
CS 205 – class 1

Types of Errors

Covered in class: 4, 6, 7

1. When doing integer calculations one can many times proceed exactly, except of course in certain situations, 
e.g. division 5/2=2.5. However, when doing floating point calculations rounding errors are the norm, e.g. 
1./3.=.3333333… cannot  be  expressed  on  the  computer.  Thus  the  computer  commits  rounding  errors  to 
express numbers with machine precision, e.g. 1./3.=.3333333. Machine precision is 710−  for single precision 
and 1610−  for double precision. Rounding errors are only one source of approximation error when considering 
floating point calculations. Some others are listed below.

2. Approximation errors come in many forms:
a. empirical constants   – Some numbers  are unknown and measured in a laboratory only to limited 

precision. Others may be known more accurately but limited precision hinders the ability to express 
these numbers on a finite precision computer.  Examples include Avogadro’s number,  the speed of 
light in a vacuum, the charge on an electron, Planck’s constant, Boltzmann’s constant, pi, etc. Note 
that the speed of light is 299792458 m/s exactly,  so we are ok for double precision but not single 
precision.

b. modeling errors   – Parts of the problem under consideration may simply be ignored. For example, 
when simulating solids or fluids, sometimes frictional or viscous effects respectively are not included.

c. truncation  errors   –  These  are  also  sometimes  called  discretization  errors  and  occur  in  the 
mathematical  approximation  of  an equation as  opposed to  the mathematical  approximation  of  the 
physics (i.e. as in modeling errors). We will see later  that one cannot take a derivative or integral 
exactly on the computer so we approximate these with some formula (recall Simpson’s rule from your 
Calculus class). 

d. inaccurate inputs   – Many times we are only concerned with part of a calculation and we receive a set 
of input numbers and produce a set of output numbers. It is important to realize that the inputs may 
have been previously subjected to any of the errors listed above and thus may already have limited 
accuracy. This can have implications for algorithms as well, e.g. if the inputs are only accurate to 4 
decimal places, it makes little sense to carry out the algorithm to an accuracy of 8 decimal places. This 
issue  commonly  resurfaces  in  scientific  visualization  or  physical  simulation  where  experimental 
engineers can be unhappy with visualization algorithms that are “lossy”, meanwhile forgetting that the 
part that is lost may contain no useful, or accurate information whatsoever.

3. More about errors
a. In dealing with errors we will refer to both the absolute error and the relative error.

i. Absolute error = approximate value – true value
ii. Relative error = absolute error / true value

b. One needs to be careful with big and small numbers, especially when dividing by the latter. Many 
times calculations are non-dimensionalized or normalized in order to operate in a reasonable range of 



values. For example, consider the matrix equation
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. Recall that these are 

just two algebraic equations. 
i. We  can  divide  the  first  equation  by  1e10,  this  is  called  row  scaling,  to  obtain: 
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ii. Similarly,  we can define a new variable z=(1e-4)x, this is called  column scaling, to obtain: 
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. This final equation is much easier to deal with than the original. It can be 

solved for z and y, and x can then subsequently be found from z.

4. Condition Number.   A problem is ill-conditioned if small changes in the input data lead to large changes in 
the output.  By convention of definition,  large condition numbers  are bad (sensitive),  and small  condition 
numbers are good (insensitive). If the relative changes in the input and the output are identical, the condition 
number will be unity. 

5. Stability and Accuracy.   For well-conditioned problems, one can attempt to solve them on the computer, and 
then the terms stability and accuracy come into play.  Stability refers to whether or not the algorithm can 
complete itself in any meaningful way, i.e. unstable algorithms tend to give wildly varying, explosive data 
that usually lead to NaN’s. On the other hand, stability alone does not indicate that the problem has been 
solved. One also needs to be concerned with the size of the error, which might still be enormous, e.g. no 
significant digits correct. Accuracy refers to how close we are to the true solution for stable algorithms.

6. Do  I  need  to  worry  about  all  this  stuff?  An  example…  Consider  the  quadratic  equation 
0015.578.980501. 2 =+− xx  with solutions x=1971.605916 and x=.05077069387 to 10 digits of accuracy. 

Recall the quadratic formula ( )2 4 / 2b b ac a− ± −  where 2 4b ac− = 98.77 to 4 digits of accuracy. Then our 

solutions  are  (98.78+98.77)/.1002=1972 and (98.78-98.77)/.1002=.0998,  and the  first  root  is  correct  to  4 
decimal places while the second root has zero decimal places of accuracy. An alternative quadratic formula 
can be obtained by multiplying the top and bottom by acbb 42 −−   to de-rationalize the quadratic formula 

to  ( )acbbc 4/2 2 −−  .  Using  this  formula  we  obtain  10.03/(98.78-98.77)=1003  and  10.03/
(98.78+98.77)=.05077 as our two roots. Now the second root is correct to four decimal places while the first 
root  is  highly  inaccurate.  So the  remedy here  is  to  use  the  usual  formula  for  the  first  root  and  the  de-
rationalized formula for the second root. And the lesson is, did you know this was an issue? How would you 
like to debug a piece of code with the correct quadratic formula and zero digits of accuracy for a test case?  

