CS205 Homework #6 Solutions

Problem 1

- 1. Let **A** be a symmetric and positive definite $n \times n$ matrix. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ prove that the operation $\langle x, y \rangle_A = x^T A y = x \cdot A y$ is an inner product on \mathbb{R}^n . That is, show that the following properties are satisfied
	- (a) $\langle \mathbf{u} + \mathbf{v}, \mathbf{z} \rangle$ _A = $\langle \mathbf{u}, \mathbf{z} \rangle$ _A + $\langle \mathbf{v}, \mathbf{z} \rangle$ _A
	- (b) $\langle \alpha \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}} = \alpha \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}}$
	- (c) $\langle \mathbf{u}, \mathbf{v} \rangle$ _A = $\langle \mathbf{v}, \mathbf{u} \rangle$ _A
	- (d) $\langle \mathbf{u}, \mathbf{u} \rangle_{\mathbf{A}} \geq 0$ and equality holds if and only if $\mathbf{u} = \mathbf{0}$
- 2. Which of those properties, if any, fail to hold when A is not positive definite? Which fail to hold if it is not symmetric?

Solution

- 1. (a) $\langle \mathbf{u} + \mathbf{v}, \mathbf{z} \rangle_A = (\mathbf{u} + \mathbf{v})^T \mathbf{A} \mathbf{z} = \mathbf{u}^T \mathbf{A} \mathbf{z} + \mathbf{v}^T \mathbf{A} \mathbf{z} = \langle \mathbf{u}, \mathbf{z} \rangle_A + \langle \mathbf{v}, \mathbf{z} \rangle_A$
	- (b) $\langle \alpha \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}} = (\alpha \mathbf{u})^T \mathbf{A} \mathbf{v} = \alpha (\mathbf{u}^T \mathbf{A} \mathbf{v}) = \alpha \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}}$
	- (c) $\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}} = \mathbf{u}^T \mathbf{A} \mathbf{v} = \mathbf{u}^T \mathbf{A}^T \mathbf{v} = \mathbf{A} \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{A} \mathbf{u} = \mathbf{v}^T \mathbf{A} \mathbf{u} = \langle \mathbf{v}, \mathbf{u} \rangle_{\mathbf{A}}$ by symmetry
	- (d) $\langle \mathbf{u}, \mathbf{u} \rangle_A = \mathbf{u}^T A \mathbf{u} \ge 0$ if $\mathbf{u} \ne 0$ by positive definiteness and equality holds trivially when $\mathbf{u} = 0$.
- 2. Property (3) holds if and only if \bf{A} is symmetric. Property (4) holds if and only if \bf{A} is positive definite (by definition)

Problem 2

- 1. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ be an **A**-orthogonal set of vectors, that is $\mathbf{x}_i^T \mathbf{A} \mathbf{x}_j = 0$ for $i \neq j$. Show that if **A** is symmetric and positive definite, then x_1, x_2, \ldots, x_k are linearly independent. Does this hold when A is symmetric but not positive definite?
- 2. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be *n* linearly independent vectors of \mathbb{R}^n and **A** a $n \times n$ symmetric positive definite matrix. Show that we can use the Gram-Schmidt algorithm to create a full A-orthogonal set of n vectors. That is, subtracting from x_i its A-overlap with $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{i-1}$ will never create a zero vector.

Solution

1. Suppose there is some x_k that is the linear combination of other guys i.e.:

$$
\mathbf{x}_k = \alpha_1 \mathbf{x}_{y_1} + \alpha_2 \mathbf{x}_{y_2} + \cdots + \alpha_k \mathbf{x}_{y_k}
$$

If we multiply from the left by $\mathbf{x}_k^T \mathbf{A}$ we get:

$$
\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k} = \alpha_{1} \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{y_{1}} + \alpha_{2} \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{y_{2}} + \cdots + \alpha_{k} \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{y_{k}} = 0 + 0 + \cdots + 0 = 0
$$

If **A** is postive definite then $\mathbf{x}_k^T \mathbf{A} \mathbf{x}_k > 0$ giving a contradiction. Note that symmetry alone is not sufficient as if $A = 0$ then every vector is A-orthogonal to every other vector.

