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Abstract

We propose a novel framework for simulating reduced deformable
bodies that fully accounts for linear and angular momentum conser-
vation even in the presence of collision, contact, articulation, and
other desirable effects. This was motivated by the observation that
the mere excitation of a single mode in a reduced degree of freedom
model can adversely change the linear and angular momentum. Al-
though unexpected changes in linear momentum can be avoided
during basis construction, adverse changes in angular momentum
appear unavoidable, and thus we propose a robust framework that
includes the ability to compensate for them. Enabled by this ability
to fully account for linear and angular momentum, we introduce an
impulse-based formulation that allows us to precisely control the
velocity of any node in spite of the fact that we only have access to
a lower-dimensional set of degrees of freedom. This allows us to
model collision, contact, and articulation in a robust and high visual
fidelity manner, especially when compared to penalty-based forces
that merely aim to coerce local velocities. In addition, we propose a
new “deformable bones” framework wherein we leverage standard
skinning technology for “bones,” “bone” placement, blending op-
erations, etc. even though each of our “deformable bones” is a fully
simulated reduced deformable model.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: deformable bodies, elasticity, collisions, skinning,
model reduction, subspace

1 Introduction

Simulations of deformable objects are known to be both visually
interesting and computationally demanding. One way to lessen the
computational expense of these simulations is to use a reduced-
order (or subspace) model to represent the internal dynamics. The
performance of such a model depends on the size of the subspace r
as well as the basis vectors chosen to represent that space. If n is
the size of the full-order model, optimal performance benefits are
achieved when r < n and the simulation takes O (r?) time for
small values of p.

Basis construction is a difficult problem and many solutions
have been proposed, including modal analysis [Pentland and
Williams 1989], a method to include the derivatives of linear
modes (i.e. modal derivatives) [Idelsohn and Cardona 1985], mass-
weighted principal component analysis (PCA) of an existing sim-
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Figure 1: An articulated reduced deformable body falls down a
fight of stairs undergoing collision and self-collision. Even with
simple linear finite elements, the results have high visual fidelity
due to our new “deformable bones” skinning strategy. We stress
that this is a pure simulation of a reduced deformable body, and
no misleading techniques such as first simulating a rigid body and
then attaching a deformable skin after the fact were employed.

ulation dataset [Barbi¢ and James 2005], augmentation of the ba-
sis with localized displacement vectors [Harmon and Zorin 2013],
etc. Regardless of the specific method used, most of the bases con-
structed by these methods are linear and can thus be written in a ma-
trix form. Our method is compatible with all of the aforementioned
approaches yet does not require mass normalization, but does re-
quire full column rank. This keeps the framework as general as
possible and enables an example-based reduced-order scheme that
we discuss in Section 8.

We use a reduced-order approximation of the displacement & =
Sq where the columns of S represent particle displacements from
the rest pose Zo. Here «@ and &y have dimensions n by 1, S has
n rows and r columns, and the entries of i, o and S are all 3-
vectors. Then, particle positions are given by Sq' + Zo, where G’ is
a reduced space vector which when set to a basis vector (i.e. § €
{&1, 8z, ..., }) results in S&, + & reconstructing the k™ basis
shape. To enable fully unconstrained simulation, we embed this
system in a rigid frame

ZT=R(S7+Zo)+ T (1)

where R is a diagonal matrix of rotations R and T is a vector of
translations £. Note that this formulation reduces to a rigid body
when there are no internal deformation modes, i.e. when S = 0.
This is similar to the method of [Terzopoulos and Witkin 1988]
where deformation occurs in a rigid frame.