      
7. So, what’s going on here?  Well, the basic problem is that the specific sequence of operations performed in 

solving the quadratic formula above results in a large error. “Subtractions followed by divisions cause errors.” 
Subtraction reveals the error that round-off makes. Division can amplify the round-off error. It is important to 
understand that the operations themselves are not dangerous, but the specific order [aka the algorithm] can be, 
if not done correctly.

8. Another simple example of a common numerical pitfall is in the computation of the norm, or length, of a 

vector 2 2
12

... nx x x= + + .  The naive way of implementing this algorithm { for (1,n) sum+=x(i)*x(i); return 



sqrt(sum); } can quickly overflow the MAX_FLOAT or MAX_DOUBLE on the computer (for large n). A 
safer algorithm would be to let y=max(abs(x(i))) and then { for (1,n) sum+=sqr(x(i)/y); return y*sqrt(sum); }.

Systems of Linear Equations

Covered in class: 1(a,d), 2, 3, 4, 5, 6

1. Systems of linear equations. 

a. Given a system of equations:  
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, we can write it in matrix form as  
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which we will commonly refer to as Ax=b.
b. Given A and b our goal is to determine x. The system of linear equations Ax=b has a unique solution, 

no solution, or infinite solutions, as you have learned in your basic algebra class. Ideally, a piece of 
software would determine  whether  there was a  unique solution,  no solution,  or infinite  solutions. 
Moreover, in the last case, it should list the parameterized family of solutions. Unfortunately this turns 
out to be fairly harder than one would first think.

c. Let’s start out by considering only  square nn ×  matrices to get some of the basic concepts down. 
Later we’ll move on to more general rectangular matrices.

d. One of the basic issues that has to be confronted is the concept of “zero”. When dealing with large 
numbers, for example on the order of Avogadro’s number, i.e. 1e23, zero can be quite large. In this 
case, for double precision arithmetic, numbers on the order of 1e7 may be “zero”, i.e. 1e23-1e7=1e23. 
On the other hand, when dealing with small numbers, such as 1e-23, then zero will be much smaller. 
In this case, on the order of 1e-39. Difficulties with finite precision arithmetic usually force us to non-
dimensionalize or  normalize our  equations.  For  example,  consider  the  matrix  equation 
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i. We  can  divide  the  first  equation  by  1e10,  this  is  called  row  scaling,  to  obtain: 
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ii. Similarly, we can define a new variable z=(1e-4)x to obtain: 
3 2 5

1 0 6

z

y

     =     
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. This is called 

column scaling. It essentially divides the first column by 1e-4. 
iii. The final equation is much easier to treat with finite precision arithmetic than the original 

one. It can be solved for z and y, and then subsequently x can be determined from the value 
of z using x=(1e4)z.

e. We say that a matrix A is singular if it is not invertible, i.e. if A does not have an inverse. There are a 
few ways of expressing this fact, for example by showing that the determinant of A is identically zero, 
det(A)=0, or showing that there is a nonempty null space, i.e. showing that Az=0 for some vector 

0z ≠ . 
i. The rank of a matrix is the maximum number of linearly independent rows or columns that it 

contains. For singular matrices rank < n. 
ii. Singular matrices are the ones that have either no solution or an infinite number of solutions. 

f. We say that a matrix A is nonsingular if its inverse 1A−  exists. Recall that 1 1A A AA I− −= = , and thus 
Ax=b can be transformed into 1x A b−=  where x is the unique solution to the problem. Note that we 



usually do not compute the inverse, but instead have a solution algorithm that exploits the existence of  
the inverse.

2. A diagonal matrix  only has nonzero elements on the diagonal. For example, consider the matrix equation 
5 0 10

0 2 1
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y

     =     −     
 where A is a diagonal matrix. These equations are easy to solve using division, i.e. the first 

equation is 5x=10 with x=2 and the second equation is 2y=-1 with y=-.5. For diagonal matrices the equations 
are essentially decoupled. 

a. Note that a 0 on the diagonal indicates a singular system, since that equation has either zero or infinite 
solutions depending on the b matrix, i.e. 0y=1 has no solution and 0y=0 has infinite solutions. 

b. The determinant of a diagonal matrix is obtained by multiplying all the diagonal elements together. 
Thus, a 0 on the diagonal implies a zero determinant and a singular matrix.

