
CS205 Homework #7 Solutions

Problem 1

We have seen the application of the conjugate gradient algorithm on the solution of sym-
metric, positive definite systems. Now assume that in the system Ax = b, the n× n matrix
A is symmetric positive semi-definite with a nullspace of dimension p < n. This problem
illustrates that one can use a modified version of conjugate gradients to solve this system as
well.

1. Prove that we can write A as
A = MÃM

T

where M is an n× (n− p) matrix with orthonormal columns that form a basis for the
column space of A, while Ã is an (n− p)× (n− p) symmetric positive definite matrix
(no nullspace) [Hint: Use the diagonal form of A = QΛQT ]

2. Let the n× n matrix P be defined as P = MMT . Explain (no formal proof required)
why this is a projection matrix and onto what space it projects. How can we compute
P without knowledge of the eigenvalues-eigenvectors of A?

3. Show that, in order to have a solution to Ax = b, we must be able to write

b = Mb̃

for an appropriate vector b̃ ∈ Rn−p

4. Let x̃ be the solution to the system Ãx̃ = b̃ and explain why x̃ is unique. Show that
any solution to the original system Ax = b can be written as x = Mx̃ + x0 where x0

is in the nullspace of A.

5. Consider the conjugate gradients algorithm for solving Ãx̃ = b̃

x̃0 = initial guess

s̃0 = r̃0 = b̃− Ãx̃0

for k = 0, 1, . . . , 2

α̃k =
r̃T

k r̃k

s̃T
k Ãs̃k

x̃k+1 = x̃k + α̃ks̃k

r̃k+1 = r̃k − α̃kÃs̃k

s̃k+1 = r̃k+1 +
r̃T

k+1r̃k+1

r̃T
k r̃k

s̃k

end
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Show that we can compute a solution to the original system Ax = b by using the
following modification of the algorithm

x0 = initial guess

s0 = r0 = P(b−Ax0)

for k = 0, 1, . . . , 2

αk =
rT

k rk

sT
k Ask

xk+1 = xk + αksk

rk+1 = rk − αkPAsk

sk+1 = rk+1 +
rT

k+1rk+1

rT
k rk

sk

end

[Hint: Show that xk = Mx̃k, rk = Mr̃k, sk = Ms̃k, α̃k = αk]

Solution

1. Since A is symmetric and positive definite it can be written as

A = QΛQT =
[

q1 q2 · · · qn

]


λ1

λ2

. . .

λn




qT
1

qT
2
...

qT
n


Since A has a nullspace of dimension p, exactly n−p of its eigenvalues, say λ1, λ2, . . . , λk,
are nonzero (and positive), while λk+1 = λk+2 = · · · = λn = 0. Therefore

A =
[

q1 · · · qk qk+1 · · · qn

]


λ1

. . .

λk

0
. . .

0





qT
1
...

qT
k

qT
k+1
...

qT
n



=
[

q1 q2 · · · qk

]


λ1

λ2

. . .

λk




qT
1

qT
2
...

qT
k

 = MÃMTT

where the columns of the n × (n − p) matrix M form an orthonormal basis for the
column space of A (see homework 3, problem 3.5) and Ã is symmetric and positive
definite since it is diagonal and its diagonal contains only the positive eigenvalues of
A.
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2. Since the columns of M form an orthonormal basis for the column space of A, the ma-
trix P = MMT is the projection matrix onto the column space of A. From homework
2, problem 2.1 (check the solutions) we know that if we have the QR decomposition
of A, we can get the projection matrix onto the column space of A as P = QQT . The
QR decomposition can be computed using Gram-Schmidt, without any need to solve
for the eigenvalues and eigenvectors of A. Note that the columns of this Q are not the
eigenvectors of A, nevertheless the resulting projection matrix is exactly the same.

