CS205 Homework #6 Solutions

Problem 1

1. Let A be a symmetric and positive definite n X n matrix. If x,y € R" prove that the
operation (x,y), = x’ Ay = x- Ay is an inner product on R". That is, show that the
following properties are satisfied

(a) (u+v,z), = (u,2), +(v,2),
(b) {ou,v), = a(u,v),
(©) (u,v)a = (V,u)y
(d) (u,u), >0 and equality holds if and only if u =0
2. Which of those properties, if any, fail to hold when A is not positive definite? Which
fail to hold if it is not symmetric?

Solution
1 (a) (ut+v,z), =(u+v) Az=uTAz +v'Az = (u,2), + (v,2),
(b) (au,v), = (au)"Av = a(u"Av) = a (u,v),
(c) (u,v), =u’Av=u"ATv=Au-v=v-Au=v'Au= (v,u), by symmetry
(d) (u,u), =u’Au > 0if u # 0 by positive definiteness and equality holds trivially

when u = 0.

2. Property (3) holds if and only if A is symmetric. Property (4) holds if and only if A
is positive definite (by definition)

Problem 2
1. Let x1,Xa,...,X; be an A-orthogonal set of vectors, that is x] Ax; = 0 for i # j.
Show that if A is symmetric and positive definite, then xi,Xs,...,X; are linearly

independent. Does this hold when A is symmetric but not positive definite?

2. Let x1,Xs,...,X, be n linearly independent vectors of R” and A a n X n symmetric
positive definite matrix. Show that we can use the Gram-Schmidt algorithm to create
a full A-orthogonal set of n vectors. That is, subtracting from x; its A-overlap with
X1, Xo,...,X;_1 will never create a zero vector.



Solution

1. Suppose there is some x;, that is the linear combination of other guys i.e.:
X = Q1Xy, + QaXy, + -0+ Xy,
If we multiply from the left by x} A we get:
T _ T T T _ _
X, AXy = a1X, Axy, + aox Axy, + -+ apx Axy, =0+04+---+0=0

If A is postive definite then x! Ax;, > 0 giving a contradiction. Note that symmetry
alone is not sufficient as if A = 0 then every vector is A-orthogonal to every other

vector.
2. The Gram-Schmidt algorithm for A-orthogonalization of a set of vectors x1,Xs, ..., Xy
is -
11— ~
- X; - AX; _
Xi = X _Zi] AR
7j=1
(With optional rescaling of the resulting vectors so that their A-norm is equal to 1).
We can see that each of the X;’s is just a linear combination of the vectors xi, Xa, ..., X;,
using induction. Indeed, X; is just equal to x; and X; results from x; after the sub-
traction of some scalar multiples of X1,Xs,...,X;_1. But each of them is just a linear

combination of x;’s with j < ¢ (using the inductive hypothesis). Therefore, in each

step of the algorithm, the sum Z;ll %ij
J J

and therefore linearly independent of x;. Therefore, none of the X;’s thus created can

ever be equal to zero.

is a linear combination of X1, X, ..., X;_1

Problem 3

Let A be a n x n symmetric positive definite matrix. Consider the steepest descent method
for the minimization of the function

1
f(x) = §XTAX ~bix+ec

1. Let Xy, be the value that minimizes f(x). Show that
L7y
f(Xmin) = ¢ — §b A™Db
2. If x;, is the k-th iterate, show that

f(Xk> - f(Xmin) = %I‘ZA_lI‘k,



3. Show that

Argrl
rp = (I— T Ik
r, Ary

4. Show that

[f(Xk+1) - f(Xmin)] = [f(xk) - f(Xmin>] <1 - (rfAI‘(:)k(:‘%)A_lI‘k)>

5. Show that

o) = )] < (700 = o] (1= 222 )

Umax

where o, Omax are the minimum and maximum singular values of A, respectively.
6. What does the result of (5) imply for the convergence speed of steepest descent?
[Note: Even if you fail to prove one of (1)-(6) you may still use it to answer a subsequent

question]

Solution
1. Recall that V f(x) = Ax — b 50 X, = A~ 'b. Substituting,

[ = 5(AD)TA(A D)~ bT(Ab) +
= %bTA‘lAA‘lb ~b"A b+
= %bTAlb ~b'A b+
= c— %bTA‘lb

2. Recall that r = b — Ax. Now proceed as:

1 1
f(Xk) - f(Xmin) - §X5AX]€ - bTXk +c—cH §bTA_1b

= 1XgAXk - bTAilAXk + %bTAlb

2

1 T 1 T A —1 1 T A —1 1 T A —1
= —x,Ax; — -b"ATAx;, — -b"ATAx;, + -b"A™Db

2 2 2 2

1 1
= §(A><,c —b)'x;, — §bTA*1(Ax,€ —b)
= —erx —}—leA_lr

g KTk T g F



2
1
= —§rfA*1(Axk —b)
1
= §rZA_1rk
3.
Ter1 = T — OzkAI‘k;
I‘TI'k
- — Ar, -~
Tk rkrfArk
Arkrf
= — r
rl Ary,
4.
1 _
f(Xk+1) — f(Xmin) §rk+1A Tkt1
1 p Arjr, 1 Arjr,
- I- A I-
Qrk( rl Ary, r! Ary, i
er Al o rkr;‘g rkrgArkrf e
9k rfAr,  (r]Ary)?
Lo (gt o 0t Te(rpArgry
2k rl Ary (rf Ary)? .
1 4 _ rirl
- A 1 k
9"k ( rgArk) i
L .. (rfr;)?
- Ay, — kRS
9 \T* Tk rl Ary,
1op. (rfr;)?
A 1 1 — k
2" ( (] Ar) (T A Try)

(rirg)?

(f (k) = f (Kuin)) (1 ~ (tTAr) (1A y)

5. In the review session we proved that

rlAr, < ok rTAr,

max

_ —1
rf A7, < o Tl Ar, = [ Ary

Therefore

max .
min

O-max
(rg Ary)(rp A7 'ry) < (rk Ary)?

Omin

)



or )
(rk I'k)2 Omin
(rFAry)(rF A1) = omax

Thus, using (4)

[F(41) = £ Cmin)] < [F60) = F (o) (1 - Jmin)

Umax

. This result shows that the speed of convergence is associated with the condition number
of A. With a perfectly conditioned matrix (which has to be a multiple of the identity,
if it is symmetric) steepest descent will converge in 1 step. In a matrix with a condition
number equal to k, in each step of steepest descent, the distance of the current function
value from the minimum value will shrink by a factor of 1 — 1/k.



