
CS205 Homework #1 Solutions

Problem 1

Arithmetic operations are subject to roundoff error when performed on a finite precision
computer. In order to perform an operation x op y on the real numbers x and y we deviate
from the analytic result when discretizing those values to machine precision as well as when
we store the resulting value.

Let x̄ denote the discretized, floating point version of x that is stored on the computer.
You may assume that

x̄ = (1 + ε)x

where ε is bounded as 0 ≤ |ε| < εmax where εmax � 1 is the machine roundoff precision.
Assume that the result of the arithmetic operation between two floating point numbers

x̄ and ȳ is computed exactly, but when stored on the computer it is once again subject to
roundoff error as

x op y = (1 + ε′)(x op y)

where the roundoff error obeys the same bounds 0 ≤ |ε′| < εmax.
The relative error of a computation is defined as

E =

∣∣∣∣∣Computed Result− Analytic Result

Analytic Result

∣∣∣∣∣
Provide a bound (in terms of εmax) for the relative error induced by the following arith-

metic operations, or prove that the relative error is unbounded.

1. Subtraction, Multiplication and Division of two real numbers (for an example on ad-
dition see Heath, section 1.3.8)

2. Computing the sum sn = x + x + · · ·+ x︸ ︷︷ ︸
n terms

using the recurrence

s1 = x
sk = sk−1 + x

[Answer: ≈ nεmax/2]

3. Computing the sum sn = s2k = qk = x + x + · · ·+ x︸ ︷︷ ︸
n=2k terms

where n = 2k using the recurrence

q0 = x
qk = qk−1 + qk−1

For (2) and (3) you may assume for simplicity that n � 1/εmax.
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Solution

For the following derivation we use the lemma: If 0 ≤ |ε1|, |ε2|, . . . , |εk| < εmax then there
exists an ε ∈ [0, εmax) such that (1 + ε1)(1 + ε2) · · · (1 + εk) = (1 + ε)k, which holds by virtue
of the intermediate value theorem.

For every variable εi used in the following derivations we will implicity assume it lies
within the range 0 ≤ |εi| < εmax.

1. We have x̄ = (1 + ε1)x and ȳ = (1 + ε2)y.

Subtraction We will show that there is no bound on the relative error. Consider
x̄− ȳ = (1 + ε1)x− (1 + ε2)y. Let x = a + θ and y = a so x− y = θ. Then

x̄− ȳ = (a + θ)(1 + ε1)− a(1 + ε2) = θ + a(ε1 − ε2) + θε1

x̄− ȳ = θ(1 + ε3) + a(ε1 − ε2)(1 + ε3) + θε1(1 + ε3)

Then the relative error is given by

E =

∣∣∣∣∣ x̄− ȳ − (x− y)

x− y

∣∣∣∣∣
=

∣∣∣∣∣θ(1 + ε3) + a(ε1 − ε2)(1 + ε3) + θε1(1 + ε3)− θ

θ

∣∣∣∣∣
=

∣∣∣∣ε3 + ε1(1 + ε3) +
a

θ
(ε1 − ε2)(1 + ε3)

∣∣∣∣
which becomes unbounded as θ → 0.

Multiplication

E× =

∣∣∣∣∣ x̄ · ȳ − xy

xy

∣∣∣∣∣ =
∣∣∣∣∣xy(1 + ε1)(1 + ε2)(1 + ε3)− xy

xy

∣∣∣∣∣
=

∣∣∣(1 + ε4)
3 − 1

∣∣∣ = ∣∣∣3ε4 + O(ε2
max)

∣∣∣
Division

E÷ =

∣∣∣∣∣ x̄/ȳ − x/y

x/y

∣∣∣∣∣ =
∣∣∣∣∣∣(x/y) (1+ε1)(1+ε3)

1+ε2
− x/y

x/y

∣∣∣∣∣∣ =
∣∣∣∣∣(1 + ε1)(1 + ε3)

1 + ε2

− 1

∣∣∣∣∣
=

∣∣∣(1 + ε1)(1 + ε3)[(1− ε2) + O(ε2
max)]− 1

∣∣∣
=

∣∣∣(1 + ε4)
3 − 1 + O(ε2

max)
∣∣∣ = ∣∣∣3ε4 + O(ε2

max)
∣∣∣ ≤ ∣∣∣3εmax + O(ε2

max)
∣∣∣
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2. By straightforward manipulation, we have:

s̄k = [s̄k−1 + (1 + ε1) x] (1 + εk)

= [[s̄k−2 + (1 + ε1) x] (1 + εk−1) + (1 + ε1) x] (1 + εk)

