
CS205 Homework #6 Solutions

Problem 1

1. Let A be a symmetric and positive definite n× n matrix. If x,y ∈ Rn prove that the
operation 〈x,y〉A = xTAy = x ·Ay is an inner product on Rn. That is, show that the
following properties are satisfied

(a) 〈u + v, z〉A = 〈u, z〉A + 〈v, z〉A
(b) 〈αu,v〉A = α 〈u,v〉A
(c) 〈u,v〉A = 〈v,u〉A
(d) 〈u,u〉A ≥ 0 and equality holds if and only if u = 0

2. Which of those properties, if any, fail to hold when A is not positive definite? Which
fail to hold if it is not symmetric?

Solution

1. (a) 〈u + v, z〉A = (u + v)TAz = uTAz + vTAz = 〈u, z〉A + 〈v, z〉A
(b) 〈αu,v〉A = (αu)TAv = α(uTAv) = α 〈u,v〉A
(c) 〈u,v〉A = uTAv = uTATv = Au · v = v ·Au = vTAu = 〈v,u〉A by symmetry

(d) 〈u,u〉A = uTAu ≥ 0 if u 6= 0 by positive definiteness and equality holds trivially
when u = 0.

2. Property (3) holds if and only if A is symmetric. Property (4) holds if and only if A
is positive definite (by definition)

Problem 2

1. Let x1,x2, . . . ,xk be an A-orthogonal set of vectors, that is xT
i Axj = 0 for i 6= j.

Show that if A is symmetric and positive definite, then x1,x2, . . . ,xk are linearly
independent. Does this hold when A is symmetric but not positive definite?

2. Let x1,x2, . . . ,xn be n linearly independent vectors of Rn and A a n × n symmetric
positive definite matrix. Show that we can use the Gram-Schmidt algorithm to create
a full A-orthogonal set of n vectors. That is, subtracting from xi its A-overlap with
x1,x2, . . . ,xi−1 will never create a zero vector.
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Solution

1. Suppose there is some xk that is the linear combination of other guys i.e.:

xk = α1xy1 + α2xy2 + · · ·+ αkxyk

If we multiply from the left by xT
k A we get:

xT
k Axk = α1x

T
k Axy1 + α2x

T
k Axy2 + · · ·+ αkx

T
k Axyk

= 0 + 0 + · · ·+ 0 = 0

If A is postive definite then xT
k Axk > 0 giving a contradiction. Note that symmetry

alone is not sufficient as if A = 0 then every vector is A-orthogonal to every other
vector.

2. The Gram-Schmidt algorithm for A-orthogonalization of a set of vectors x1,x2, . . . ,xk

is

x̃i = xi −
i−1∑
j=1

xi ·Ax̃j

x̃j ·Ax̃j

x̃j

(With optional rescaling of the resulting vectors so that their A-norm is equal to 1).
We can see that each of the x̃i’s is just a linear combination of the vectors x1,x2, . . . ,xi,
using induction. Indeed, x̃1 is just equal to x1 and x̃i results from xi after the sub-
traction of some scalar multiples of x̃1, x̃2, . . . , x̃i−1. But each of them is just a linear
combination of xj’s with j < i (using the inductive hypothesis). Therefore, in each

step of the algorithm, the sum
∑i−1

j=1
xi·Ax̃j

x̃j ·Ax̃j
x̃j is a linear combination of x1,x2, . . . ,xi−1

and therefore linearly independent of xi. Therefore, none of the x̃i’s thus created can
ever be equal to zero.

