CS205 Homework $#6$

Problem 1

- 1. Let **A** be a symmetric and positive definite $n \times n$ matrix. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ prove that the operation $\langle x, y \rangle_A = x^T A y = x \cdot A y$ is an inner product on \mathbb{R}^n . That is, show that the following properties are satisfied
	- (a) $\langle \mathbf{u} + \mathbf{v}, \mathbf{z} \rangle_{\mathbf{A}} = \langle \mathbf{u}, \mathbf{z} \rangle_{\mathbf{A}} + \langle \mathbf{v}, \mathbf{z} \rangle_{\mathbf{A}}$
	- (b) $\langle \alpha \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}} = \alpha \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{A}}$
	- (c) $\langle \mathbf{u}, \mathbf{v} \rangle$ _A = $\langle \mathbf{v}, \mathbf{u} \rangle$ _A
	- (d) $\langle \mathbf{u}, \mathbf{u} \rangle_A \geq 0$ and equality holds if and only if $\mathbf{u} = \mathbf{0}$
- 2. Which of those properties, if any, fail to hold when A is not positive definite? Which fail to hold if it is not symmetric?

Problem 2

- 1. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ be an **A**-orthogonal set of vectors, that is $\mathbf{x}_i^T \mathbf{A} \mathbf{x}_j = 0$ for $i \neq j$. Show that if **A** is symmetric and positive definite, then x_1, x_2, \ldots, x_k are linearly independent. Does this hold when \bf{A} is symmetric but not positive definite?
- 2. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be *n* linearly independent vectors of \mathbb{R}^n and **A** a $n \times n$ symmetric positive definite matrix. Show that we can use the Gram-Schmidt algorithm to create a full **A**-orthogonal set of *n* vectors. That is, subtracting from x_i its **A**-overlap with $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{i-1}$ will never create a zero vector.

Problem 3

Let A be a $n \times n$ symmetric positive definite matrix. Consider the steepest descent method for the minimization of the function

$$
f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x} + c
$$

1. Let \mathbf{x}_{\min} be the value that minimizes $f(\mathbf{x})$. Show that

$$
f(\mathbf{x}_{\min}) = c - \frac{1}{2} \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}
$$

2. If \mathbf{x}_k is the k-th iterate, show that

$$
f(\mathbf{x}_k) - f(\mathbf{x}_{\min}) = \frac{1}{2} \mathbf{r}_k^T \mathbf{A}^{-1} \mathbf{r}_k
$$

3. Show that

$$
\mathbf{r}_{k+1} = \left(\mathbf{I} - \frac{\mathbf{A}\mathbf{r}_k\mathbf{r}_k^T}{\mathbf{r}_k^T\mathbf{A}\mathbf{r}_k}\right)\mathbf{r}_k
$$

4. Show that

$$
[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{\min})] = [f(\mathbf{x}_k) - f(\mathbf{x}_{\min})] \left(1 - \frac{(\mathbf{r}_k^T \mathbf{r}_k)^2}{(\mathbf{r}_k^T \mathbf{A} \mathbf{r}_k)(\mathbf{r}_k^T \mathbf{A}^{-1} \mathbf{r}_k)} \right)
$$

5. Show that

$$
[f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{\min})] \le [f(\mathbf{x}_k) - f(\mathbf{x}_{\min})] \left(1 - \frac{\sigma_{\min}}{\sigma_{\max}}\right)
$$

where $\sigma_{\min}, \sigma_{\max}$ are the minimum and maximum singular values of **A**, respectively.

6. What does the result of (5) imply for the convergence speed of steepest descent?

[Note: Even if you fail to prove one of $(1)-(6)$ you may still use it to answer a subsequent question]