CS205 Homework $#3$

Problem 1

Consider an $n \times n$ matrix **A**.

- 1. Show that if \bf{A} has distinct eigenvalues all the corresponding eigenvectors are linearly independent.
- 2. Show that if **A** has a full set of eigenvectors (i.e. any eigenvalue λ with multiplicity k has k corresponding linearly independent eigenvectors), it can be written as $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$ where Λ is a diagonal matrix of \mathbf{A} 's eigenvalues and \mathbf{Q} 's columns are \mathbf{A} 's eigenvectors. Hint: show that $\mathbf{A}\mathbf{Q} = \mathbf{Q}\mathbf{\Lambda}$ and that \mathbf{Q} is invertible.
- 3. If A is symmetric show that any two eigenvectors corresponding to different eigenvalues are orthogonal.
- 4. If **A** is symmetric show that it has a full set of eigenvectors. Hint: If (λ, q) is an eigenvalue, eigenvector (q normalized) pair and λ is of multiplicity $k > 1$, show that $\mathbf{A} - \lambda \mathbf{q} \mathbf{q}^T$ has an eigenvalue of λ with multiplicity $k - 1$. To show that consider the Householder matrix H such that $Hq = e_1$ and note that $HAH^{-1} = HAH$ and A are similar.
- 5. If **A** is symmetric show that it can be written as $\mathbf{A} = \mathbf{Q}\Lambda \mathbf{Q}^T$ for an orthogonal matrix Q. (You may use the result of (4) even if you didn't prove it)

Problem 2

[Adapted from Heath 4.23] Let **A** be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Recall that these are the roots of the characteristic polynomial of **A**, defined as $f(\lambda) \equiv det(\mathbf{A} - \lambda \mathbf{I})$. Also we define the multiplicity of an eigenvalue to be the degree of it as a root of the characteristic polynomial.

- 1. Show that the determinant of **A** is equal to the product of its eigenvalues, i.e. det (A) = $\prod_{j=1}^n \lambda_j$.
- 2. The trace of a matrix is defined to be the sum of its diagonal entries, i.e., trace(\mathbf{A}) = $\sum_{j=1}^{n} a_{jj}$. Show that the trace of **A** is equal to the sum of its eigenvalues, i.e. trace(**A**) = $\sum_{j=1}^n \lambda_j$.
- 3. Recall a matrix **B** is similar to **A** if **B** = $T^{-1}AT$ for a non-singular matrix **T**. Show that two similar matrices have the same trace and determinant.

4. Consider the matrix

$$
\mathbf{A} = \begin{pmatrix} -\frac{a_{m-1}}{a_m} & -\frac{a_{m-2}}{a_m} & \cdots & -\frac{a_1}{a_m} & -\frac{a_0}{a_m} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}
$$

What is A's characteristic polynomial? Describe how you can use the power method find the largest root (in magnitude) of an arbitrary polynomial.

Problem 3

Let **A** be a $m \times n$ matrix and $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$ its singular value decomposition.

- 1. Show that $||\mathbf{A}||_2 = ||\mathbf{\Sigma}||_2$
- 2. Show that if $m \geq n$ then for all $\mathbf{x} \in \mathbb{R}^n$

$$
\sigma_{\min} \leq \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} \leq \sigma_{\max}
$$

where $\sigma_{\min}, \sigma_{\max}$ are the smallest and largest singular values, respectively.

- 3. The Frobenius norm of a matrix **A** is defined as $||A||_F = \sqrt{\sum_{i,j} a_{ij}^2}$. Show that $||A||_F =$ $\sqrt{\sum_{i=1}^p \sigma_i^2}$ where $p = \min\{m, n\}.$
- 4. If **A** is an $m \times n$ matrix and **b** is an *m*-vector prove that the solution **x** of minimum Euclidean norm to the least squares problem $\mathbf{A}\mathbf{x} \cong \mathbf{b}$ is given by

$$
\mathbf{x} = \sum_{\sigma_i \neq 0} \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \mathbf{v}_i
$$

where \mathbf{u}_i , \mathbf{v}_i are the columns of U and V, respectively.

5. Show that the columns of U corresponding to non-zero singular values form an orthogonal basis of the column space of A. What space do the columns of U corresponding to zero singular values span?