<u>CS 205 – Class 12</u>

Readings: Same as last *Covered in class*: All

- 1. finding the A-orthogonal directions with Gram-Schmidt
 - a. given a vector V_k , construct s_k by subtracting out the "A-overlap" of V_k with s_1 to s_{k-1} so that $s_k \cdot As_i = 0$ for i=1,k-1

b. we define
$$s_k = V_k - \sum_{j=1}^{k-1} \frac{V_k \cdot As_j}{s_j \cdot As_j} s_j$$

i. note that $s_k \cdot As_i = V_k \cdot As_i - \sum_{j=1}^{k-1} \frac{V_k \cdot As_j}{s_j \cdot As_j} s_j \cdot As_i$ and then all the terms in the sum vanish

except for one leaving $s_k \cdot As_i = V_k \cdot As_i - \frac{V_k \cdot As_i}{s_i \cdot As_i}s_i \cdot As_i = 0$ as desired

c. for $i \ge k$, $s_k \cdot r_i = V_k \cdot r_i - \sum_{j=1}^{k-1} \frac{V_k \cdot As_j}{s_j \cdot As_j} s_j \cdot r_i = V_k \cdot r_i$, where the summation vanishes because the residual

at step i is orthogonal to all the previous search directions

- i. when k=i this leads to $s_k \cdot r_k = V_k \cdot r_k$ and $\alpha_k = \frac{s_k \cdot r_k}{s_k \cdot A s_k} = \frac{V_k \cdot r_k}{s_k \cdot A s_k}$ (we'll use this below)
- ii. when k < i, $0 = V_k \cdot r_i$, i.e. the residual is orthogonal to all the previous V_k as well (we'll use this below)
- 2. Each new direction V is chosen in the steepest decent fashion, i.e. $V_k = -\nabla f(x_k) = r_k$.

a.
$$\alpha_{k-1} = \frac{s_{k-1} \cdot r_{k-1}}{s_{k-1} \cdot As_{k-1}} = \frac{r_{k-1} \cdot r_{k-1}}{s_{k-1} \cdot As_{k-1}}$$
 because $s_k \cdot r_k = V_k \cdot r_k = r_k \cdot r_k$

- b. Starting with $r_k = r_{k-1} \alpha_{k-1} As_{k-1}$, we have $r_i \cdot r_k = r_i \cdot r_{k-1} \alpha_{k-1} r_i \cdot As_{k-1}$ or $\alpha_{k-1}r_i \cdot As_{k-1} = r_i \cdot r_{k-1} r_i \cdot r_k$
- c. When i = k, $\alpha_{k-1}r_k \cdot As_{k-1} = r_k \cdot r_{k-1} r_k \cdot r_k = -r_k \cdot r_k$ and thus $r_k \cdot As_{k-1} = \frac{-r_k \cdot r_k}{\alpha_{k-1}}$
- d. When i > k, $\alpha_{k-1}r_i \cdot As_{k-1} = r_i \cdot r_{k-1} r_i \cdot r_k = 0$, i.e. $ri \cdot As_{k-1} = 0$
- e. Thus, $s_k = r_k \sum_{j=1}^{k-1} \frac{r_k \cdot As_j}{s_j \cdot As_j} s_j = r_k + \frac{r_k \cdot r_k}{\alpha_{k-1}(s_{k-1} \cdot As_{k-1})} s_{k-1}$ since only the last term in the sum is

nonzero (Note how all the dot products disappear except for one!!)

- f. Finally, plugging in the definition of α_{k-1} gives $s_k = r_k + \frac{r_k \cdot r_k}{r_{k-1}} \cdot r_{k-1}$ as desired.
- 3. Conjugate Gradient Method the main idea is to search with conjugate directions a. $s_0 = r_0 = b - Ax_0$ which is the steepest decent direction

b.
$$\alpha_{k-1} = \frac{r_{k-1} \cdot r_{k-1}}{s_{k-1} \cdot As_{k-1}}$$

c. $x_k = x_{k-1} + \alpha_{k-1}s_{k-1}$ and $r_k = r_{k-1} - \alpha_{k-1}As_{k-1}$ as always
d. $s_k = r_k + \frac{r_k \cdot r_k}{r_{k-1} \cdot r_{k-1}}s_{k-1}$

- 4. Preconditioning
 - a. If we had an approximate inverse, we can transform Ax=b into $\hat{A}^{-1}Ax = \hat{A}^{-1}b$ or $\hat{I}x = \hat{b}$ where \hat{I} is approximately the identity matrix
 - b. If all the eigenvalues of \hat{I} are approximately equal to 1, then we have "circles" instead of "ellipses" and CG converges much faster because of the duplicate or near duplicate eigenvalues
 - c. That is, preconditioning works great!
 - d. Diagonal or Jacobi preconditioning scales the quadratic form along the coordinate axis to make it better conditioned (whereas it would be optimal to scale along the *eignevector* axis)
 - e. Incomplete Choleski preconditioning does a Choleski factorization with the caveat that only the nonzero entries are modified, i.e. all the zeros remain zeroes
- 5. Constrained Optimization (not covered in class)
 - a. Minimize $f(\vec{x})$ subject to constraints $\vec{g}(\vec{x}) = 0$
 - i. Here $\vec{x} \in R^n$ and $\vec{g}(\vec{x}) = 0$ is as system of $m \le n$ equations
 - ii. One can show that a solution \vec{x} must satisfy $-\nabla f(\vec{x}) = J_{e}^{T}(\vec{x})\vec{\lambda}$
 - 1. $J_g(\vec{x})$ is the Jacobian matrix of g
 - 2. λ is an m-vector of Lagrange multipliers
 - 3. This condition says that we cannot reduce the objective function without violating the constraints
 - iii. Define $L(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \vec{\lambda}^T g(\vec{x})$
 - 1. The critical points are found by setting $\nabla L(\vec{x}, \vec{\lambda}) = \begin{bmatrix} \nabla f(\vec{x}) + J_g^T(\vec{x}) \vec{\lambda} \\ g(\vec{x}) \end{bmatrix} = \vec{0}$
 - 2. Suppose for simplicity that g is a linear function. Then the Hessian is

 $H(\vec{x},\vec{\lambda}) = \begin{bmatrix} H_f(\vec{x}) & J_g^T(\vec{x}) \\ J_g(\vec{x}) & 0 \end{bmatrix}$ where the x partial derivatives of $J_g^T(\vec{x})\vec{\lambda}$ vanish because

g is linear.

- a. Note that H is not positive definite
- b. It turns out that positive definiteness is only needed on the tangent space to the constraint surface, i.e. on the null space of J_{p} .
- iv. Consider $f(x) = .5x_1^2 + 2.5x_2^2$ with $g(x) = x_1 x_2 1 = 0$

1.
$$L(\vec{x}, \lambda) = .5x_1^2 + 2.5x_2^2 + \lambda(x_1 - x_2 - 1)$$

The gradient of the function is perpendicular to the constraint surface at the constrained minimum.

- 6. Linear Programming (not covered in class)
 - a. Minimize $\vec{c} \cdot \vec{x}$ subject to constraints $A\vec{x} = \vec{b}$ and $\vec{x} \ge \vec{0}$
 - b. The feasible region is a convex polyhedron in n-dimensional space
 - c. The minimum must occur at one of the vertices of the polyhedron
 - d. Simplex method systematically examine a sequence of vertices to find the one yielding the minimum