After assigning each particle a mass (consistent with the require-
ment in Section 4), we adjust the rest state Zo and each basis shape
Séx + Zo such that their centers of mass are at the origin. This



Figure 2: Thirteen out of the thirty-one articulated reduced de-
formable armadillos we drop through a Pachinko machine.

guarantees that the mass-weighted column sums of S are 0 and that
S{q + ¥o contains no translation of the center of mass. Thus, any
translation of the center of mass in Equation 1 is represented en-
tirely by . This is useful for formulating collisions and constraints
in maximal coordinates using impulses, because the total change in
linear momentum is due solely to changes in #. Unfortunately, a
similar approach for angular momentum is generally not feasible,
as changes in ¢ affect the particle configuration, the inertia tensor,
and the angular velocity. Similarly, changes in § affect the angu-
lar momentum in complex ways, and thus R and ¢ are intrinsically
coupled. The fact that ¢ and ¢ may have no effect on the linear
momentum is either serendipitous or explicitly exploited in many
reduced model formulations, whereas the inability to decouple ¢
and ¢ from R and R with regards to angular momentum has not
received the cautionary attention that it should.

We derive in detail our method to calculate the angular momen-

tum caused by changes in ¢'and ¢’ and subsequently compensate for
it by adjusting the rigid frame’s angular momentum. Linear mo-
mentum is not changed by ¢ due to the aforementioned basis pro-
cessing step but could be handled in a similar fashion if necessary.
Per-body conservation enables us to formulate conservative meth-
ods for collisions, contact, and articulation, allowing us to maintain
the physically correct total momentum of the system (deformation
plus rigid motion) using a simple integration scheme. We combine
these capabilities with a decomposition and a skinning technique
to enable stable, visually pleasing reduced simulations of complex
deformable models.

2 Related Work

Equation 1 bears some resemblance to other approaches, such as
[Metaxas and Terzopoulos 1992; Hauser et al. 2003; Lall et al.
2003; Gilles et al. 2011; Barbi¢ and Zhao 2011; Fan et al. 2013].
In particular, [Shabana 2005] intrinsically couples R, ¢, and { since
they are solving for general rigid linkages with deformable compo-
nents and do not necessarily have control over the coordinate sys-
tems. In contrast, we can separate the treatment of i from R and q
making R and ¢ only one-way dependent on ¢ (i.e. £ is independent
of R and ¢) by moving all the basis shapes’ centers of mass to the
origin, whereas in [Shabana 2005] the generalized Newton-Euler
matrix is dense and ¢ is two-way coupled to R and §. As noted
above, it is not generally possible to process the basis shapes in a
way that separates R from ¢; however, we do take a novel approach
that quantifies the relationship between R and ¢ allowing us to for-

mulate the general impulse equations between and among reduced
deformable models.

The articulation of reduced deformable bodies has been discussed
previously in [Kry et al. 2002; Choi and Ko 2005]. However, these
methods did not attempt to solve the rigid and the reduced de-
formable systems in a fully coupled manner. In particular, [Kim
and James 2011] did not consider two-way coupling between R, ¢,
and # since they assumed R and # were prescribed by the underlying
motion of the articulated figure, whereas in the general case that we
address (similar to [Shabana 2005]) R and ¢ vary based on the laws
of physics. Generally speaking, [Shabana 2005] takes a force-based
generalized coordinates approach to the equations, since their focus
is on articulated linkages where arbitrary, unpredictable collisions,
contact, closed-loops, etc. are less common, whereas in a graphical
simulation system they are commonplace and therefore we take a
maximal coordinates approach using impulses.

Skinning articulated rigid bodies is a widely-used technique in
graphics, see e.g. [Lewis et al. 2000; Kavan et al. 2007; Baran and
Popovi¢ 2007]. The use of skinning combined with two-way cou-
pled full-space deformations for articulated bodies was explored in
[Liu et al. 2013]. Our novel contribution is not the skinning di-
rectly but rather the application of skinning to articulated reduced
deformable body parts of a character. Output-sensitive collision de-
tection for reduced deformable bodies has been discussed in [James
and Pai 2004], and we extend their BD-tree ideas to work on a skin
made up of multiple underlying reduced deformable bodies. A sim-
ilar method for standard skinning models was described in [Kavan
and Zéra 2005]. [Barbi¢ and James 2010; Teng et al. 2014] ex-
plored self-collision pre-computation schemes, but not on skinned
bodies. Their work could potentially be extended to speed up the
detection of self-collisions on our skinned bodies as necessary.

