
CS 205 – class 1

Types of Errors

Covered in class: 4, 6, 7

1. When doing integer calculations one can many times proceed exactly, except of course in certain situations,
e.g. division 5/2=2.5. However, when doing floating point calculations rounding errors are the norm, e.g.
1./3.=.3333333… cannot be expressed on the computer. Thus the computer commits rounding errors to
express numbers with machine precision, e.g. 1./3.=.3333333. Machine precision is 710− for single precision
and 1610− for double precision. Rounding errors are only one source of approximation error when considering
floating point calculations. Some others are listed below.

2. Approximation errors come in many forms:
a. empirical constants – Some numbers are unknown and measured in a laboratory only to limited

precision. Others may be known more accurately but limited precision hinders the ability to express
these numbers on a finite precision computer. Examples include Avogadro’s number, the speed of
light in a vacuum, the charge on an electron, Planck’s constant, Boltzmann’s constant, pi, etc. Note
that the speed of light is 299792458 m/s exactly, so we are ok for double precision but not single
precision.

b. modeling errors – Parts of the problem under consideration may simply be ignored. For example,
when simulating solids or fluids, sometimes frictional or viscous effects respectively are not included.

c. truncation errors – These are also sometimes called discretization errors and occur in the
mathematical approximation of an equation as opposed to the mathematical approximation of the
physics (i.e. as in modeling errors). We will see later that one cannot take a derivative or integral
exactly on the computer so we approximate these with some formula (recall Simpson’s rule from your
Calculus class).

d. inaccurate inputs – Many times we are only concerned with part of a calculation and we receive a set
of input numbers and produce a set of output numbers. It is important to realize that the inputs may
have been previously subjected to any of the errors listed above and thus may already have limited
accuracy. This can have implications for algorithms as well, e.g. if the inputs are only accurate to 4
decimal places, it makes little sense to carry out the algorithm to an accuracy of 8 decimal places. This
issue commonly resurfaces in scientific visualization or physical simulation where experimental
engineers can be unhappy with visualization algorithms that are “lossy”, meanwhile forgetting that the
part that is lost may contain no useful, or accurate information whatsoever.

3. More about errors
a. In dealing with errors we will refer to both the absolute error and the relative error.

i. Absolute error = approximate value – true value
ii. Relative error = absolute error / true value

b. One needs to be careful with big and small numbers, especially when dividing by the latter. Many
times calculations are non-dimensionalized or normalized in order to operate in a reasonable range of

values. For example, consider the matrix equation
3 6 2 10 5 10

1 4 0 6

e e x e

e y

     =     −     
. Recall that these are

just two algebraic equations.
i. We can divide the first equation by 1e10, this is called row scaling, to obtain:

3 4 2 5

1 4 0 6

e x

e y

−     =     −     
.

ii. Similarly, we can define a new variable z=(1e-4)x, this is called column scaling, to obtain:
3 2 5

1 0 6

z

y

     =     
     

. This final equation is much easier to deal with than the original. It can be

solved for z and y, and x can then subsequently be found from z.

4. Condition Number. A problem is ill-conditioned if small changes in the input data lead to large changes in
the output. By convention of definition, large condition numbers are bad (sensitive), and small condition
numbers are good (insensitive). If the relative changes in the input and the output are identical, the condition
number will be unity.

5. Stability and Accuracy. For well-conditioned problems, one can attempt to solve them on the computer, and
then the terms stability and accuracy come into play. Stability refers to whether or not the algorithm can
complete itself in any meaningful way, i.e. unstable algorithms tend to give wildly varying, explosive data
that usually lead to NaN’s. On the other hand, stability alone does not indicate that the problem has been
solved. One also needs to be concerned with the size of the error, which might still be enormous, e.g. no
significant digits correct. Accuracy refers to how close we are to the true solution for stable algorithms.

6. Do I need to worry about all this stuff? An example… Consider the quadratic equation
0015.578.980501. 2 =+− xx with solutions x=1971.605916 and x=.05077069387 to 10 digits of accuracy.

Recall the quadratic formula ()2 4 / 2b b ac a− ± − where 2 4b ac− = 98.77 to 4 digits of accuracy. Then our

solutions are (98.78+98.77)/.1002=1972 and (98.78-98.77)/.1002=.0998, and the first root is correct to 4
decimal places while the second root has zero decimal places of accuracy. An alternative quadratic formula
can be obtained by multiplying the top and bottom by acbb 42 −−  to de-rationalize the quadratic formula

to ()acbbc 4/2 2 −−  . Using this formula we obtain 10.03/(98.78-98.77)=1003 and 10.03/
(98.78+98.77)=.05077 as our two roots. Now the second root is correct to four decimal places while the first
root is highly inaccurate. So the remedy here is to use the usual formula for the first root and the de-
rationalized formula for the second root. And the lesson is, did you know this was an issue? How would you
like to debug a piece of code with the correct quadratic formula and zero digits of accuracy for a test case?