= (1 + εk) (1 + ε1) x + (1 + εk) (1 + εk−1) (1 + ε1) x + . . . +

(1 + εk) (1 + εk−1) . . . (1 + ε2) (1 + ε1) x + (1 + εk) (1 + εk−1) . . . (1 + ε2) (1 + ε1) x

= x

[
(1 + ε∗)

n +
n∑

k=2

(1 + ε∗k
)k

]

Now, we can apply the first-order binomial approximation (1 + ε)k = 1 + kε + O (ε2):

x

[
(1 + ε∗)

n + x
n∑

k=2

(1 + ε∗k
)k

]
≤ x

[
1 + nεmax + O

(
ε2
max

)
+

n−1∑
k=1

(
1 + (k + 1) εmax + O

(
ε2
max

))]

= x

[
nεmax + O

(
ε2
max

)
+ n +

(n− 1)(n + 2)

2
εmax + (n− 1)O

(
ε2
max

)]

= x

[
nεmax + n +

(
n2 + n

2
+ 1

)
εmax + nO

(
ε2
max

)]

= x

[(
n2 + 3n

2
− 1

)
εmax + n + nO

(
ε2
max

)]

Now, we can compute the relative error as follows:

Enx =

∣∣∣∣∣∣
x
[(

n2+3n
2

− 1
)
εmax + n + nO (ε2

max)
]
− nx

nx

∣∣∣∣∣∣
=

∣∣∣∣(n + 3

2
− 1

n

)
εmax + O

(
ε2
max

)∣∣∣∣
However, since n � 1/εmax, we have:∣∣∣∣(n + 3

2
− 1

n

)
εmax + O

(
ε2
max

)∣∣∣∣ =
∣∣∣∣(n + 3

2

)
εmax − o (εmax) + O

(
ε2
max

)∣∣∣∣
3. To simplify the computation, let ξk be the cumulative relative error in qk, and s̄k =

qk(1 + ξk).

ξk =

∣∣∣∣∣ q̄k − qk

qk

∣∣∣∣∣ =
∣∣∣∣∣ q̄k−1 + q̄k−1 − qk

qk

∣∣∣∣∣
=

∣∣∣∣∣∣
[
(1 + ξk−1)2

k−1x + (1 + ξk−1)2
k−1x

]
(1 + ε1)− 2kx

2kx

∣∣∣∣∣∣
= |(1 + ξk−1)(1 + ε1)− 1|
= |ξk−1 + ε1 + ξk−1ε1|
≤ |ξk−1 + εmax + o(εmax)|

3



This last step follows since each application of floating point addition increases the
cumulative relative error in its operands by εmax at most, therefore ξk ≤ kεmax. Since
we assume k � 1/εmax we have ξk−1ε1 = o(εmax). Therefore,

ξk ≤ |kεmax + o(εmax)|

If θk is the cumulative relative error in the computation of sk we have θ2k = ξk, therefore

θk ≤ |log2 k · εmax + o(εmax)|

Problem 2

Consider the elimination matrix Mk = I−mke
T
k and its inverse Lk = I+mke

T
k used in the

LU decomposition process, where

mk =
(
0, . . . ,0,m

(k)
k+1, . . . ,m

(k)
n

)
and ek is the k-th column of the identity matrix. Let P(ij) be the permutation matrix that
results from swapping the i-th and j-th rows (or columns) of the identity matrix.

1. Show that if i, j > k then LkP
(ij) = P(ij)(I + P(ij)mke

T
k )

2. Recall that the matrix L resulting from performing Gaussian elimination with partial
pivoting is given by

L = P1L1 · · ·Pn−1Ln−1

where the permutation matrix Pi permutes row i with some row i′ where i < i′. Show
that L can be rewritten as

L = P1 · · ·Pn−1L
P
1 · · ·LP

n−1

where LP
k = I + (Pn−1 · · ·Pk+1mk) e

T
k .

3. Show that LP
1 · · ·LP

n−1 is lower triangular.

Solution

1. The matrix mke
T
k has nonzero elements only on the k-th column, in the positions

corresponding to rows (k + 1) through n. Additionally, mke
T
k P(ij) is the result of

swapping the i-th and j-th column of mke
T
k , which are both zero. Thus mke

T
k P(ij) =

mke
T
k . Using this result, we have

(I + mke
T
k )P(ij) = P(ij) + mke

T
k P(ij)

= P(ij) + mke
T
k

= P(ij) + (P(ij))2mke
T
k

[
(P(ij))2 = I

]
= P(ij)(I + P(ij)mke

T
k )
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2. Let qk be a vector containing nonzero entries only in the positions (k + 1) through n.
Then using (1) we have

(I + qke
T
k )Pi = Pi(I + Piqke

T
k ) = Pi(I + q̂ke

T
k )

where the vector q̂k = Piqk also has nonzero entries in the positions (k + 1) through
n only.