3. For any value of x the vector Ax lies in the column space of A (it’s a linear combination
of its columns with coefficients given by the individual elements of b). Therefore, in
order for Ax = b to have a solution, b has to be in the column space of A as well.
Another way to see this is

Ax = b ⇒ MÃM
T
x = b ⇒ b = M(ÃM

T
x) = Mb̃

4. The matrix Ã is positive definite and thus nonsingular, therefore the solution x̃ to the
system Ãx̃ = b̃ is unique. We know that any solution x to the original system Ax = b
can be written as x = xCS + x0 where xCS is in the column space of A and x0 is in
the nullspace (see review session notes). We know that xCS is unique and since it is in
the column space it can be written as xCS = Mx̃ where x̃ ∈ Rn−p. Therefore we have

x = Mx̃ + x0 ⇒ Ax = AMx̃ ⇒ b = MÃM
T
Mx̃ ⇒ Mb̃ = MÃM

T
Mx̃ ⇒

⇒ MTMb̃ = MTMÃM
T
Mx̃ ⇒ b̃ = Ãx̃

5. We will show that each part of the proposed algorithm for solving Ãx̃ = b̃ translates
to the corresponding part of the proposed modified algorithm

• x0 =initial guess
s0 = r0 = P(b−Ax0)

Since in order to have a solution we must have b = Mb̃

s0 = r0 = P(b−Ax0) = MMT (Mb̃−MÃM
T
x0) = M(b̃− Ãx̃0) = Ms̃0 = Mr̃0

where x̃0 = MTx0 is the initial guess used in the conjugate gradient algorithm
for Ãx̃ = b̃. We can also write the initial guess x0 = Mx̃0 +xNS where xNS is in
the nullspace of A.

To continue with induction, assume that for i = 0, 1, . . . , k we have

xi = Mx̃i + xNS, ri = Mr̃i, si = Ms̃i

• For αk we have

αk =
rT

k rk

sT
k Ask

=
r̃T

k MTMr̃k

s̃T
k MTAMs̃k

=
r̃T

k r̃k

s̃T
k Ãs̃k

= α̃k
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• For xk+1 we have

xk+1 = xk +αksk = Mx̃k +xNS + α̃kMs̃k = M(x̃k + α̃ks̃k)+xNS = Mx̃k+1 +xNS

• For rk+1 we have

rk+1 = rk − αkPAsk = Mr̃k − αkMMTAMs̃k = Mr̃k − α̃kMÃs̃k = Mr̃k+1

• For sk+1 we have

sk+1 = rk+1+
rT

k+1rk+1

rT
k rk

sk = Mr̃k+1+
r̃T

k+1M
TM̃rk+1

r̃T
k MTMr̃k

Ms̃k = Mr̃k+1+
r̃T

k+1r̃k+1

r̃T
k r̃k

Ms̃k = Ms̃k+1

Therefore our modified algorithm “translates” every step of conjugate gradients for
Ãx̃ = b̃ into an equivalent step for the original system Ax = b

Problem 2

Consider a real function f(x) that is differentiable on an interval [a, b].

1. Find a quadratic polynomial g(x) that approximates f(x) on [a, b] in that f ′(a) = g′(a),
f ′(b) = g′(b) and f

(
a+b
2

)
= g

(
a+b
2

)
[Hint: Consider expressing g(x) as a quadratic

polynomial of (x− a+b
2

)].

2. Define a numerical quadrature rule for
∫ b

a
f(x) dx by integrating the interpolant g(x)

on [a, b].

3. Prove that this integration scheme has degree of accuracy equal to 3.

4. Define the corresponding composite quadrature rule for
∫ b

a
f(x) dx we obtain by sub-

dividing [a, b] into the n sub-intervals
[
a + k b−a

n
, a + (k + 1) b−a

n

]
Solution

1. Let g(x) = c2

(
x− a+b

2

)2
+ c1

(
x− a+b

2

)
+ c0. Using the given constraints we have

g′(a) = f ′(a)
g′(b) = f ′(b)

g(a+b
2

) = fa + b2

 ⇒


c2(a− b) + c1 = f ′(a)
c2(b− a) + c1 = f ′(b)

c0 = f(a+b
2

)

 ⇒


c2 = f ′(b)−f ′(a)

2(b−a)

c1 = f ′(a)+f ′(b)
2

c0 = f(a+b
2

)


Thus

g(x) =
f ′(b)− f ′(a)