3 Kinematic Framework
Each row of Equation 1
T = R(S:q+ Zo,) +1 2)

describes the position of a single particle. Differentiating Equation
2 with respect to time, the velocity is

Ti = R(S:q+ o) + RSiq+ 1t = it + RSig+t  (3)
where 7; = R(S;q + To,;) is the moment arm for particle i, W is
the angular velocity associated with the change in R, * represents
the skew-symmetric cross product matrix for a given vector, and
R = &RR.

The total linear velocity of the center of mass ¥/ is defined in world

space as the linear velocity of the frame plus the net linear veloc-
ity of the deformation. As such, it may have contributions from

two separate terms in Equation 3, namely ¢ and RSi(j'. Likewise,
the total angular velocity & may have contributions from &% 7; and
RS;q. Therefore, we write

T=t+7¢ (4a)
S=dr+ & (4b)

where ¥’ and &’ indicate the contributions from RSZ»(?. Equations 3
and 4 allow us to write

=T+ + [Rsi(jz 17’—@’*7%] (5)

where the term in brackets should have no net contribution to the
total linear or angular velocity.



Since the term in brackets in Equation 5 should have no net contri-
bution to the total linear momentum, i.e. all the linear momentum
is contained in U, we may write

R> miSiq— M =0 (6)

i=1

where M = > | m; is the total mass of all n particles of the
object. Since we adjusted our basis so that S would have mass
weighted column sums of 0, the first term in Equation 6 is zero and

thus @’ = 0. That is, ¥ = ¢ and the velocity of the internal modes 7
makes no contribution to the total linear momentum of the object.

A similar discussion leads to
> mir [RSiq- 7] =0 %)
i=1

which can be re-arranged and solved for &’ to obtain

& =11 mi RS:iq ®)

i=1

where I = 3" m;(77)TF is the inertia tensor. Ideally, one
could remove all internal rotation from the basis so that &' = 0 and
W = Wr, which is done trivially for rigid bodies. However it is not
clear that one can remove this rotation in general, and therefore one
must account for both &’ and & .

To further elucidate Equation 8, consider the total global angular
momentum of a body

n n
T k0 — %k — sk — —
Lgiobar = Zpy M7+ E m;T; U; = Tp MU+ g Lid;  (9)

i=1 i=1

where Zs is the world space location of the center of mass, v;
is the relative velocity of particle ¢ with respect to the center of
mass velocity o, I; = m; (ﬁ*)T 7;* is particle 4’s contribution to
the inertia tensor, and &J; = 7, /7] 7; is the angular velocity of
particle ¢ due to U; with respect to the center of mass. The second
equality in Equation 9 is true because 7;"¥; = 7; @;7; since the
dilational component of ¥; is annihilated by the cross product with
7; leaving only the rotational component. The summation term in
Equation 9 is the angular momentum of the body with respect to its
center of mass, Ebody. Thus, one can more rigorously define the
total angular velocity & for the deforming body as

BEIS LB =T Lyoay. (10)

i=1

Multiplying Equation 4b by I then results in
Lyoay = 18 = I (Gr + ). (11

The reduced degrees of freedom ¢ make a non-zero contribution
to the global angular momentum, which can be accounted for by
adding a global rotational velocity &’ that offsets the contribution
from ¢ keeping the total global angular momentum as represented
by & constant. We emphasize that the ability to make a correction to
the global angular velocity along the lines of &’ is quite important
for conserving angular momentum; the fact that our framework in
Equation 1 contains the rotation matrix R allows us to readily make
this modification.

Figure 3 illustrates the difference our correction term can have. We
have found that the conservation of angular momentum is crucial

for plausible collision behavior. The strange and numerically unsta-
ble behavior we observed while simulating unconstrained reduced
bodies did in fact disappear once we added enough anchor con-
straints. However, angular momentum conservation allows us to
make the unconstrained simulations much more stable in addition
to being more physically correct.

