
CS205 – Class 15

Covered in class: 3, 4, 5
Readings: 8.7, 9.1, 9.2

1. Can extend quadrature to higher dimensions

a. One dimension ( )
b

a
f x dx - subdivide [ , ]a b into smaller intervals

b. Two dimensions ( , )
A

f x y dA - subdivide A into rectangles or triangles

c. Three dimensions ( , , )
V

f x y z dV - subdivide V into boxes or tetrahedral

d. Monte Carlo methods – usually used in higher dimensions
i. Random or pseudo random numbers are used to generate sample 

points that are averaged and multiplied by the element “size” (e.g. 
length, area, volume)

ii. Error decreases like 1/ 2n where n is the number of sample points
1. 100 times more points are needed to gain one more digit of 

accuracy
2. Slow convergence, but independent of the number of 

dimensions
3. Not competitive for lower dimensional problems, but the only 

alternative for higher dimensional problems
2. Richardson extrapolation eliminate the leading order error term using 2 

calculations.  
a. Start an integration scheme with some step size h whose value is hI . 

i. This has some error associated ( )pO h

ii. So we can relate it to the exact integration as ( )p
h exactI I O h 

b. We can express the error more explicitly to get ( )p r
hI a bh O h  

c. Now write with a different step size say qh to get ( )p p r
qhI a bq h O h  

d. Now by combining these two estimates we can get the order p error to drop 
out. 

i. ( ) ( ) ( 1) ( )p p p p r p p r p r
h qhq I I q a bh q O h a bq h O h q a O h         

ii. Solving for a we get ( )
1

p
h qh r
p

q I I
a O h

q


 


iii. a is our new integration formula which.

e. Usually use 2 successive grids hI and / 2hI i.e. q=1/2.

f. Not just for integrals, works for other types of equations too, e.g. differential 
equations

g. Need some level of smoothness and sufficient numbers of grid points.



3. Finite differences approximate derivatives 0h  and quantities 
( ), '( ), ''( ),...f x f x f x are O(1) we have In general the Taylor expansion about x is 

( ) 1

0

( ) ( ) ( )
!

kn
k n

k

h
f x h f x O h

k




   .  I.e. If we expand to n=2 we get 

2
3( ) ( ) '( ) ''( ) ( )

2

h
f x h f x hf x f x O h     get:

a. Taylor expansions valid as 
i. Forward difference (1st order accurate)  

( ) ( )
'( ) ( )

f x h f x
f x O h

h

 
  which we get by starting with the 

Taylor expansion and 
ii. Backward difference (1st order accurate) 

( ) ( )
'( ) ( )

f x f x h
f x O h

h

 
 

iii. Central difference (2nd order accurate) 
2( ) ( )

'( ) ( )
2

f x h f x h
f x O h

h

  
 

iv. 2nd Derivative (2nd order accurate) 
2

2

( ) 2 ( ) ( )
''( ) ( )

f x h f x f x h
f x O h

h

   
 

4. Ordinary differential equations (ODEs) system ' ( , )y f t y
 

, scalar ' ( , )y f t y .  

a. Initial value problem 'y y implies /dy y dt , ln ln o oy y t t   , 
ot t

oy y e 
i. We obtain a family of solutions i.e. supposing t0=0 and varying y0 we 

get for (t0=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) 1 2 3 4 5
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ii. The specific solution depends on the initial condition ( )o oy y t

b. Higher order ode’s ( ) ( 1)( , , ', '', ''', , )n ny f t y y y y y  

i. Reduce to a first order system of the form  

1 2 1 2 3 1( ', ' , ', ') ( , , , , ( , , ))n n n ny y y y y y y f t y y   
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rewrite it as 
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ii. Thus, we only need to consider first order systems



iii. Newton’s 2nd Law F=ma is '' /a x F m  and which can be written 

as 
'

' ( , ) /

x v

v F x v m
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