CS205 - Class 16

Readings: 9.3 *Covered in Class:* 1, 2, 3, 4, 5, 6

ODE's (Continued)

1. Model ODE Problems

- a. Scalar ODE $y' = f(t, y)$ and the
	- i. linear model ODE is $y' = \lambda y$ which solution is $y = y_0 e^{\lambda(t t_0)}$

12.5 15 17.5

> 0.2 0.3 0.4

0.2 0.3 0.4 0.5

ii. Only three kinds of solutions 20

- iv. $\lambda < 0$ stable, well-posed $\frac{1}{\alpha}$
	- v. $\lambda = 0$ linearly stable 0.1
- b. Vector ODE $\vec{y} = \vec{f}(t, \vec{y})$ and the linear model ODE is $\vec{y} = J\vec{y}$. Here is where it gets more interesting as the characterization of the ODE is dependent on the eigenvalues of the Jacobian matrix.
- 2. Recall the model ODE from last time. $y' = f(t, y)$
	- a. We stated that $\lambda > 0$ is ill-posed. But why?
		- i. Errors accumulated and they increase exponentially.

3. (Forward) **Euler's Method** $\frac{y_{k+1} - y_k}{h} = f(t_k, y_k)$ or $y_{k+1} = y_k + hf(t_k, y_k)$

- a. **Accuracy**, truncation error usually dominates round-off error in ODE's.
- b. **Local truncation error** $y_{k+1} = y_k + hf(t_k, y_k) + O(h^2)$
	- i. y_{k+1} is calculated by ignoring the $O(h^2)$ term.
	- ii. If y_0 is exact, the error in y_1 is $O(h^2)$.
- c. **Global truncation error** integrating from $t = t_o$ to $t = t_{final}$ with $n = O(1/h)$ steps gives a total error of $O(nh^2) = O(h)$.
	- i. Euler's method is *1st order accurate* with $\frac{y_{k+1} y_k}{h} = f(t_k, y_k) + O(h)$ *h* $\frac{1}{t} - \frac{y_k}{t} = f(t_k, y_k) +$
- d. For **stability** consider the model equation $y' = \lambda y$ where $\lambda < 0$
	- i. For a general ode λ is *df / dy* or an eigenvalue of the Jacobian matrix
	- ii. Euler's method applied to the model equation is

$$
y_{k+1} = y_k + h\lambda y_k = (1 + h\lambda)y_k
$$

4. As an aside, stability restriction related to your ability to get accuracy. Consider a large lambda and you also have another eigenvalue that is smaller. You need a small time step for the large eigenvalue. For example if you had $y = c1 y1 + c2 y2$. If they differ by a lot you get a stiff problem. For stiff problems you want a method with no stability requirement.