Whereas the summation in Equation 8 appears to be O(n), its com-
putation can be optimized by pre-computing terms and calculat-
ing the reduced angular momentum in object space. Similarly, the
O(n) inertia tensor calculation can also be optimized. Although
updating &’ and I can be relatively expensive, these costs are only
fully incurred when the positional terms change.

4 Dynamic Framework

We differentiate Equation 3 with respect to time in order to obtain
the acceleration

Fo= (O + GROR)T + 20 RS+ RS:G+1. (12)

Three of these terms lead to the fictitious forces: ﬁ}ﬂ- leads to the
Euler or transverse force, Widk7; leads to the centrifugal force,
and 2603 RS;q leads to the Coriolis force.

Newton’s second law is
MR_I% — ﬁint + R—lﬁezt (13)

where the internal forces are defined in object space, the external
forces are defined in world space, and M is the consistent finite
element mass matrix defined in object space. Substituting Equa-

tion 12 into Equation 13, solving for MS&, and pre-multiplying
both sides by ST results in

STMSq = STF™ + sSTR™IFe*t — 2sTMR 'G5 RSG
~$"MR! (0'3;; n w;;ov;;) R(SG+ 7o) (14)
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Figure 3: A simple reduced deformable cube with six tetrahedral
elements, eight particles, and a mass of 1000 kg is given a ran-
dom initial reduced displacement with zero reduced velocity and
embedded in a frame. We simulate the cube without and with our
angular momentum correction scheme using the same initial con-
ditions. Even though there is no angular momentum in the system
at the start, the uncorrected simulation quickly accumulates signif-
icant erroneous angular momentum whereas our scheme preserves
the momentum of the system exactly. Note the change in final ori-
entations.



Figure 4: A reduced deformable bunny falls and rolls down a slope, and then topples a domino set consisting of reduced deformable tiles.

which can be solved for cj because STMS is symmetric positive
definite (SPD) as long as our examples are linearly independent.

Since the mass-weighted column sums of S are 0, sT projects

MR T to zero as long as the row sums of M are equal to the
individual masses of the particles. If this is not the case, one could
redefine the individual particle masses as the row sums of M in
order to satisfy this condition.

Fictitious forces that appear in Equation 14, which we collectively
call Ff*, can be computed efficiently by noting that R™'@%R

and R™1 (cfi}} + Cu'}&i}) R can be computed by rotating @5 and

@’ into object space.
4.1 External Forces

We sum all the external forces in order to get a net external force,
which is used to update the rigid frame as

h 1 - Fext
v=; >k (15)
k=1
. n n
Looay = Y 7 '™ =D & (16)
k=1 k=1

where F*t is ideally a sparse vector and thus this summation is not
O (n). When putting the external forces (or impulses) into object
space, one could project away the translational component before-
hand
mi
PFt = F |« | @ (17)
Mn

where P is a projection matrix that performs this linear operation.
However, this is not necessary since any net translation is already
in the null space of our reduced basis. Similarly, aiming to keep as
much of the rotation in R as possible, we could also project away
the rotational component
mi (Fl*)T )
—1 =g
I " Lyoay. (18)
)T

Pﬁezt _ ﬁezt _
—x
Mn (rn

Generally speaking, Equation 18 is useful in the sense that we
would like to minimize &', although it is not entirely clear that

Equation 18 minimizes &’ since one cannot readily predict the ef-

fect of PE** on the reduced basis (although it is a good start).
Combining Equations 17 and 18 into a single projection P converts

F°®* into a conservative force with no net translation or rotation.

