
CS 205 – Class 12 
 

Readings: Same as last 

Covered in class: All 

 

1. finding the A-orthogonal directions with Gram-Schmidt 
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2. Each new direction V is chosen in the steepest decent fashion, i.e. ( )
k k k

V f x r   . 
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 since only the last term in the sum is 

nonzero (Note how all the dot products disappear except for one!!) 
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3. Conjugate Gradient Method - the main idea is to search with conjugate directions 

a. 
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4. Preconditioning 

a. If we had an approximate inverse, we can transform Ax=b into 1 1ˆ ˆA Ax A b
 

  or ˆÎx b  where I  is 

approximately the identity matrix 

b. If all the eigenvalues of I  are approximately equal to 1, then we have “circles” instead of “ellipses” 

and CG converges much faster because of the duplicate or near duplicate eigenvalues 

c. That is, preconditioning works great! 

d. Diagonal or Jacobi preconditioning scales the quadratic form along the coordinate axis to make it 

better conditioned (whereas it would be optimal to scale along the eignevector axis) 

e. Incomplete Choleski preconditioning does a Choleski factorization with the caveat that only the 

nonzero entries are modified, i.e. all the zeros remain zeroes 

 

5. Constrained Optimization (not covered in class) 

a. Minimize ( )f x  subject to constraints ( ) 0g x   
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x R  and ( ) 0g x   is as system of m n  equations 
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2. Suppose for simplicity that g is a linear function.  Then the Hessian is 
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a. Note that H is not positive definite 

b. It turns out that positive definiteness is only needed on the tangent space to the 

constraint surface, i.e. on the null space of 
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The gradient of the function is perpendicular to the constraint surface at the constrained 

minimum. 

 

6. Linear Programming (not covered in class) 

a. Minimize c x  subject to constraints Ax b  and 0x   

b. The feasible region is a convex polyhedron in n-dimensional space 

c. The minimum must occur at one of the vertices of the polyhedron 

d. Simplex method - systematically examine a sequence of vertices to find the one yielding the minimum 


