
CS205 Homework #2 Solutions

Problem 1

[Heath 3.29, page 152] Let v be a nonzero n-vector. The hyperplane normal to v is the
(n-1)-dimensional subspace of all vectors z such that vTz = 0. A reflector is a linear
transformation R such that Rx = −x if x is a scalar multiple of v, and Rx = x if vTx = 0.
Thus, the hyperplane acts as a mirror: for any vector, its component within the hyperplane
is invariant, whereas its component orthogonal to the hyperplane is reversed.

1. Show that R = 2P − I, where P is the orthogonal projector onto the hyperplane
normal to v. Draw a picture to illustrate this result

2. Show that R is symmetric and orthogonal

3. Show that the Householder transformation

H = I− 2
vvT

vTv
,

is a reflector

4. Show that for any two vectors s and t such that s 6= t and ‖s‖2 = ‖t‖2, there is a
reflector R such that Rs = t

Solution

1. We can obtain the reflection Rx of a vector x with respect to a hyperplane through
the origin by adding to x twice the vector from x to Px, where Px is the projection
of x onto the same hyperplane (see figure 1). Thus

Rx = x + 2 (Px− x) = (2Px− x) = (2P− I)x

Since this has to hold for all x we have R = 2P− I.

An alternative way to derive the same result is to observe that the projection Px lies
halfway between x and its reflection Rx. Therefore

1

2
(x + Rx) = Px ⇒ Rx = (2Px− x) = (2P− I)x

which leads to the same result.

2. A reflection with respect to a hyperplane through the origin does not change the
magnitude of the reflected vector (see figure 1). Therefore we have

‖Rx‖ = ‖x‖ ⇒ xTRTRx = xTx ⇒ xT(RTR− I)x = 0
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Figure 1: Reflector

for any vector x. If we could show that xT(RTR− I)x = 0 implies RTR− I = 0 we
would have proven the orthogonality of R. Furthermore, since reflecting a vector twice
just gives the original vector we have R2 = I. Therefore we would have

RTR = I ⇒ RTR2 = R ⇒ RT = R

which shows that R is symmetric.

In order to show that RTR− I = 0 it suffices to show that for a symmetric matrix C,
xTCx = 0 for all x implies C = 0 (since RTR− I is symmetric). To show that, we
note that eT

i Cej = Cij where ek is the k-th column of the identity matrix. We have
eT
i Cei = Cii = 0 for any i and furthermore

0 = (ei + ej)
T C (ei + ej) = Cii + Cjj + Cij + Cji = 2Cij = 2Cji ⇒ C = 0

3. The Householder matrix reflects all vectors in the direction of v

H(αv) =

(
I− 2

vvT

vTv

)
(αv) = αv − 2α

v(vTv)

vTv
= α(v − 2v) = −(αv)

and leaves all vectors x with vTx = 0 invariant

Hx =

(
I− 2

vvT

vTv

)
x = x− 2

v(vTx)

vTv
= x

therefore, H is a reflector about the hyperplane {x : vTx = 0}.

4. Any two vectors s and t are reflections of each other with respect to the hyperplane
normal to the vector s− t that passes from the midpoint of s and t. When ‖s‖2 = ‖t‖2

2



that hyperplane passes through the origin and can be written as {x : (s− t)Tx = 0}.
Therefore the Householder transform

H = I− 2
(s− t)(s− t)T

(s− t)T(s− t)

is the reflection that maps s to t and vice versa.

To show that formally, we have

Hs = s− 2
(s− t)(s− t)Ts

(s− t)T(s− t)
=

s(s− t)T(s− t)− 2(s− t)(s− t)Ts

(s− t)T(s− t)

=
ssTs− 2stTs + stTt− 2ssTs + 2stTs + 2tsTs− 2ttTs

(s− t)T(s− t)

=
2tsTs− 2ttTs

(s− t)T(s− t)

[
ssTs + stTt− 2ssTs = 0
−2stTs + 2stTs = 0

]

=
tsTs− 2ttTs + ttTt

(s− t)T(s− t)
=

t(s− t)T(s− t)

(s− t)T(s− t)
= t

Problem 2

Let A be a rectangular m× n matrix with full column rank and m > n. Consider the QR
decomposition of A.

1. Show that P0 = I−QQT is the projection matrix onto the nullspace of AT

2. Show that for every x we have ‖Ax− b‖2
2 = ‖A(x− x0)‖2

2 + ‖Ax0 − b‖2
2 where x0 is

the least squares solution of Ax = b

3. Show that the minimum value for the 2-norm of the residual is attained when x is
equal to the least squares solution and that this minimum value is equal to ‖P0b‖2

Solution

1. We know that the nullspace of AT and the column space of A are the normal comple-
ments of each other. Therefore, any vector x can be written as x = x1 + x2 where x1

is in the nullspace of AT and x2 is in the column space of A.

For x1 this means that ATx1 = 0. Since A is full rank, the QR decomposition is
defined and

ATx1 = 0 ⇒ RTQTx1 = 0 ⇒ QTx1 = 0

since R is nonsingular. On the other hand, x2 belongs to the column space of A,
therefore it can be written as x2 = Ay = QRy where y ∈ Rn.
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Thus, the action of P0 on x amounts to

P0x =
(
I−QQT

)
(x1 + x2) = x1 + x2 −QQTx1 −QQTQRy

= x1 + x2 −QRy = x1

Therefore, P0 is the projection matrix onto the nullspace of AT (and QQT is the
projection matrix onto the column space of A).