7. So, what’s going on here? Well, the basic problem is that the specific sequence of operations performed in

solving the quadratic formula above results in a large error. “Subtractions followed by divisions cause errors.”
Subtraction reveals the error that round-off makes. Division can amplify the round-off error. It is important to
understand that the operations themselves are not dangerous, but the specific order [aka the algorithm] can be,
if not done correctly.

8. Another simple example of a common numerical pitfall is in the computation of the norm, or length, of a

vector 2 2
12

... nx x x= + + . The naive way of implementing this algorithm { for (1,n) sum+=x(i)*x(i); return

sqrt(sum); } can quickly overflow the MAX_FLOAT or MAX_DOUBLE on the computer (for large n). A
safer algorithm would be to let y=max(abs(x(i))) and then { for (1,n) sum+=sqr(x(i)/y); return y*sqrt(sum); }.

Systems of Linear Equations

Covered in class: 1(a,d), 2, 3, 4, 5, 6

1. Systems of linear equations.

a. Given a system of equations:








=+−
=+

74

623

yx

yx
, we can write it in matrix form as

3 2 6

4 1 7

x

y

    =    −    

which we will commonly refer to as Ax=b.
b. Given A and b our goal is to determine x. The system of linear equations Ax=b has a unique solution,

no solution, or infinite solutions, as you have learned in your basic algebra class. Ideally, a piece of
software would determine whether there was a unique solution, no solution, or infinite solutions.
Moreover, in the last case, it should list the parameterized family of solutions. Unfortunately this turns
out to be fairly harder than one would first think.

c. Let’s start out by considering only square nn × matrices to get some of the basic concepts down.
Later we’ll move on to more general rectangular matrices.

d. One of the basic issues that has to be confronted is the concept of “zero”. When dealing with large
numbers, for example on the order of Avogadro’s number, i.e. 1e23, zero can be quite large. In this
case, for double precision arithmetic, numbers on the order of 1e7 may be “zero”, i.e. 1e23-1e7=1e23.
On the other hand, when dealing with small numbers, such as 1e-23, then zero will be much smaller.
In this case, on the order of 1e-39. Difficulties with finite precision arithmetic usually force us to non-
dimensionalize or normalize our equations. For example, consider the matrix equation

3 6 2 10 5 10

1 4 0 6

e e x e

e y

     =     −     
.

i. We can divide the first equation by 1e10, this is called row scaling, to obtain:
3 4 2 5

1 4 0 6

e x

e y

−     =     −     
.

ii. Similarly, we can define a new variable z=(1e-4)x to obtain:
3 2 5

1 0 6

z

y

     =     
     

. This is called

column scaling. It essentially divides the first column by 1e-4.
iii. The final equation is much easier to treat with finite precision arithmetic than the original

one. It can be solved for z and y, and then subsequently x can be determined from the value
of z using x=(1e4)z.

e. We say that a matrix A is singular if it is not invertible, i.e. if A does not have an inverse. There are a
few ways of expressing this fact, for example by showing that the determinant of A is identically zero,
det(A)=0, or showing that there is a nonempty null space, i.e. showing that Az=0 for some vector

0z ≠ .
i. The rank of a matrix is the maximum number of linearly independent rows or columns that it

contains. For singular matrices rank < n.
ii. Singular matrices are the ones that have either no solution or an infinite number of solutions.

f. We say that a matrix A is nonsingular if its inverse 1A− exists. Recall that 1 1A A AA I− −= = , and thus
Ax=b can be transformed into 1x A b−= where x is the unique solution to the problem. Note that we

usually do not compute the inverse, but instead have a solution algorithm that exploits the existence of
the inverse.

2. A diagonal matrix only has nonzero elements on the diagonal. For example, consider the matrix equation
5 0 10

0 2 1

x

y

     =     −     
 where A is a diagonal matrix. These equations are easy to solve using division, i.e. the first

equation is 5x=10 with x=2 and the second equation is 2y=-1 with y=-.5. For diagonal matrices the equations
are essentially decoupled.

a. Note that a 0 on the diagonal indicates a singular system, since that equation has either zero or infinite
solutions depending on the b matrix, i.e. 0y=1 has no solution and 0y=0 has infinite solutions.

b. The determinant of a diagonal matrix is obtained by multiplying all the diagonal elements together.
Thus, a 0 on the diagonal implies a zero determinant and a singular matrix.