3. An upper triangular matrix may have a nonzero diagonal and may be nonzero above the diagonal, but is 
always identically zero below the diagonal. It is nonsingular if all of the diagonal elements are nonzero. This 
guarantees a nonzero determinant, since the determinant is just the diagonal elements multiplied together, just 
as it is for a diagonal matrix.

a. An upper  triangular  matrix  can be solved  by  back substitution.  Consider  

5 3 1 0
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     − =     
          

 

where A is an upper triangular matrix. We start at the bottom with 5z=10 and solve to obtain z=2. 
Then we move up the matrix one row at a time. The next equation is y-z=10, or y-2=10 or y=12. 
Proceeding up to the next row, we have 5x+3y+z=0 or 5x+36+2=0 or x=-38/5=-7.6. If the matrix were 
bigger we would continue to proceed upward solving for each new variable using the fact that all the 
other variables are known at each step.

4. A  lower triangular matrix may have a nonzero diagonal and may be nonzero below the diagonal, but is 
always identically zero above the diagonal. It is nonsingular if all of the diagonal elements are nonzero. The 

linear system 
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          

has a lower triangular A matrix. Lower triangular systems are solved by 

forward substitution, which is the same as back substitution except that we start at the top with the first 
equation, i.e. 5x=2 or x=.4, and then proceed downward.

5. More general  matrices usually require significantly more effort  to construct a solution.  For example,  one 
might need to use Gaussian Elimination.

a. Define the basis functions (0, ,0,1,0, ,0)T
ke = L L  where the 1 is in the kth row and the length of ke  is 

n.
b. In order to perform Gaussian elimation on a column of a matrix given by 1 1( , , , , , )T

k k na a a a+L L , we 

define the size nn ×  elimination matrix as T
kkk emIM −=  where ( ) k

T
nkk aaam /,,,0,,0 1 LL += . 

kM  adds multiples of row k to the rows > k in order to create 0’s.



i. 1

1 0 0 2 2

2 1 0 4 0

1 0 1 2 0

M a

     
     = − =     
     −     

 and 2

1 0 0 2 2

0 1 0 4 4

0 1/ 2 1 2 0

M a

     
     = =     
     −     

c. The inverse of an elimination matrix is defined as T
kkkk emIML +== −1 .
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 
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 − 

and 
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2 2
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L M −

 
 = =  
 − 

d. T
jj

T
kkjk ememIMM −−=  and T

jj
T
kkjk ememILL ++=  for j > k, but not for  j < k

i. 1 2

,

1 0 0

2 1 0

1 1/ 2 1

M M

 
 = − 
  

 and 1 2

1 0 0

2 1 0

1 1/ 2 1

L L

 
 =  
 − − 

6. LU factorization  . If we can factorize A=LU then Ax=b is easy to solve since we can write LUx=b. Define 
z=Ux, so that LUx=b can be rewritten as Lz=b and solved with forward substitution to find z. Now, knowing 
z,  use  back  substitution  on  Ux=z  to  find  x.    Below  we  give  an  example  algorithm  to  solve: 

2 4 2 2
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−     
     − =     
     − −     

.

a. First, we eliminate the lower triangular portion of A one column at a time using kM  in order to get 

1 1nU M M A−= L . Note that we also carry out the operations on b to get a new system of equations 

2 1 2 1M M Ax M M b=  or 2 1Ux M M b=  which can then be solved for via back substitution.

i. 1

1 0 0 2 4 2 2 4 2

2 1 0 4 9 3 0 1 1

1 0 1 2 3 7 0 1 5

M A

− −     
     = − − =     
     − −     

   and

    1

1 0 0 2 2

2 1 0 8 4

1 0 1 10 12

M b

     
     = − =     
          

ii. 2 1

1 0 0 2 4 2 2 4 2

0 1 0 0 1 1 0 1 1

0 1 1 0 1 5 0 0 4

M M A

− −     
     = =     
     −     

   and

    2 1

1 0 0 2 2

0 1 0 4 4

0 1 1 12 8

M M b

     
     = =     
     −     



iii. Finally solve 

2 4 2 2

0 1 1 4

0 0 4 8

x
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−     
     =     
          

 via back substitution.

iv. Note that using the fact that the L matrices are the inverses of the M matrices allows us to write 

1 1 1 1( )( )n nLU L L M M A A− −= =L L  where 1 1nL L L −= L  can be formed trivially from the kM  to 

obtain 1 2

1 0 0 1 0 0 1 0 0

2 1 0 0 1 0 2 1 0

1 0 1 0 1 1 1 1 1

L L L

     
     = = =     
     − −     

. And thus, although we never needed it 

to solve the equations, the LU factorization of A is:

                

2 4 2 1 0 0 2 4 2

4 9 3 2 1 0 0 1 1

2 3 7 1 1 1 0 0 4

A LU

− −     
     = − = =     
     − − −     


