
CS205 Homework #3 Solutions

Problem 1

Consider an n× n matrix A.

1. Show that if A has distinct eigenvalues all the corresponding eigenvectors are linearly
independent.

2. Show that if A has a full set of eigenvectors (i.e. any eigenvalue λ with multiplicity k has
k corresponding linearly independent eigenvectors), it can be written as A = QΛQ−1

where Λ is a diagonal matrix of A’s eigenvalues and Q’s columns are A’s eigenvectors.
Hint: show that AQ = QΛ and that Q is invertible.

3. If A is symmetric show that any two eigenvectors corresponding to different eigenvalues
are orthogonal.

4. If A is symmetric show that it has a full set of eigenvectors. Hint: If (λ, q) is an
eigenvalue, eigenvector (q normalized) pair and λ is of multiplicity k > 1, show that
A − λqqT has an eigenvalue of λ with multiplicity k − 1. To show that consider the
Householder matrix H such that Hq = e1 and note that HAH−1 = HAH and A are
similar.

5. If A is symmetric show that it can be written as A = QΛQT for an orthogonal matrix
Q. (You may use the result of (4) even if you didn’t prove it)

Solution

1. Assume that the eigenvectors q1,q2, . . . ,qn are not linearly independent. Therefore,
among these eigenvectors there is one (say q1) which can be written as a linear combi-
nation of some of the others (say q2, . . . ,qk) where k ≤ n. Without loss of generality,
we can assume that q2, . . . ,qk are linearly independent (we can keep removing vectors
from a linearly dependent set until it becomes independent), therefore the decomposi-
tion of q1 into a linear combination q1 =

∑k
i=2 αkqk is unique. However

q1 =
k∑

i=2

αkqk ⇒ Aq1 = A

(
k∑

i=2

αkqk

)
⇒ λ1q1 =

k∑
i=2

λkαkqk ⇒ q1 =
k∑

i=2

λk

λ1

αkqk

In the third equation above, we assumed that λ1 6= 0. This is valid, since otherwise
the same equation would indicate that there is a linear combination of q2, . . . ,qk that
is equal to zero (which contradicts their linear independence). From the last equation
above and the uniqueness of the decomposition of q1 into a linear combination of
q2, . . . ,qk we have λk

λ1
αk = αk. There must be an αk0 6= 0, 2 ≤ k0 ≤ k, otherwise we

would have q1 = 0. Thus λ1 = λk0 which is a contradiction.
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2. Since A has a full set of eigenvectors, we can write Aqi = λiqi, i = 1, . . . , n.
We can collect all these equations into the matrix equation AQ = QΛ, where Q
has the n eigenvectors as columns, and Λ = diag(λ1, . . . , λn). From (1) we have
that the columns of Q are linearly independent, therefore it is invertible. Thus
AQ = QΛ ⇒ A = QΛQ−1.

3. If λ1, λ2 are two distinct eigenvalues and q1,q2 are their corresponding eigenvectors
(there could be several eigenvectors per eigenvalue, if they have multiplicity higher
than 1), then

qT
1 Aq2 = qT

1 (Aq2) = λ2(q
T
1 q2)

qT
1 Aq2 = qT

1 ATq2 = (Aq1)
Tq2 = λ1(q

T
1 q2)

⇒ λ1(q
T
1 q2) = λ2(q

T
1 q2)

⇒ (λ1 − λ2)(q
T
1 q2) = 0

λ1 6=λ2=⇒ qT
1 q2 = 0

4. In the review session we saw that that for a symmetric matrix A, if λ is a multiple
eigenvalue and q one of its associated eigenvectors, then the matrix A−λqqT reduces
the multiplicity of λ by 1, moving q from the space of eigenvectors of λ into the
nullspace (or the space of eigenvectors of zero).

Assume that the eigenvalue λ with multiplicity k has only l linearly independent
eigenvectors, where l < k, say q1,q2, . . . ,ql. Then, using the previous result, the
matrix A − λ

∑l
i=1 qiq

T
i has λ as an eigenvalue with multiplicity l − k and the vec-

tors q1,q2, . . . ,ql belong to the set of eigenvectors associated with the zero eigen-
value. Since λ is an eigenvalue of this matrix, there must be a vector q̂ such that(
A− λ

∑l
i=1 qiq

T
i

)
q̂ = λq̂. Furthermore, we have that q̂ must be orthogonal to all

vectors q1,q2, . . . ,ql since they are eigenvectors of a different eigenvalue (the zero
eigenvalue). Therefore(

A− λ
l∑

i=1

qiq
T
i

)
q̂ = λq̂ ⇒ Aq̂− λ

l∑
i=1

qiq
T
i q̂ = λq̂ ⇒ Aq̂ = λq̂

This means that q̂ is an eigenvector of the original matrix A associated with λ and is
orthogonal to all q1,q2, . . . ,ql, which contradicts our hypothesis that there exist only
l < k linearly independent eigenvectors.

