CS205 - Class 16

Readings: 9.3 **Covered in Class:** 1, 2, 3, 4, 5, 6

ODE's (Continued)

1. Model ODE Problems

- a. Scalar ODE y' = f(t, y) and the
 - i. linear model ODE is $y' = \lambda y$ which solution is $y = y_0 e^{\lambda(t-t_0)}$
 - ii. Only three kinds of solutions

- iv. $\lambda < 0$ stable, well-posed
 - v. $\lambda = 0$ linearly stable
- b. Vector ODE $\vec{y}' = \vec{f}(t, \vec{y})$ and the linear model ODE is $\vec{y} = J\vec{y}$. Here is where it gets more interesting as the characterization of the ODE is dependent on the eigenvalues of the Jacobian matrix.
- 2. Recall the model ODE from last time. y' = f(t, y)
 - a. We stated that $\lambda > 0$ is ill-posed. But why?
 - i. Errors accumulated and they increase exponentially.
- 3. (Forward) **Euler's Method** $\frac{y_{k+1} y_k}{h} = f(t_k, y_k)$ or $y_{k+1} = y_k + hf(t_k, y_k)$
 - a. Accuracy, truncation error usually dominates round-off error in ODE's.
 - b. Local truncation error $y_{k+1} = y_k + hf(t_k, y_k) + O(h^2)$
 - i. y_{k+1} is calculated by ignoring the $O(h^2)$ term.
 - ii. If y_0 is exact, the error in y_1 is $O(h^2)$.
 - c. Global truncation error integrating from $t = t_o$ to $t = t_{final}$ with n = O(1/h)steps gives a total error of $O(nh^2) = O(h)$.
 - i. Euler's method is I^{st} order accurate with $\frac{y_{k+1} y_k}{h} = f(t_k, y_k) + O(h)$
 - d. For **stability** consider the model equation $y' = \lambda y$ where $\lambda < 0$
 - i. For a general ode λ is df/dy or an eigenvalue of the Jacobian matrix
 - ii. Euler's method applied to the model equation is

$$y_{k+1} = y_k + h\lambda y_k = (1 + h\lambda) y_k$$

4. As an aside, stability restriction related to your ability to get accuracy. Consider a large lambda and you also have another eigenvalue that is smaller. You need a small time step for the large eigenvalue. For example if you had y = c1 y1 + c2 y2. If they differ by a lot you get a stiff problem. For stiff problems you want a method with no stability requirement.