2. The Gram-Schmidt algorithm for **A**-orthogonalization of a set of vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ is

$$
\tilde{\mathbf{x}}_i = \mathbf{x}_i - \sum_{j=1}^{i-1} \frac{\mathbf{x}_i \cdot \mathbf{A} \tilde{\mathbf{x}}_j}{\tilde{\mathbf{x}}_j \cdot \mathbf{A} \tilde{\mathbf{x}}_j}\tilde{\mathbf{x}}_j
$$

(With optional rescaling of the resulting vectors so that their A-norm is equal to 1). We can see that each of the $\tilde{\mathbf{x}}_i$'s is just a linear combination of the vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_i$, using induction. Indeed, $\tilde{\mathbf{x}}_1$ is just equal to \mathbf{x}_1 and $\tilde{\mathbf{x}}_i$ results from \mathbf{x}_i after the subtraction of some *scalar* multiples of $\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \ldots, \tilde{\mathbf{x}}_{i-1}$. But each of them is just a linear combination of x_j 's with $j < i$ (using the inductive hypothesis). Therefore, in each step of the algorithm, the sum $\sum_{j=1}^{i-1}$ $\mathbf{x}_i\!\cdot\! \mathbf{A}\tilde{\mathbf{x}}_j$ $\tilde{\mathbf{x}}_i \cdot \mathbf{A} \tilde{\mathbf{x}}_j \tilde{\mathbf{x}}_j$ is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{i-1}$ and therefore linearly independent of \mathbf{x}_i . Therefore, none of the $\tilde{\mathbf{x}}_i$'s thus created can ever be equal to zero.

Problem 3

Let **A** be a $n \times n$ symmetric positive definite matrix. Consider the steepest descent method for the minimization of the function

$$
f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x} + c
$$

1. Let \mathbf{x}_{\min} be the value that minimizes $f(\mathbf{x})$. Show that

$$
f(\mathbf{x}_{\min}) = c - \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}
$$

2. If \mathbf{x}_k is the k-th iterate, show that

$$
f(\mathbf{x}_k) - f(\mathbf{x}_{\min}) = \frac{1}{2} \mathbf{r}_k^T \mathbf{A}^{-1} \mathbf{r}_k
$$

3. Show that

$$
\mathbf{r}_{k+1} = \left(\mathbf{I} - \frac{\mathbf{A}\mathbf{r}_k\mathbf{r}_k^T}{\mathbf{r}_k^T\mathbf{A}\mathbf{r}_k}\right)\mathbf{r}_k
$$

4. Show that

$$
[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{\min})] = [f(\mathbf{x}_k) - f(\mathbf{x}_{\min})] \left(1 - \frac{(\mathbf{r}_k^T \mathbf{r}_k)^2}{(\mathbf{r}_k^T \mathbf{A} \mathbf{r}_k)(\mathbf{r}_k^T \mathbf{A}^{-1} \mathbf{r}_k)} \right)
$$

5. Show that

$$
[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{\min})] \le [f(\mathbf{x}_k) - f(\mathbf{x}_{\min})] \left(1 - \frac{\sigma_{\min}}{\sigma_{\max}}\right)
$$

where $\sigma_{\min}, \sigma_{\max}$ are the minimum and maximum singular values of **A**, respectively.

6. What does the result of (5) imply for the convergence speed of steepest descent?

[Note: Even if you fail to prove one of $(1)-(6)$ you may still use it to answer a subsequent question]

Solution

1. Recall that $\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$ so $\mathbf{x}_{\text{min}} = \mathbf{A}^{-1}\mathbf{b}$. Substituting,

$$
f(\mathbf{x}_{\min}) = \frac{1}{2} (\mathbf{A}^{-1} \mathbf{b})^T \mathbf{A} (\mathbf{A}^{-1} \mathbf{b}) - \mathbf{b}^T (\mathbf{A}^{-1} \mathbf{b}) + c
$$

$$
= \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{A} \mathbf{A}^{-1} \mathbf{b} - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b} + c
$$

$$
= \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b} - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b} + c
$$

$$
= c - \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}
$$

2. Recall that $\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}$. Now proceed as:

$$
f(\mathbf{x}_k) - f(\mathbf{x}_{\min}) = \frac{1}{2} \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - \mathbf{b}^T \mathbf{x}_k + c - c + \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}
$$

\n
$$
= \frac{1}{2} \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_k + \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}
$$

\n
$$
= \frac{1}{2} \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_k - \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_k + \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}
$$

\n
$$
= \frac{1}{2} (\mathbf{A} \mathbf{x}_k - \mathbf{b})^T \mathbf{x}_k - \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} (\mathbf{A} \mathbf{x}_k - \mathbf{b})
$$

\n
$$
= -\frac{1}{2} \mathbf{r}_k^T \mathbf{x}_k + \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{r}_k
$$

$$
= -\frac{1}{2}\mathbf{r}_{k}^{T}\mathbf{A}^{-1}\mathbf{A}\mathbf{x}_{k} + \frac{1}{2}\mathbf{r}_{k}^{T}\mathbf{A}^{-1}\mathbf{b}
$$

$$
= -\frac{1}{2}\mathbf{r}_{k}^{T}\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}_{k} - \mathbf{b})
$$

$$
= \frac{1}{2}\mathbf{r}_{k}^{T}\mathbf{A}^{-1}\mathbf{r}_{k}
$$

3.

