1 PhysBAM Ray Tracer

1.1 Render Examples

1.2 Spring Example
e Show how to run it (run without arguments to do this)
e Walk through scene file contents. Point out that this only uses a subset of features.
e Mention stuff at top

— View parameters, will get to later.
— Mention size, output file, quality.

— Also option for rendering only patch to improve turn around.

Lights

— Makes renders not black
— Light type. These are point lights, also have area lights

— Briefly mention what the options are for

Shaders

— How objects look
— Colors - for defining new colors

— Shaders can have sub-shaders

Shaders - Phong, Lambertian

Special - reflection, transparency, blending
e Objects

— The scene being rendered
— Boxes
— Triangulated surface

— Spheres

Cylinders
e Show high quality

e Show full movie

1.3 Torus Example
e Show how to get the camera script file from viewer
e Mention stuff at top
— View parameters
e Lights

— Note extra options to point light.



Shaders
— Go through “New” shader tree for deformable object torus

Objects

— Deformable object - sim data

— Similar features for other sim data (rigid bodies, fluids)

Show high quality

Show full movie

2 Ray Tracing

2.1 Forward Tracing Vs. Backward Tracing
e Forward

— Follow the photons
— Start at lights

— Bounce around, end at camera
e Backward

— Only trace rays that will be observed
— Start at camera

— When hit something, shot rays to lights

2.2 Camera Setup
e Draw a diagram with a camera, a piece of film, two objects, and two lights.
e Make sure one of the objects casts a shadow on the other.
e Draw pixels on the film, shoot rays through them.

e Shoot a few rays, some intersect objects, some go into space

2.3 Intersections
e Must hand ray-object intersections
e Lots of them, should be fast
e Go through a few examples
— Ray-plane (Derive)
— Ray-sphere (Derive)
— Ray-box (intersect each side)
Find ¢-min and ¢t-max for both x and y faces

Make sure these intervals overlap
Intersect the time intervals

*
*
*
x Compute t-min and t-max for both z faces
x Make sure these intervals overlap

*

Intersect the time intervals



2.4 Surface Shading

e At each pixel, we know which object light ray came from

What color is it? How bright?

If the light came from an object, how did light get there?

What if the ray intersected nothing? (environment map - sky)

To determine color in case of an object, need a shading model.

2.4.1 Phong Shading
o Intensity: I = kaia + D pepignes(Falae + kslse)ic
e Ambient approximates indirect lighting that is too expensive to compute
e Diffuse
—Ijy=cos0=L-N

0 is angle between light ray and surface normal

L is direction towards light
— N is surface normal
— Diffuse surface emit evenly in all directions - does not depend on view direction

— Emit energy proportional to energy received
e Specular

— I y=cosP¢p=(R-V)P

¢ is angle between viewing ray and reflected light ray

— V is direction towards camera
— R=2(L-N)N — L is reflected light ray
— Exponent p determines the sharpness of the specular highlight

e The coefficients k,, kg4, and ks determine the brightness of the surface.

e The computation is performed per RGB channel, so colored surfaces are modeled by having coefficients
that differ in each channel.

2.4.2 Shadowing

e Shadows complicate things a bit.

A light should not contribute to the color emitted from a surface if it is not visible from that surface.

From the surface, shoot a ray to each light.

Normally only need to test visibility. Do not need to evaluate shaders.

Does not take into account that light is emitted by other surfaces



2.4.3 Reflection

Ray tracing naturally handles reflective surfaces.
Shoot off a new ray in reflected direction.

Mix with another model to get semi-reflective surfaces

2.4.4 Refraction

Surfaces like glass are transparent
Fresnel equations

— Part of the light reflects from the surface
— Part is refracted (transmitted but bent)

— Polarization dependent
Snell’s law: nqsinf; = no sin 6y
Index of refraction: n
Water n =~ 1.333, Airn=~1
Critical angle

What about shadowing?

Acceleration

Take advantage of spatial coherence (spatial partitioning)
Many ways to do this..
Demonstrate these two

— Bounding box hierarchy
x Divide and conquer
* ray-box intersection tests to search
— Regular grid
* Rasterize to grid
* Bresenham’s line algorithm to search
x Adaptivity



