \vec{v}^{n+3/2}}{2}\right)$$

d. Summary, given \vec{x}^n and \vec{v}^n :

i.

By definition
$$\vec{v}^n = \frac{\vec{v}^{n-1/2} + \vec{v}^{n+1/2}}{2}$$

1. So $\vec{v}^{n+1/2} = 2\vec{v}^n - \vec{v}^{n-1/2} = 2\vec{v}^n - (\vec{v}^{n+1/2} - \Delta t\vec{a}^n)$ using $\vec{v}^{n+1/2} = \vec{v}^{n-1/2} + \Delta t\vec{a}^n$

2. This can be rearranged to $\vec{v}^{n+1/2} = \vec{v}^n + \frac{\Delta t}{2}\vec{a}^n$ to get the half step velocity $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^{n+1/2}$

3. This is identical to
$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$$

ii. Then
$$\vec{v}^{n+3/2} = \vec{v}^{n+1/2} + \Delta t \vec{a} \left(\vec{x}^{n+1}, \frac{\vec{v}^{n+1/2} + \vec{v}^{n+3/2}}{2} \right)$$

1. Using $\vec{v}^{n+1} = \frac{\vec{v}^{n+1/2} + \vec{v}^{n+3/2}}{2}$ leads to
 $2\vec{v}^{n+1} - \vec{v}^{n+1/2} = \vec{v}^{n+1/2} + \Delta t \vec{a} \left(\vec{x}^{n+1}, \vec{v}^{n+1} \right)$ or
 $\vec{v}^{n+1} = \vec{v}^{n+1/2} + \frac{\Delta t}{2} \vec{a} (\vec{x}^{n+1}, \vec{v}^{n+1})$

- e. This last equation is implicit in the velocity
 - i. Fully explicit if acceleration doesn't depend on velocity
 - ii. Otherwise iterate $\vec{u}^{k+1} = \vec{v}^{n+1/2} + \frac{\Delta t}{2}\vec{a}(\vec{x}^{n+1}, \vec{u}^k)$
 - 1. Starting with $\vec{u}^0 = \vec{v}^{n+1/2}$ 2. $\vec{u}^1 = \vec{v}^{n+1/2} + \frac{\Delta t}{2}\vec{a}(\vec{x}^{n+1}, \vec{v}^{n+1/2})$ which is an explicit time step
 - iii. Often the dependence of acceleration on velocity is symmetric (e.g. damping forces), so one can use a fast Ax=b solver, e.g. PCG
 - iv. The overall velocity update looks like

$$\vec{v}^{n+1} = \vec{v}^{n+1/2} + \frac{\Delta t}{2}\vec{a}(\vec{x}^{n+1}, \vec{v}^{n+1}) = \vec{v}^n + \frac{\Delta t}{2}\vec{a}(\vec{x}^n, \vec{v}^n) + \frac{\Delta t}{2}\vec{a}(\vec{x}^{n+1}, \vec{v}^{n+1})$$

which is the trapezoidal rule.

- v. There is no stability restriction on the time step from the accelerations dependence on velocity
 - 1. The only time step stability restriction comes from the accelerations dependence on position
 - 2. Can take a slightly bigger time step

- 3. Of course, bigger time steps are bad for the trapezoidal rule, so one could switch to backward Euler for the velocity
 - a. $\vec{v}^{n+1} = \vec{v}^n + \Delta t \vec{a}(\vec{x}^{n+1}, \vec{v}^{n+1})$
 - b. Still use $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$ for position
 - c. Only 1st order accurate overall