
CS205 Homework #8 Solutions

Problem 1

Give a criterion for the well-posedness of the kth order, scalar, homogeneous,
constant-coefficient ODE

u(k) + ck−1u
(k−1) + · · ·+ c1u

′ + c0u = 0

(Hint: Transform to a first-order system y′ = Ay and observe A is a matrix
we’ve encountered previously in homework 3 problem 2)

Solution

Transforming the differential equation into a system of first order equations
yields:

u′1
u′2
...

u′k−1
u′k

 =


u2

u3
...

uk

−
∑k

i=1 ci−1ui1

 =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
−c0 −c1 −c2 · · · −ck−2 −ck−1




u1

u2
...

uk−1

uk


The matrix is a companion matrix as we saw in homework 3. Recall

its characteristic polynomial is p(λ) = c0 + c1λ + · · · + ck−1λ
k−1 + λk. The

eigenvalues of the matrix will be the roots of this polynomial. Thus, if the real
parts of the roots are less than zero it is well-posed. If they are all not strictly
less than zero then it is asymptotically stable. If any real part is positive then
it is ill-posed. As an aside, if any of the roots are pure imaginary, then it
automatically ill-posed.

Problem 2

Consider the system of linear ODE’s(
y1

y2

)
t

=

(
1 −2
−2 1

) (
y1

y2

)
1



1. Consider the initial value problem with the above ode and the initial
values

y1(0) = y2(0) = 1

Show that the analytic solution to this initial value problem is

y1(t) = y2(t) = e−t

2. If we use an integration method (such as Forward/Backward Euler, or
trapezoidal rule) to compute the solution to this ODE numerically, will
we get the same asymptotic behavior as the analytic solution as t →∞
?

Solution

1. The eigenvalues of A are 3 and -1. The corresponding eigenvectors
are

[
1 −1

]
and

[
1 1

]
. Since A is symmetric we have A = PTΛP =

1√
2

[
1 −1
1 1

]T [
3 0
0 −1

]
1√
2

[
1 −1
1 1

]
. We can write our differential equa-

tion system as yt = Ay = A = PTΛPy ⇒ Pyt = ΛPy. Substitut-
ing u = Py we have ut = Λu. The solution to this sytem is trivially[

u1

u2

]
t

=

[
c1e

3t

c2e
−t

]
. Transforming our initial condition yields the con-

stant u(0) = PTy(0) = 1√
2

[
1 −1
1 1

] [
1
1

]
=

[
0√
2

]
. Thus we have

u =
[

0
√

2e−t
]T

. Substituting back we get

y = Ptu =
1√
2

[
1 1
−1 1

] [
0√
2e−t

]
=

[
e−t

e−t

]
2. The initial condition happens to be an eigenvector of the negative (-1)

eigenvalue of the system. This causes the analytic solution to decay to
zero as would be expected of a stable system. Nevertheless, during the
solution process, if a tiny amount of error infiltrates the solution, this
error is going to have a component along the direction of the eigenvec-
tor corresponding to the positive eigenvalue (3). At that point even an
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optimal numerical solver (one that computes the exact analytical solu-
tion given that initial value) will amplify this component of the solution
exponentially, causing the whole thing to blow up.

Problem 3

Consider the equation of motion for a simple, damped, 1D oscillator (a zero
rest length spring in 1D with damping)

F (x, v) = ma = −bv − kx

where k is the spring constant, b the (constant) damping coefficient, v = xt

the velocity and a = vt = xtt the acceleration.

1. Show that this 2nd order ODE is equivalent to the 1st order linear system
of ODEs (

x
v

)
t

=

(
0 1
− k

m − b
m

) (
x
v

)
2. Assume that we are using Forward Euler to solve this system numerically,

with a timestep equal to ∆t. If λ1, λ2 ∈ C are the complex eigenvalues
of the matrix (

1 ∆t

−k∆t
m 1− b∆t

m

)
show that the condition for stability is ‖λ1‖ < 1 and ‖λ2‖ < 1

3. Show that if b2 < 4km (such spring systems are referred to as under-
damped), then the eigenvalues of the matrix above are given as

λ1,2 = 1− b∆t

2m
± i

∆t

2m

√
4km− b2

4. Show that if b2 < 4km the condition for stability is ∆t < b/k.

Solution

1. We have mvt = ma = −bv − kx ⇒ vt = − b
mv − k

mx. Therefore

xt = v

vt = − b
mv − k

mx

}
⇒

(
x
v

)
t

=

(
0 1
− k

m − b
m

) (
x
v

)
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2. Forward Euler can be written as(
x
v

)n+1

=

(
x
v

)n

+ ∆t

(
xt

vt

)n

⇒(
x
v

)n+1

=

(
x
v

)n

+ ∆t

(
0 1
− k

m − b
m

) (
x
v

)n

⇒(
x
v

)n+1

=

(
1 ∆t

−k∆t
m 1− b∆t

m

) (
x
v

)n

For stability, we want the eigenvalues of the iteration matrix(
1 ∆t

−k∆t
m 1− b∆t

m

)
to have magnitude less than one, so that the computed solution decays
to zero over time.

3. The eigenvalues are the roots of the characteristic polynomial

λ2 +

(
b∆t

m
− 2

)
λ +

k∆t2

m
− b∆t

m
+ 1 = 0

The discriminant is(
b∆t

m
− 2

)2

− 4

(
k∆t2

m
− b∆t

m
+ 1

)
=

(
b2 − 4mk

) ∆t2

m2

Therefore when b2 < 4mk we have two complex roots, given by the
formula

λ1,2 = 1− b∆t

2m
± i

∆t

2m

√
4km− b2

4. The magnitude of either of these eigenvalues is given by

‖λ1,2‖2 =

(
1− b∆t

2m

)2

+

(
∆t

2m

√
4km− b2

)2

= 1− b∆t

m
+

k∆t2

m

For stability we need

‖λ1,2‖2 < 1 ⇔ 1− b∆t

m
+

k∆t2

m
< 1 ⇔ k∆t2

m
<

b∆t

m
⇔ ∆t < b/k
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