Problem 3

Let A be a n× n symmetric positive definite matrix. Consider the steepest descent method
for the minimization of the function

f(x) =
1

2
xTAx− bTx + c

1. Let xmin be the value that minimizes f(x). Show that

f(xmin) = c− 1

2
bTA−1b

2. If xk is the k-th iterate, show that

f(xk)− f(xmin) =
1

2
rT

k A−1rk
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3. Show that

rk+1 =

(
I− Arkr

T
k

rT
k Ark

)
rk

4. Show that

[f(xk+1)− f(xmin)] = [f(xk)− f(xmin)]

(
1− (rT

k rk)
2

(rT
k Ark)(rT

k A−1rk)

)
5. Show that

[f(xk+1)− f(xmin)] ≤ [f(xk)− f(xmin)]

(
1− σmin

σmax

)
where σmin, σmax are the minimum and maximum singular values of A, respectively.

6. What does the result of (5) imply for the convergence speed of steepest descent?

[Note: Even if you fail to prove one of (1)-(6) you may still use it to answer a subsequent
question]

Solution

1. Recall that ∇f(x) = Ax− b so xmin = A−1b. Substituting,

f(xmin) =
1

2
(A−1b)TA(A−1b)− bT (A−1b) + c

=
1

2
bTA−1AA−1b− bTA−1b + c

=
1

2
bTA−1b− bTA−1b + c

= c− 1

2
bTA−1b

2. Recall that r = b−Ax. Now proceed as:

f(xk)− f(xmin) =
1

2
xT

k Axk − bTxk + c− c +
1

2
bTA−1b

=
1

2
xT

k Axk − bTA−1Axk +
1

2
bTA−1b

=
1

2
xT

k Axk −
1

2
bTA−1Axk −

1

2
bTA−1Axk +

1

2
bTA−1b

=
1

2
(Axk − b)Txk −

1

2
bTA−1(Axk − b)

= −1

2
rT

k xk +
1

2
bTA−1rk
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= −1

2
rT

k A−1Axk +
1

2
rT

k A−1b

= −1

2
rT

k A−1(Axk − b)

=
1

2
rT

k A−1rk

3.

rk+1 = rk − αkArk

= rk −Ark
rT

k rk

rT
k Ark

=

(
I− Arkr

T
k

rT
k Ark

)
rk

4.

f(xk+1)− f(xmin) =
1

2
rT

k+1A
−1rk+1

=
1

2
rT

k

(
I− Arkr

T
k

rT
k Ark

)T

A−1

(
I− Arkr

T
k

rT
k Ark

)
rk

=
1

2
rT

k

(
A−1 − 2

rkr
T
k

rT
k Ark

+
rkr

T
k Arkr

T
k

(rT
k Ark)2

)
rk

=
1

2
rT

k

(
A−1 − 2

rkr
T
k

rT
k Ark

+
rk(r

T
k Ark)r

T
k

(rT
k Ark)2

)
rk

=
1

2
rT

k

(
A−1 − rkr

T
k

rT
k Ark

)
rk

=
1

2

(
rT

k A−1rk −
(rT

k rk)
2

rT
k Ark

)
=

1

2
rT

k A−1rk

(
1− (rT

k rk)
2

(rT
k Ark)(rT

k A−1rk)

)
= (f(xk)− f(xmin))

(
1− (rT

k rk)
2

(rT
k Ark)(rT

k A−1rk)

)
5. In the review session we proved that

rT
k Ark ≤ σA

maxr
T
k Ark

rT
k A−1rk ≤ σA−1

max rT
k Ark = 1

σA
min

rT
k Ark

Therefore
(rT

k Ark)(r
T
k A−1rk) ≤

σmax

σmin

(rT
k Ark)

2
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or
(rT

k rk)
2

(rT
k Ark)(rT

k A−1rk)
≥ σmin

σmax

Thus, using (4)

[f(xk+1)− f(xmin)] ≤ [f(xk)− f(xmin)]

(
1− σmin

σmax

)
6. This result shows that the speed of convergence is associated with the condition number

of A. With a perfectly conditioned matrix (which has to be a multiple of the identity,
if it is symmetric) steepest descent will converge in 1 step. In a matrix with a condition
number equal to κ, in each step of steepest descent, the distance of the current function
value from the minimum value will shrink by a factor of 1− 1/κ.
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