2. We have

‖Ax− b‖2
2 = ‖A(x− x0) + (Ax0 − b)‖2

2

= [A(x− x0) + (Ax0 − b)]T [A(x− x0) + (Ax0 − b)]

= ‖A(x− x0)‖2
2 + ‖Ax0 − b‖2

2 + 2(x− x0)
TAT(Ax0 − b)

= ‖A(x− x0)‖2
2 + ‖Ax0 − b‖2

2 + 2(x− x0)
T(ATAx0 −ATb)

= ‖A(x− x0)‖2
2 + ‖Ax0 − b‖2

2 [ATAx0 −ATb = 0]

3. From the equation above, we have that the minimum value for ‖Ax− b‖2 is attained
for x = x0, since the term ‖Ax0 − b‖2

2 does not depend on x. The least squares
solution is given as

Rx0 = QTb ⇒ x0 = R−1QTb

Therefore the minimum value for the residual ‖Ax− b‖2 is

‖Ax0 − b‖2 = ‖QRR−1QTb− b‖2 = ‖QQTb− b‖2 =
∥∥∥(QQT − I)b

∥∥∥
2

=
∥∥∥(I−QQT)b

∥∥∥
2

= ‖P0b‖

Intuitively, this means that the least squares solution annihilates the component of the
residual in the column space of A and the minimum value for the residual is exactly
the component of b that is not contained in the column space of A.

Problem 3

State whether the following classes of matrices are positive (semi-)definite, negative (semi-)definite,
indefinite, or whether their definiteness cannot be determined in general

1. Orthogonal matrices

2. Matrices of the form ATA where A is a rectangular matrix

3. Projection matrices

4. Matrices of the form I−P where P is a projection matrix

5. Householder matrices
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6. Upper triangular matrices with positive diagonal elements

7. A diagonally dominant matrix with positive elements on the diagonal. A matrix is
called diagonally dominant if |aii| >

∑
j 6=i |aij| and |aii| >

∑
j 6=i |aji|.

Solution

1. Any diagonal matrix with values +1 or −1 on the diagonal is orthogonal. Nevertheless
it can be positive definite (if it equals I), negative definite (if it equals −I) or indefinite
(in any other case). Thus the definiteness of orthogonal matrices cannot be determined
for the general case.

2. We have xT(ATA)x = ‖Ax‖2
2 ≥ 0. Thus a matrix of the form ATA is always

positive semidefinite. In addition, if A is full rank, then ATA is positive definite
(since Ax = 0 ⇒ x = 0).

3. Let V be the vector subspace that a projection matrix P projects onto, and V ⊥ its nor-
mal complement. Let x = x1 + x2 be an arbitrary vector, where x1 is the component
of x in V and x2 its component in V ⊥. Therefore

xTPx = (x1 + x2)
TP(x1 + x2) = xT

1 Px1 = ‖x1‖2
2 ≥ 0

where we used the fact that P is symmetric and Px2 = 0. Therefore a projection
matrix is always positive semi-definite.

4. The matrix I−P is the projection onto the normal complement of the space P projects
onto. Therefore it is a projection matrix itself and thus positive semidefinite.

5. Given the Householder matrix

H = I− 2
vvT

vTv

we have vTHv = vT(−v) = −‖v‖2
2 < 0 where if w is a nonzero vector that is

orthogonal to v (such a vector always exists in 2 or more dimensions) then wTHw =
wTw = ‖w‖2

2 > 0. Therefore a Householder matrix is always indefinite (in the special
1D case the matrix reduces to the single number −1, being negative definite)

6. I is an example of such a matrix that is positive definite. The matrix[
1 −3
0 1

]

is an example of an indefinite matrix. However, we can conclude that such a matrix
can never be negative definite, because eT

i Aei = Aii > 0, where ei is the i-th column
of the identity matrix.
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7.

xTAx =
∑
i,j

Aijxixj =
∑

i

Aiix
2
i +

∑
i,j 6=i

Aijxixj

≥
∑

i

|Aii||xi|2 −
∑
i,j 6=i

|Aij||xi||xj|

=
1

2

∑
i

(|Aii|+ |Aii|) |xi|2 −
∑
i,j 6=i

|Aij||xi||xj|

>
1

2

∑
i,j 6=i

(|Aij|+ |Aji|) |xi|2 −
∑
i,j 6=i

|Aij||xi||xj|

=
∑
i,j 6=i

|Aij|
(

1

2
|xi|2 +

1

2
|xj|2 − |xi||xj|

)

=
1

2

∑
i,j 6=i

|Aij| (|xi| − |xj|)2 ≥ 0

Problem 4

[Heath 3.12 page 150]

1. Let A be a n × n matrix. Show that any two of the following conditions imply the
other.

(a) AT = A

(b) ATA = I

(c) A2 = I

2. Give a specific example, other than the identity matrix I or a permutation of it, of a
3× 3 matrix that has all three of these properties.

3. Name a nontrivial class of matrices that have all three of these properties.

Solution
1. {

AT = A
ATA = I

}
⇒ A2 = I [By substitution]

{
AT = A
A2 = I

}
⇒ ATA = I [By substitution]

{
ATA = I
A2 = I

}
⇒
{

A−1 = AT

A−1 = A

}
⇒ AT = A
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2.  1 0 0
0 −1 0
0 0 −1

 ,

 1/3 −2/3 −2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3


3. Reflection matrices (e.g. Householder matrices, see problem 1).

Problem 5

[Heath 3.16 page 150] Consider the vector a as an n× 1 matrix.

1. Write out its QR factorization, showing the matrices Q and R explicitly.

2. What is the solution to the linear least squared problem ax ∼= b, where b is a given
n-vector?

Solution

1. By simple application of the algorithm, we have

Q =
1

‖a‖2

a R = [‖a‖2]

2. The least squares solution is given by the equation

Rx = QTb ⇒ ‖a‖2 · x =
1

‖a‖2

aTb ⇒ x =
aTb

aTa
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