$$
\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{r}_k \n= \mathbf{r}_k - \mathbf{A} \mathbf{r}_k \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{r}_k^T \mathbf{A} \mathbf{r}_k} \n= \left(\mathbf{I} - \frac{\mathbf{A} \mathbf{r}_k \mathbf{r}_k^T}{\mathbf{r}_k^T \mathbf{A} \mathbf{r}_k} \right) \mathbf{r}_k
$$

4.

$$
f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{\min}) = \frac{1}{2} \mathbf{r}_{k+1}^T \mathbf{A}^{-1} \mathbf{r}_{k+1}
$$

\n
$$
= \frac{1}{2} \mathbf{r}_{k}^T \left(\mathbf{I} - \frac{\mathbf{A} \mathbf{r}_{k} \mathbf{r}_{k}^T}{\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k}} \right)^T \mathbf{A}^{-1} \left(\mathbf{I} - \frac{\mathbf{A} \mathbf{r}_{k} \mathbf{r}_{k}^T}{\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k}} \right) \mathbf{r}_{k}
$$

\n
$$
= \frac{1}{2} \mathbf{r}_{k}^T \left(\mathbf{A}^{-1} - 2 \frac{\mathbf{r}_{k} \mathbf{r}_{k}^T}{\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k}} + \frac{\mathbf{r}_{k} \mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k} \mathbf{r}_{k}^T}{(\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k})^2} \right) \mathbf{r}_{k}
$$

\n
$$
= \frac{1}{2} \mathbf{r}_{k}^T \left(\mathbf{A}^{-1} - 2 \frac{\mathbf{r}_{k} \mathbf{r}_{k}^T}{\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k}} + \frac{\mathbf{r}_{k} (\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k}) \mathbf{r}_{k}^T}{(\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k})^2} \right) \mathbf{r}_{k}
$$

\n
$$
= \frac{1}{2} \mathbf{r}_{k}^T \left(\mathbf{A}^{-1} - \frac{\mathbf{r}_{k} \mathbf{r}_{k}^T}{\mathbf{r}_{k}^T \mathbf{A} \mathbf{r}_{k}} \right) \mathbf{r}_{k}
$$

\n
$$
= \frac{1}{2} \left(\mathbf{r}_{k}^T \mathbf{A}^{-1} \mathbf{r}_{k} - \frac{(\mathbf{r}_{k}^T \mathbf{r}_{k})^2}{\mathbf{r}_{k
$$

5. In the review session we proved that

$$
\mathbf{r}_k^T\mathbf{A}\mathbf{r}_k \leq \sigma_{\max}^{\mathbf{A}} \mathbf{r}_k^T\mathbf{A}\mathbf{r}_k
$$

$$
\mathbf{r}_k^T\mathbf{A}^{-1}\mathbf{r}_k \leq \sigma_{\max}^{\mathbf{A}^{-1}} \mathbf{r}_k^T\mathbf{A}\mathbf{r}_k = \tfrac{1}{\sigma_{\min}^{\mathbf{A}}} \mathbf{r}_k^T\mathbf{A}\mathbf{r}_k
$$

Therefore

$$
(\mathbf{r}_k^T\mathbf{A}\mathbf{r}_k)(\mathbf{r}_k^T\mathbf{A}^{-1}\mathbf{r}_k) \leq \frac{\sigma_{\max}}{\sigma_{\min}}(\mathbf{r}_k^T\mathbf{A}\mathbf{r}_k)^2
$$

or

$$
\frac{(\mathbf{r}_k^T \mathbf{r}_k)^2}{(\mathbf{r}_k^T \mathbf{A} \mathbf{r}_k)(\mathbf{r}_k^T \mathbf{A}^{-1} \mathbf{r}_k)} \ge \frac{\sigma_{\min}}{\sigma_{\max}}
$$

Thus, using (4)

$$
[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{\min})] \le [f(\mathbf{x}_k) - f(\mathbf{x}_{\min})] \left(1 - \frac{\sigma_{\min}}{\sigma_{\max}}\right)
$$

6. This result shows that the speed of convergence is associated with the condition number of A. With a perfectly conditioned matrix (which has to be a multiple of the identity, if it is symmetric) steepest descent will converge in 1 step. In a matrix with a condition number equal to κ , in each step of steepest descent, the distance of the current function value from the minimum value will shrink by a factor of $1 - 1/\kappa$.