
1 PhysBAM Ray Tracer

1.1 Render Examples

1.2 Spring Example

• Show how to run it (run without arguments to do this)

• Walk through scene file contents. Point out that this only uses a subset of features.

• Mention stuff at top

– View parameters, will get to later.

– Mention size, output file, quality.

– Also option for rendering only patch to improve turn around.

• Lights

– Makes renders not black

– Light type. These are point lights, also have area lights

– Briefly mention what the options are for

• Shaders

– How objects look

– Colors - for defining new colors

– Shaders can have sub-shaders

– Shaders - Phong, Lambertian

– Special - reflection, transparency, blending

• Objects

– The scene being rendered

– Boxes

– Triangulated surface

– Spheres

– Cylinders

• Show high quality

• Show full movie

1.3 Torus Example

• Show how to get the camera script file from viewer

• Mention stuff at top

– View parameters

• Lights

– Note extra options to point light.

1



• Shaders

– Go through “New” shader tree for deformable object torus

• Objects

– Deformable object - sim data

– Similar features for other sim data (rigid bodies, fluids)

• Show high quality

• Show full movie

2 Ray Tracing

2.1 Forward Tracing Vs. Backward Tracing

• Forward

– Follow the photons

– Start at lights

– Bounce around, end at camera

• Backward

– Only trace rays that will be observed

– Start at camera

– When hit something, shot rays to lights

2.2 Camera Setup

• Draw a diagram with a camera, a piece of film, two objects, and two lights.

• Make sure one of the objects casts a shadow on the other.

• Draw pixels on the film, shoot rays through them.

• Shoot a few rays, some intersect objects, some go into space

2.3 Intersections

• Must hand ray-object intersections

• Lots of them, should be fast

• Go through a few examples

– Ray-plane (Derive)

– Ray-sphere (Derive)

– Ray-box (intersect each side)

∗ Find t-min and t-max for both x and y faces

∗ Make sure these intervals overlap

∗ Intersect the time intervals

∗ Compute t-min and t-max for both z faces

∗ Make sure these intervals overlap

∗ Intersect the time intervals

2



2.4 Surface Shading

• At each pixel, we know which object light ray came from

• What color is it? How bright?

• If the light came from an object, how did light get there?

• What if the ray intersected nothing? (environment map - sky)

• To determine color in case of an object, need a shading model.

2.4.1 Phong Shading

• Intensity: I = kaia +
∑

`∈lights(kdId,` + ksIs,`)i`

• Ambient approximates indirect lighting that is too expensive to compute

• Diffuse

– Id,` = cos θ = L ·N
– θ is angle between light ray and surface normal

– L is direction towards light

– N is surface normal

– Diffuse surface emit evenly in all directions - does not depend on view direction

– Emit energy proportional to energy received

• Specular

– Is,` = cosp φ = (R · V )p

– φ is angle between viewing ray and reflected light ray

– V is direction towards camera

– R = 2(L ·N)N − L is reflected light ray

– Exponent p determines the sharpness of the specular highlight

• The coefficients ka, kd, and ks determine the brightness of the surface.

• The computation is performed per RGB channel, so colored surfaces are modeled by having coefficients
that differ in each channel.

2.4.2 Shadowing

• Shadows complicate things a bit.

• A light should not contribute to the color emitted from a surface if it is not visible from that surface.

• From the surface, shoot a ray to each light.

• Normally only need to test visibility. Do not need to evaluate shaders.

• Does not take into account that light is emitted by other surfaces

3



2.4.3 Reflection

• Ray tracing naturally handles reflective surfaces.

• Shoot off a new ray in reflected direction.

• Mix with another model to get semi-reflective surfaces

2.4.4 Refraction

• Surfaces like glass are transparent

• Fresnel equations

– Part of the light reflects from the surface

– Part is refracted (transmitted but bent)

– Polarization dependent

• Snell’s law: n1 sin θ1 = n2 sin θ2

• Index of refraction: n

• Water n ≈ 1.333, Air n ≈ 1

• Critical angle

• What about shadowing?

2.5 Acceleration

• Take advantage of spatial coherence (spatial partitioning)

• Many ways to do this..

• Demonstrate these two

– Bounding box hierarchy

∗ Divide and conquer

∗ ray-box intersection tests to search

– Regular grid

∗ Rasterize to grid

∗ Bresenham’s line algorithm to search

∗ Adaptivity

4