Note that computing STR™'PF*** is O (n) since PE*" is no
longer sparse, even if F°* was. However, we can first rotate the
external forces into object space and then apply the equivalent ap-
propriate projection along the lines of Equations 17 and 18 in object
space, essentially switching the order of R™* and P by modifying
P. This allows us to precompute the various O (n) cost terms in
ST P so that computing the projected external force in the reduced
space only requires consideration of the sparse entries in Feot e,

Bt =3 [s"P] RTR (19)

k

where [S” P] . is the k™ column of ST P and the summation is

—
ext

only over all non-zero fg

4.2 Internal Forces

Although one could choose any valid reduced internal force model
(such as [Barbi¢ and James 2005; An et al. 2008]), for simplicity
we chose a linearized finite element model

F'™ = _Kii— Cii = —-KS§— CSq (20)
C =aM + SK. Q1)

To find the reduced internal force, we project these forces onto the
basis by pre-multiplying by ST

F" = -5"KS§- S"CSG= -K,§—C.q.  (22)

5 Collisions and Contact

Starting from the conservation of momentum laws for two bodies,
we can describe the post-collision momenta in terms of the pre-
collision ones

MG + My = Mo, + Myv, (23)

—x —+ T+ % —+ T+
Ty, Moy + Lbody,a + :chMbvb + Lbody,b

= :I_:']*\t/[aMaﬁa_ + f:b_ody,a + "E;{/IbeﬁlT + Eb_ody,b . (24)



Figure 5: We make the armadillo’s hands and feet static and allow
the rest of the body to deform with articulation constraints. We then
hit the armadillo with various rigid bodies causing deformations in
the armadillo while keeping its hands and feet in place. The hands
and feet could also have been moving according to artist-specified
kinematic paths.

An impulse fk applied to particle k changes both linear and angular
momentum as follows

M = Mo, =+ jx (25)
fJTJl Mﬂ_jl+ + E;—ody,l
=T, Myt + Ly, = (Fag +75%0) k- (26)

for I = a, b. By substituting Equation 25 into Equation 26, we can
simplify Equation 26 to

Ez—ody,l = Eb_ody,l £k (27)
Using the definition of & in Equation 10, we can rewrite Equa-
tion 27 as N

&GF =@ £ 17 gk (28)
Applying only a single impulse via Equation 14 allows us to write
(STMS) A = [STP]kalfk with the aid of Equation 19,

which we solve for Aé’ = (j’ +— q" ~ to obtain

. -1 o -
AG= {(STMS) sTP} R'ju=AR ' (29
k

where Ay can be precomputed. Starting from Equation 5 for z ,;" ,
we substitute Equation 25 for #'T, Equation 28 for &, and Equa-
tion 29 for ¢ to obtain

T =07 4 i/ M+ (@ + 77 5)

+ [RS(E + AR - (@ +AF) "] 6o
where the unknown change A&’ equals &' " — &7, Rearranging
terms and using Equation 5 to substitute in for &, , we obtain

Ty =2 + (/M — 7177 gk
+ RSLALR Y + Fr AD . 31

Using the definition of &’ in Equation 8 and the definition of Agin
Equation 29 we can write

AG' =171 " m RS AkR™ . 32)

=1

Then, we may write

5 =7 + (K + Ka)j, = @ + Kk (33a)
Ky =1/M - I (33b)

Ky = RSy ARLR™ "+ 77Tt Zmm*Rsmkzr1 (33¢)

i=1

where K is the standard rigid body impulse factor and K is the
new impulse factor that contains terms for object space deforma-
tions. Note that the combined operator is still linear, so we can
solve for impulses quickly just as in the rigid body case. [Hauser
et al. 2003] presents an equation similar to Equation 33, although
their equations are incorrect unless &' = 0. In our examples, we
have seen that the contribution to angular momentum from &’ is
quite significant and cannot be ignored.

5.1 Reduction to Rigid and Deformable Models

We stress that Equation 33 is the most general form of the impulse
equation within our framework and is the superset of both the rigid
and deformable cases. In the rigid case, S = 0, & = 0, and
K> = 0, leaving only K7 which is the standard impulse factor.
In the case of deformable bodies, R is the identity, i= 6, and S
functions similar to an identity except that it packs all the scalar
components of ¢ into a vector of 3-vectors in @. In addition, P
is the identity and the net effect of Equation 29 is to divide jk by
my. Then Ko reduces to 1/my 47 I~ 7. Thus the inertia tensor
terms from K1 and K cancel, leaving only 1/M + l/mk. At first
glance, the 1/M seems misplaced, but this is because we have set
#"identically zero and have not likewise set ' = ¥ according to
Equation 4a. Doing so introduces another term in K that cancels
out 1/M leading to the expected result.