5. From (4) we have that A has a full set of eigenvectors. We can assume that the
eigenvectors of that set corresponding to the same eigenvalue are orthogonal to each
other (we can use the Gram-Schmidt algorithm to make an orthogonal set from a
linearly independent set). We also know from (3) that eigenvectors corresponding to
different eigenvalues are orthogonal. Therefore, we can find a full, orthonormal set of
eigenvectors for A. Under that premise, the matrix Q containing all the eigenvectors
as its columns is orthogonal, that is QTQ = I ⇒ Q−1 = QT . Finally, using (2) we
have

A = QΛQ−1 = QΛQT
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Problem 2

[Adapted from Heath 4.23] Let A be an n×n matrix with eigenvalues λ1, . . . , λn. Recall that
these are the roots of the characteristic polynomial of A, defined as f(λ) ≡ det(A− λI). Also
we define the multiplicity of an eigenvalue to be the degree of it as a root of the characteristic
polynomial.

1. Show that the determinant of A is equal to the product of its eigenvalues, i.e. det (A) =∏n
j=1 λj.

2. The trace of a matrix is defined to be the sum of its diagonal entries, i.e., trace(A) =∑n
j=1 ajj. Show that the trace of A is equal to the sum of its eigenvalues, i.e. trace(A) =∑n
j=1 λj.

3. Recall a matrix B is similar to A if B = T−1AT for a non-singular matrix T. Show
that two similar matrices have the same trace and determinant.

4. Consider the matrix

A =



−am−1

am
−am−2

am
· · · − a1

am
− a0

am

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0


What is A’s characteristic polynomial? Describe how you can use the power method
find the largest root (in magnitude) of an arbitrary polynomial.

Solution

1. Since (−1)n is the highest order term coefficient and λ1, . . ., λn are solutions to f we
write f(λ) = (−1)n(λ − λ1) · · · (λ − λn). If we evaluate the characteristic polynomial
at zero we get f(0) = det(A− 0I) = detA. Also:

detA = f(0) = (−1)n(0− λ1) · · · (0− λn) = (−1)2n
n∏

i=1

λi =
n∏

i=1

λi

2. Consider the minor cofactor expansion of det(A − λI) which gives a sum of terms.
Each term is a product of n factors comprising one entry from each row and each
column. Consider the minor cofactor term containing members of the diagonal (a11 −
λ)(a22 − λ) · · · (ann − λ). The coefficient for the λn−1 term will be (−1)n(

∑n
i=1−λi) =

(−1)n+1∑n
i=1 λi. Observe that this minor cofactor term is the only one that will con-

tribute to the λn−1 order terms (i.e. if you didn’t use the diagonal for one row or
column in the determinant you lose two λ’s so you can’t get up to λn−1 order). Thus
coefficient of the λn−1 term is the trace of the matrix. We have traceA = f(λ) =

3



(−1)n(λ − λ1)(λ − λ2) · · · (λ − λn). The λn−1 coeffcient from this is going to be
(−1)n∑n

i=1−λi = (−1)2n∑n
i=1 λi =

∑n
i=1 λi.

3. Two matrices that are similar have the same eigenvalues. Thus the formulas given
above for the trace and the determinant that depend only on eigenvalues yield the
same value. Alternatively recall that det(AB) = detA detB so det(B−1AB) =
(detB−1)(detA)(detB) = (detA)(detB−1B) = detAI = detA. And trace(AB) =∑n

i=1

∑n
j=1 aijbji =

∑n
i=1

∑n
j=1 bijaji = trace(BA). Thus we have

trace((B−1A)B) = trace(BB−1A) = traceA

4. We can use the minor cofactor expansion along the top row. Expanding about i =
1, j = 1 we get (am−1/am − λ)λm−1 = −λm − am−1/amλm−1 because the submatrix
A(2 : m, 2 : m) is triangular with −λ on the diagonal. Then for i = 1, j = k we get
−am−k/amλm−k because we get a triangular sub matrix with m−k λ’s on the diagonal
and k − 1 1’s. Thus we get the equation

det(A− λI) = −λm − am−1

am

λm−1 −
m∑

k=2

am−k

am

λm−k = 0

The roots of the above polynomial are the same as if we multiply by −am and so

amλm + am−1λ
m−1 + · · ·+ a1λ + a0 = 0

To solve a polynomial equation simply form the matrix given in the homework. The
eigenvalues of this matrix are the roots of your polynomial. Use the power method to
get the first eigenvalue which is also the first root. Then use deflation to form a new
matrix and use the power method again to extract the second eigenvalue (and root).
After m runs of the power method all roots are recovered.

Problem 3

Let A be a m× n matrix and A = UΣVT its singular value decomposition.

1. Show that ‖A‖2 = ‖Σ‖2

2. Show that if m ≥ n then for all x ∈ Rn

σmin ≤
‖Ax‖2

‖x‖2

≤ σmax

where σmin, σmax are the smallest and largest singular values, respectively.