2(b− a)

(
x− a + b

2

)2

+
f ′(a) + f ′(b)

2

(
x− a + b

2

)
+ f

(
a + b

2

)
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2. We have∫ b

a

f(x) dx ≈
∫ b

a

g(x) dx =

∫ b

a

[
c2

(
x− a + b

2

)2

+ c1

(
x− a + b

2

)
+ c0

]
dx

= c2
(b− a)3

12
+ c0(b− a)

⇒
∫ b

a

f(x) dx ≈ (b− a)f

(
a + b

2

)
+

(b− a)2

24
[f ′(b)− f ′(a)]

3. The interpolant used approximates exactly polynomials of degree up to 2, thus the
degree of accuracy is at least 2. We also have∫ b

a

x3 dx = (b− a)

(
a + b

2

)3

+
(b− a)2

24
[3b2 − 3a2] =

(b− a)(a + b)3

8
+

(b− a)3(a + b)

8

=
(b− a)(a + b)

8
[(a + b)2 + (a− b)2] =

b2 − a2

4
(b2 + a2) =

b4 − a4

4

which is the exact result. To show that the degree of accuracy is exactly 3, we give the
counterexample f(x) = x4 on the interval [−a, a]∫ a

−a

x4 dx = 2a(0)4 +
(2a)2

24
[4a3 + 4a3] =

4

3
a5

which is not the exact result 2/5a5. Thus the method is third order accurate.

4. The compositie rule is∫ b

a

f(x) dx =
∑
k=0

n− 1

∫ a+(k+1) b−a
n

a+k b−a
n

f(x) dx

which is approximately

n−1∑
k=0

{
b− a

n
f

(
a + (2k + 1)

b− a

2n

)
+

(b− a)2

24n2

[
f ′

(
a + (k + 1)

b− a

n

)
− f ′

(
a + k

b− a

n

)]}
which is {

b− a

n

n−1∑
k=0

f

(
a + (2k + 1)

b− a

2n

)}
+

(b− a)2

24n2
[f ′(b)− f ′(a)]

5. If we know the exact value of f ′(a) and f ′(b) the rule we proved in 4 is third order accu-
rate while only slightly more complex than the midpoint rule and should be prefered.
Note that this wouldn’t work if we tried to approximate f ′(a) and f ′(b) from nearby
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values of f , since this approximation would have O(h) error leading to an O(h3) error
in the integration formula (same as the midpoint rule).

If we dont know f ′(a) and f ′(b) and third order accuracy is desired, Simpson’s rule is
the only option. Nevertheless, if first order accuracy is sufficient (for example if f is
very smooth or if the discretization step h is already very small) the midpoint rule is
simpler and requires much fewer floating point operations.

Problem 3

The first order divided difference is given by

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

.

When x0 is close to x1 we have the approximation

f [x0, x1] ≈ f ′
(

x0 + x1

2

)
Now let z = (x0 + x1)/2, h = (x1 − x0)/2 then the error is given as

E = f [x0, x1]− f ′
(

x0 + x1

2

)
=

f(z + h)− f(z − h)

2h
− f ′(z)

Prove that the error is

E =
h2

6
f ′′′(z) + O(h3)

Solution

Expanding f(z − h) and f(z + h) about z by using Taylor’s theorem. The taylor expansion
about z is

f(x) = f(z) + f ′(z)(x− z) +
1

2
f ′′(z)(x− z)2 +

1

6
f ′′′(z)(x− z)3 + O((x− z)4)

so we get

f(z + h) = f(z) + hf ′(z) +
h2

2
f ′′(z) +

h3

6
f ′′′(z) + O(h4)

f(z − h) = f(z)− hf ′(z) +
h2

2
f ′′(z)− h3

6
f ′′′(z) + O(h4)

Subtracting the second equation from the first gives

f(z + h)− f(z − h) = 2hf ′(z) +
1

3
h3 + O(h4)
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Dividing through by 2h and rearranging gives

f(z + h)− f(z − h)

2h
− f ′(z) =

h2

6
f ′′′(z) + O(h3)
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