5.2 Friction

We model friction after the method in [Guendelman et al. 2003],
which first calculates the impulse required to apply static friction,

then checks if it is in the friction cone via H;— (; ﬁ) ﬁH <
2

n (j ﬁ) and applies it when within this cone—otherwise apply-

ing kinetic friction. However, we have observed that the global
nature of deformation in reduced deformable models means that
j - 7l can be negative even when Av - i = Kj - i is posi-
tive. This is due to the fact that our angular momentum correc-
tion can directly affect the angular velocity of a body in a non-
intuitive way and is reminiscent of the Painlevé Paradox (see [Kauf-
man et al. 2008] for a related discussion on rigid bodies). There-
fore, we modified the check from [Guendelman et al. 2003] to be

HK;— (K; ﬁ) ﬁH <u (K; ﬁ) That is, we check the mag-
2

nitude of the resulting velocity, not the impulse. This situation illus-
trates a further problem with penalty forces, where one could apply
a penalty force to a node in order to make it go in a certain di-
rection but the resulting object deformation could instead push that
node in the opposite direction. Of course, continually applying the
force for a long enough time may eventually coax the entire object
to go in the desired direction, meaning that the penalty force can
work in an unconstrained scenario. However, if the object’s motion



Figure 6: The top figure shows a reduced deformable fish with
40 modes, which exhibits well-known linearized rotation artifacts
from linearized finite elements. The bottom figure shows the fish
segmented into four reduced deformable “bones” (shown in red,
yellow, green and blue) with 10 modes each and articulated. After
skinning the segmented fish along the lines of Figure 7 we obtain
the high visual fidelity shown in Figures 8 and 9.

is constrained in various ways, the penalty force may not properly
influence the object to move or deform in any intuitive way what-
soever and instead just adds energy to the system.

6 Time Integration

The first step in time integration is to solve Equations 15 and 16
in order to update the velocity and total angular momentum of the
rigid frame. Then, we discretize Equation 14 as

STMSG = STMSGT + At (B + Bt B a4)

where F"* and F¢** are defined in Equations 22 and 19 respec-
tively. We solve for Fint implicitly and use 7" ! = §"+Atq 7!

to obtain
Kr) (f n+1

— STMSG" — AtK.G" + At (ﬁfﬂ o t) . (35)

(STMS £ ALC, + (AD)?

Once 77! ngd;!, and ¢ 7™ have been updated, we calculate
@™ using Equation 8 and & "”H using Equation 11. We can then

proceed to update the position terms as normal

Ftl =y Attt (36)
Q"M =Q (At GRthyQn 37)
7 ="+ Atg ! (38)

where () is a quaternion, Equation 37 represents the standard
quaternion update rule, and R" ™ is retrieved from Q™. Finally,
we update the inertia tensor to I™*! and re-compute both &' ™T*
and wz“. To handle collisions and contact, we use the scheme
from [Guendelman et al. 2003] in conjunction with our new equa-

tions.

7 Articulation

We follow [Weinstein et al. 2006] for articulating reduced de-
formable bodies using both pre-stabilization and post-stabilization.
For simplicity, we will only consider point joints, but note that the
same ideas can be extended to other types of joints. For the sake

of exposition, assume that we are merely constraining particle ¢ on
body a to particle k£ on body b, noting that we could constrain arbi-
trary points using barycentric weights (similar consideration applies
to collisions in Section 5). Post-stabilization is rather straightfor-

ward. We simply apply the impulse that results from equating #;"
and & ,j' using Equation 33a.