3. The Frobenius norm of a matrix A is defined as ‖A‖F =
√∑

i,j a2
ij. Show that ‖A‖F =√∑p

i=1 σ2
i where p = min{m, n}.
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4. If A is an m × n matrix and b is an m-vector prove that the solution x of minimum
Euclidean norm to the least squares problem Ax ∼= b is given by

x =
∑
σi 6=0

uT
i b

σi

vi

where ui, vi are the columns of U and V, respectively.

5. Show that the columns of U corresponding to non-zero singular values form an orthog-
onal basis of the column space of A. What space do the columns of U corresponding
to zero singular values span?

Solution

1. If Q is an orthogonal matrix, then

‖Qx‖2
2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2

2 ⇒ ‖Qx‖2 = ‖x‖2

Consequently

‖Ax‖2

‖x‖2

=
‖UΣVTx‖2

‖x‖2

=
‖ΣVTx‖2

‖x‖2

=
‖ΣVTx‖2

‖VTx‖2

=
‖Σy‖2

‖y‖2

(1)

where y = VTx. Since VT is a nonsingular matrix, as x ranges over the entire space
Rn \ {0}, so does y, too. Therefore

max
x6=0

‖Ax‖2

‖x‖2

= max
y 6=0

‖Σy‖2

‖y‖2

⇒ ‖A‖2 = ‖Σ‖2

2. Based on (1) we also have

min
x6=0

‖Ax‖2

‖x‖2

= min
y 6=0

‖Σy‖2

‖y‖2

Therefore

min
y 6=0

‖Σy‖2

‖y‖2

≤ ‖Ax‖2

‖x‖2

≤ max
y 6=0

‖Σy‖2

‖y‖2

However

‖Σy‖2

‖y‖2

=

√√√√∑n
i=1 σ2

i x
2
i∑n

i=1 x2
i

≤

√√√√∑n
i=1 σ2

maxx
2
i∑n

i=1 x2
i

= σmax

‖Σy‖2

‖y‖2

=

√√√√∑n
i=1 σ2

i x
2
i∑n

i=1 x2
i

≥

√√√√∑n
i=1 σ2

minx
2
i∑n

i=1 x2
i

= σmin
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Furthermore, if σmin = σi, σmax = σj, then

‖Σei‖2

‖ei‖2

= σi = σmin
‖Σej‖2

‖ej‖2

= σj = σmax

Therefore

σmin ≤
‖Ax‖2

‖x‖2

≤ σmax

and equality is actually attainable on either side.

3. We have that aij = [A]ij = [UΣVT ]ij =
∑

k σkuikvjk. Therefore

‖A‖F =
m∑

i=1

n∑
j=1

a2
ij =

m∑
i=1

n∑
j=1

( p∑
k=1

σkuikvjk

)( p∑
l=1

σluilvjl

)

=
p∑

k,l=1

σkσl

(
m∑

i=1

uikuil

) n∑
j=1

vjkvjl


However

∑m
i=1 uikuil is the dot product between the k-th and l-th columns of U and

therefore equals +1 when k = l and 0 otherwise. Similarly,
∑n

j=1 vjkvjl is the dot
product between the k-th and l-th columns of V and therefore equals +1 when k = l
and 0 otherwise. Thus

‖A‖F =
p∑

k,l=1

σkσlδklδkl =
p∑

k=1

σ2
k

where δij = 1 if i = j and 0 otherwise.

4. The least squares solution must satisfy the normal equations. It might not be unique
though if A does not have full column rank, in which case we will show that the
formula given just provides one of the least squares solutions (they all lead to the same
minimum for the residual). We can rewrite the normal equations as

ATAx0 = ATb ⇔ VΣUTUΣVTx0 = VΣUTb ⇔ Σ2V
T
x0 = ΣUTb

We can show that x =
∑

σi 6=0
uT

i b

σi
vi satisfies the last equality as follows

Σ2V
T
x = Σ2V

T

∑
σi 6=0

uT
i b

σi

vi

 =

∑
σi 6=0

uT
i b

σi

(
Σ2V

T
vi

)
=

∑
σi 6=0

uT
i b

σi

(
σ2

i ei

) =

∑
σi 6=0

σi

(
uT

i b
)
ei


=

 ∑
all σi

σi

(
uT

i b
)
ei

 = ΣUTb
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5. Using the singular value decomposition we can write

A =
p∑

i=1

σiuiv
T
i

where σ1, σ2, . . . , σp, p ≤ min(m, n) are the nonzero singular values of A. Let x ∈ Rn

be an arbitrary vector. Then

Ax =

( p∑
i=1

σiuiv
T
i

)
x =

p∑
i=1

(
σiv

T
i x
)
ui

Therefore, any vector in the column space of A is contained in span{u1,u2, . . . ,up}.
Additionally, any vector of u1,u2, . . . ,up is in the column space of A since uk = 1

σk
Avk.

Therefore, those two vector spaces coincide.

The columns of U corresponding to zero singular values span the normal complement
of the space spanned by u1,u2, . . . ,up. That is, they span the nullspace of AT .
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