CS 205a Fall 2011 Midterm 2

Please write your name and netid on the top right of the first page. The exam is closed book and no calculators are allowed. You have 1 hour and 15 minutes to complete the exam.

Multiple Choice (4 x 1 pt each)

For each of the following questions, circle **ALL** answers that are correct.

- 1. Let A be a symmetric positive definite $n \times n$ matrix that you attempt to solve using the Conjugate Gradient method. If A has 3 distinct eigenvalues, what is the maximum number of steps (in theory) that the CG solver needs to converge?
 - (a) n
 - (b) 3
 - (c) n-3
 - (d) None of the above is correct.
- 2. Recall the Newmark method:

$$x^{n+1} = x^n + \Delta t v^n + \frac{\Delta t^2}{2} \left[(1 - 2\beta)\alpha^n + 2\beta\alpha^{n+1} \right]$$

$$v^{n+1} = v^n + \Delta t \left[(1 - \gamma)\alpha^n + \gamma \alpha^{n+1} \right]$$

Which of the following methods is not equivalent for some choice of α and β parameters?

- (a) Constant Acceleration
- (b) 3^{rd} -order accurate Runge-Kutta.
- (c) Central Differencing
- (d) Trapezoidal Rule
- 3. In general, which of the following methods are the most suitable for solving heat equations?
 - (a) 2^{nd} -order Runge Kutta.
 - (b) Forward Euler.
 - (c) Backward Euler.
 - (d) 4th-order Runge Kutta.
- 4. The Monte Carlo method
 - (a) is widely used for problems in lower dimensions
 - (b) has an error proportional to $1/\sqrt{n}$
 - (c) is widely used for problems in higher dimensions
 - (d) is deterministic

Conjugate Gradient (10 pts)

1. Apply the Conjugate Gradient method to find the solution of the following linear system $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Use the initial guess $\vec{x}_0 = [0,0]^T$. (5 pts)

$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

2. Let the CG iteration be applied to solve a linear system AX = b with A as a symmetric positive definite matrix. $\langle s_0, s_1, \cdots, s_k, \cdots, s_n \rangle$ is the sequence of search directions generated in the iteration. Assume the initial error can be expressed as $e_0 = \sum_{j=0}^{n} c_j s_j$. First derive the relations between step size of CG at k^{th} step, i.e. α_k , and the coefficient c_k ; Second, derive the expression of the error after k iterations e_k . (5 pts)

Optimization (6 pts)

Minimize $f(x) = 5x_1 + 3x_2^2 + x_3^2 + 2x_4$ subject to the constraints $x_1 + x_2 = x_3$ and $x_2 - x_4 = 2$ using Lagrange multipliers. Show your work, including a problem of the form Ax = b.

Ordinary Differential Equations (10 pts)

The following scheme has been proposed for solving y' = f(y):

$$y^* = y_n + \frac{h}{2}f(y_n)$$
$$y_{n+1} = y_n + hf(y^*)$$

$$y_{n+1} = y_n + hf(y^*)$$

with h being the time step.

1. Applying this method to the model problem $y' = \lambda y$, what is the maximum step size h for λ being negative real in order to have a stable solution? (4 pts)

2. Still applying this method to the model problem $y' = \lambda y$, what is the order of global accuracy of this method? (4 pts)

3. Convert the sixth-order non-linear ODE $y^{(6)}=3y^{(4)}+4y^{'''}*y^{''}-(y^{'}+y)*y^{(5)}$ into a system of first-order equations. Show your variable assignments. (2 pts)

Interpolation (10 pts)

1. State the main disadvantage of the monomial basis functions. (1 pt)

2. Given the set of sample points (-2,12), (-1,3), (0,10) and (3,7), construct an interpolating polynomial using monomial basis functions. (4 pts)

3.	Given the same set of sample points $(-2,12)$, $(-1,3)$, $(0,10)$ and $(3,7)$, construct an interpolating polynomial using Newton interpolation. (3 pts)
1	Compared to forestion that there with an arranged from it of (23). What does that include the chart compared
4.	Suppose the function that these points are sampled from is $O(x^3)$. What does that imply about your answers in parts 2 and 3? (1 pt)
5	What are the advantages and disadvantages of Lagrange interpolation? (1 pt)
J.	What are the advantages and disadvantages of Lagrange interpolation? (1 pt)