Consequently, in the product P1L1 · · ·Pn−1Ln−1, we can “propagate” each permuta-
tion matrix Pi (in increasing order of the index i) to the left of all matrices Lk with
k ≤ i while changing each matrix Lk according to the equation above (multiplying its
second term with Pi from the left). For example

P1L1P2L2P3L3 = P1(I + m1e
T
1 )P2(I + m2e

T
2 )P3(I + m3e

T
3 )

= P1P2(I + P2m1e
T
1 )(I + m2e

T
2 )P3(I + m3e

T
3 )

= P1P2(I + P2m1e
T
1 )P3(I + P3m2e

T
2 )(I + m3e

T
3 )

= P1P2P3(I + P3P2m1e
T
1 )(I + P3m2e

T
2 )(I + m3e

T
3 )

= P1P2P3L
P
1 LP

2 LP
3

where LP
k = I + (Pn−1 · · ·Pk+1mk) e

T
k . This argument can be rigorously extended to

an arbitrary n via induction.

3. Each matrix LP
k can be written as LP

k = I + q̂ke
T
k where q̂k = Pn−1 · · ·Pk+1mk, like

mk, only has nonzero entries in the positions (k + 1) through n. Furthermore

LP
1 LP

2 · · ·LP
n−1 = (I + q̂1e

T
1 )(I + q̂2e

T
2 ) · · · (I + q̂n−1e

T
n−1)

= I + q̂1e
T
1 + q̂2e

T
2 + · · ·+ q̂n−1e

T
n−1

since eT
i q̂j = 0 for i < j, causing all the cross-terms (q̂ie

T
i )(q̂je

T
j ) in the original

product to vanish (for i < j). Since each term q̂ie
T
i contributes nonzero entries only

below the diagonal, the entire matrix I + q̂1e
T
1 + q̂2e

T
2 + · · · + q̂n−1e

T
n−1 is lower

triangular.

Problem 3

Two vector norms ‖x‖a and ‖x‖b are called equivalent if there exist c, d > 0 such that
c‖x‖a ≤ ‖x‖b ≤ d‖x‖a.

1. Prove that ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are equivalent.

2. Prove that equivalence of two vector norms implies that their induced matrix norms
are also equivalent. (The definition for equivalence of matrix norms is analogous to
that of vector norms, i.e there must exist c, d > 0 s.t. c‖A‖a ≤ ‖A‖b ≤ d‖A‖a)
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Solution

1. ‖x‖1 equivalent to ‖x‖∞: ‖x‖1 =
∑n

i=1 |xi| ≤ n maxi |xi| = n‖x‖∞ and ‖x‖∞ =

maxi |xi| ≤
∑n

i=1 |xi| = ‖x‖1. ‖x‖∞ is equivalent to ‖x‖2: ‖x‖2 = (
∑n

i=1 x2
i )

1/2 ≤
(n maxi(x

2
i ))

1/2 ≤
√

n
√

(maxi |xi|)2 =
√

n‖x‖∞ and ‖x‖∞ = maxi |xi| =
√

(maxi |xi|)2 ≤√∑n
i=1 x2

i = ‖x‖2. ‖x‖∞ ≤ ‖x‖1 =
∑n

i=1 |xi| = [(
∑n

i=1 |xi|)2]1/2 = ‖x‖2. ‖x‖1

equivalent to ‖x‖2: We have ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ and ‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞ by
the previous results. From these we can write

1√
n
‖x‖2 ≤

√
n√
n
‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ ≤ n‖x‖2.

2. Suppose two equivalent vector norms ‖·‖a and ‖·‖b. Then we have appropriate positive
constants ca, da, cb, db such that ca‖x‖a ≤ ‖x‖b ≤ da‖x‖a and cb‖x‖b ≤ ‖x‖a ≤ db‖x‖b

hold ∀x. Then we can make the bound:

‖Ax‖a

‖x‖a

≤ db‖Ax‖b

‖x‖a

≤ db‖Ax‖b

cb‖x‖b

Thus,

‖A‖a = max
x 6=0

‖Ax‖a

‖x‖a

≤ max
x 6=0

db

cb

(
‖Ax‖b

‖x‖b

)
=

db

cb

max
x 6=0

‖Ax‖b

‖x‖b

Similarly for the other side:

‖Ax‖a

‖x‖a

≥ cb‖Ax‖b

‖x‖a

≥ cb‖Ax‖b

db‖x‖b

So,

‖A‖a = max
x 6=0

‖Ax‖a

‖x‖a

≥ max
x 6=0

cb

db

(
‖Ax‖b

‖x‖b

)
=

cb

db

max
x 6=0

‖Ax‖b

‖x‖b
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