Problem 1

[Heath 3.29, page 152] Let \mathbf{v} be a nonzero *n*-vector. The hyperplane normal to \mathbf{v} is the (n-1)-dimensional subspace of all vectors \mathbf{z} such that $\mathbf{v}^{T}\mathbf{z} = \mathbf{0}$. A reflector is a linear transformation \mathbf{R} such that $\mathbf{R}\mathbf{x} = -\mathbf{x}$ if \mathbf{x} is a scalar multiple of \mathbf{v} , and $\mathbf{R}\mathbf{x} = \mathbf{x}$ if $\mathbf{v}^{T}\mathbf{x} = \mathbf{0}$. Thus, the hyperplane acts as a mirror: for any vector, its component within the hyperplane is invariant, whereas its component orthogonal to the hyperplane is reversed.

- 1. Show that $\mathbf{R} = 2\mathbf{P} \mathbf{I}$, where \mathbf{P} is the orthogonal projector onto the hyperplane normal to \mathbf{v} . Draw a picture to illustrate this result
- 2. Show that \mathbf{R} is symmetric and orthogonal
- 3. Show that the Householder transformation

$$\mathbf{H} = \mathbf{I} - 2\frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}},$$

is a reflector

4. Show that for any two vectors \mathbf{s} and \mathbf{t} such that $\mathbf{s} \neq \mathbf{t}$ and $\|\mathbf{s}\|_2 = \|\mathbf{t}\|_2$, there is a reflector \mathbf{R} such that $\mathbf{Rs} = \mathbf{t}$

Problem 2

Let **A** be a rectangular $m \times n$ matrix with full column rank and m > n. Consider the **QR** decomposition of **A**.

- 1. Show that $\mathbf{P}_0 = \mathbf{I} \mathbf{Q}\mathbf{Q}^{\mathbf{T}}$ is the projection matrix onto the nullspace of $\mathbf{A}^{\mathbf{T}}$
- 2. Show that for every \mathbf{x} we have $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2 = \|\mathbf{A}(\mathbf{x} \mathbf{x}_0)\|_2^2 + \|\mathbf{A}\mathbf{x}_0 \mathbf{b}\|_2^2$ where \mathbf{x}_0 is the least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$
- 3. Show that the minimum value for the 2-norm of the residual is attained when \mathbf{x} is equal to the least squares solution and that this minimum value is equal to $\|\mathbf{P}_{\mathbf{0}}\mathbf{b}\|_{2}$

Problem 3

State whether the following classes of matrices are positive (semi-)definite, negative (semi-)definite, indefinite, or whether their definiteness cannot be determined in general

1. Orthogonal matrices

- 2. Matrices of the form $\mathbf{A}^{\mathbf{T}}\mathbf{A}$ where \mathbf{A} is a rectangular matrix
- 3. Projection matrices
- 4. Matrices of the form $\mathbf{I} \mathbf{P}$ where \mathbf{P} is a projection matrix
- 5. Householder matrices
- 6. Upper triangular matrices with positive diagonal elements
- 7. A diagonally dominant matrix with positive elements on the diagonal. A matrix is called diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ and $|a_{ii}| > \sum_{j \neq i} |a_{ji}|$.

Problem 4

[Heath 3.12 page 150]

- 1. Let **A** be a $n \times n$ matrix. Show that any two of the following conditions imply the other.
 - (a) $\mathbf{A}^{\mathbf{T}} = \mathbf{A}$
 - (b) $\mathbf{A}^{\mathbf{T}}\mathbf{A} = \mathbf{I}$
 - (c) $A^2 = I$
- 2. Give a specific example, other than the identity matrix **I** or a permutation of it, of a 3×3 matrix that has all three of these properties.
- 3. Name a nontrivial class of matrices that have all three of these properties.

Problem 5

[Heath 3.16 page 150] Consider the vector **a** as an $n \times 1$ matrix.

- 1. Write out its QR factorization, showing the matrices \mathbf{Q} and \mathbf{R} explicitly.
- 2. What is the solution to the linear least squared problem $\mathbf{ax} \cong \mathbf{b}$, where \mathbf{b} is a given *n*-vector?