3. An upper triangular matrix may have a nonzero diagonal and may be nonzero above the diagonal, but is
always identically zero below the diagonal. It is nonsingular if all of the diagonal elements are nonzero. This
guarantees a nonzero determinant, since the determinant is just the diagonal elements multiplied together, just
as it is for a diagonal matrix.

a. An upper triangular matrix can be solved by back substitution. Consider

5 3 1 0

0 1 1 10

0 0 5 10

x

y

z

     
     − =     
          

where A is an upper triangular matrix. We start at the bottom with 5z=10 and solve to obtain z=2.
Then we move up the matrix one row at a time. The next equation is y-z=10, or y-2=10 or y=12.
Proceeding up to the next row, we have 5x+3y+z=0 or 5x+36+2=0 or x=-38/5=-7.6. If the matrix were
bigger we would continue to proceed upward solving for each new variable using the fact that all the
other variables are known at each step.

4. A lower triangular matrix may have a nonzero diagonal and may be nonzero below the diagonal, but is
always identically zero above the diagonal. It is nonsingular if all of the diagonal elements are nonzero. The

linear system

5 0 0 2

4 1 0 3

7 0 5 0

x

y

z

     
     − = −     
          

has a lower triangular A matrix. Lower triangular systems are solved by

forward substitution, which is the same as back substitution except that we start at the top with the first
equation, i.e. 5x=2 or x=.4, and then proceed downward.

5. More general matrices usually require significantly more effort to construct a solution. For example, one
might need to use Gaussian Elimination.

a. Define the basis functions (0, ,0,1,0, ,0)T
ke = L L where the 1 is in the kth row and the length of ke is

n.
b. In order to perform Gaussian elimation on a column of a matrix given by 1 1(, , , , ,)T

k k na a a a+L L , we

define the size nn × elimination matrix as T
kkk emIM −= where () k

T
nkk aaam /,,,0,,0 1 LL += .

kM adds multiples of row k to the rows > k in order to create 0’s.

i. 1

1 0 0 2 2

2 1 0 4 0

1 0 1 2 0

M a

     
     = − =     
     −     

 and 2

1 0 0 2 2

0 1 0 4 4

0 1/ 2 1 2 0

M a

     
     = =     
     −     

c. The inverse of an elimination matrix is defined as T
kkkk emIML +== −1 .

i.
1

1 1

,

1 0 0

2 1 0

1 0 1

L M −

 
 = =  
 − 

and
1

2 2

1 0 0

0 1 0

0 1/ 2 1

L M −

 
 = =  
 − 

d. T
jj

T
kkjk ememIMM −−= and T

jj
T
kkjk ememILL ++= for j > k, but not for j < k

i. 1 2

,

1 0 0

2 1 0

1 1/ 2 1

M M

 
 = − 
  

 and 1 2

1 0 0

2 1 0

1 1/ 2 1

L L

 
 =  
 − − 

6. LU factorization . If we can factorize A=LU then Ax=b is easy to solve since we can write LUx=b. Define
z=Ux, so that LUx=b can be rewritten as Lz=b and solved with forward substitution to find z. Now, knowing
z, use back substitution on Ux=z to find x. Below we give an example algorithm to solve:

2 4 2 2

4 9 3 8

2 3 7 10

x

y

z

−     
     − =     
     − −     

.

a. First, we eliminate the lower triangular portion of A one column at a time using kM in order to get

1 1nU M M A−= L . Note that we also carry out the operations on b to get a new system of equations

2 1 2 1M M Ax M M b= or 2 1Ux M M b= which can then be solved for via back substitution.

i. 1

1 0 0 2 4 2 2 4 2

2 1 0 4 9 3 0 1 1

1 0 1 2 3 7 0 1 5

M A

− −     
     = − − =     
     − −     

 and

 1

1 0 0 2 2

2 1 0 8 4

1 0 1 10 12

M b

     
     = − =     
          

ii. 2 1

1 0 0 2 4 2 2 4 2

0 1 0 0 1 1 0 1 1

0 1 1 0 1 5 0 0 4

M M A

− −     
     = =     
     −     

 and

 2 1

1 0 0 2 2

0 1 0 4 4

0 1 1 12 8

M M b

     
     = =     
     −     

iii. Finally solve

2 4 2 2

0 1 1 4

0 0 4 8

x

y

z

−     
     =     
          

 via back substitution.

iv. Note that using the fact that the L matrices are the inverses of the M matrices allows us to write

1 1 1 1()()n nLU L L M M A A− −= =L L where 1 1nL L L −= L can be formed trivially from the kM to

obtain 1 2

1 0 0 1 0 0 1 0 0

2 1 0 0 1 0 2 1 0

1 0 1 0 1 1 1 1 1

L L L

     
     = = =     
     − −     

. And thus, although we never needed it

to solve the equations, the LU factorization of A is:

2 4 2 1 0 0 2 4 2

4 9 3 2 1 0 0 1 1

2 3 7 1 1 1 0 0 4

A LU

− −     
     = − = =     
     − − −     