During pre-stabilization, the goal is to combat positional drift and
make the positions of the two particles identical using

Ro(S0Gu+35:) +Ta = Ro (SLG +380) +5 (39)
at time n + 1. Since all the terms in Equation 39 are evaluated

at time n + 1, we can substitute the right hand sides of Equa-
tions 36, 37, and 38 to obtain

oo et (i)
Q(Atﬁ};f)@b [Sk (qb AL *”“)mo k]—i—tb FATL (40)

‘We can then define the objective function that we want to make zero
via impulses applied to the time n + 1 velocities as

F(7) =i+ ae (@t + 5/
FQ (M@ + (1) 7T - Ad)) ) @3
(s (@ +at(@ ™ + AL (RD 7)) +35.]
— I At (*”*1 - j/Mb)
- Q(Ar@RS + ()T - Aa)) ) o
(St (@ + At — ap (R 7)) + @8] @
where 7 is defined as the world space midpoint between the two

time n positions and &’ is defined using the time n quantities in
Equation 32. To solve this equation we use Newton iteration, and

the derivation of 9 f / 8} needed for the solve follows along the lines
of that provided in [Weinstein et al. 2006].

The ability to articulate reduced deformable bodies directly allows
us to segment (or decompose) a simulation mesh into different
pieces and connect them using joints. However, since the bod-
ies can deform but cannot deform arbitrarily, there is no guarantee

Figure 7: Naively articulating together two reduced deformable
rods (top) produces erroneous collision with the ground. Treating
the two bodies as “bones” of a single deformable body and skin-
ning them produces improved results (bottom left). Note that only
the skin collides, and the simulated bodies do not interact with the
environment (bottom right).



Figure 8: Tiventy reduced deformable fish are dropped into an empty glass box. Each fish is actuated by three balanced forces applied on the
surface that are scaled by a unique function of time for each fish so that the fish actively flop (as seen in the video).

that all joint constraints can be satisfied. Similar to [Barbi¢ and
Zhao 2011; Kim and James 2011], there may be discontinuities at
the boundaries between articulated meshes. Our novel approach
of reinterpreting each reduced deformable body as an abstract “de-
formable bone” with various dynamically changing shapes allows
us to remedy this with a straightforward skinning-based approach.

8 Skinning

In standard skinning, one has a bone with a shape that may be a
function of various parameters, and we extend this to the notion of
a “deformable bone” where a traditional kinematic bone is replaced
by a reduced deformable model given by Equation 1. Essentially,
our “deformable bone” has a time-dependent shape based on simu-
lation, yet is similar to existing skinning bones in every other way.
Skinning already solves the problem of how to tie multiple parts
of a character together, so it is very natural to leverage skinning
for reduced deformable models. In addition, work on skinning has
already investigated issues such as the number and placement of
bones, blending operations, linear artifacts, etc., and all this be ex-
ploited in our “deformable bones” framework.

Using standard rigging software, we assign standard skinning
weights to a surface mesh based on standard bones. Then, in a
non-standard fashion we propagate these weights into the interior
elements. Using a threshold, we decompose the mesh into different
subdomains of elements associated with each bone. These thresh-
olds allow for subdomains to overlap, which means that multiple
subdomains can each replicate and incorporate elements from the
original simulation mesh (i.e. there is no guarantee of a unique map-
ping from an element on the original mesh to a subdomain). Dur-
ing simulation, each subdomain is simulated independently, with
the addition of about three point constraints inside overlapping re-
gions to articulate one subdomain with another. See Figure 6 for an
example decomposition.

For simplicity, we use linear blend skinning, though more complex
methods could be used. The position of particle ¢ on the skin Z; is
given by

7 =Y wh (Re(SEg + ) + 1) (“2)
k

where k iterates through the reduced deformable bodies that con-
tribute to the skin position of Z7, and w is the skinning weight for
particle ¢ on body k. The velocity of a skinned particle, &;’, can be
calculated via Equation 3. We assume that the skinning weights for
particle ¢ sum to one—standard practice for skinning.

Our proposed skinning framework readily mixes reduced de-
formable bodies, rigid bodies, and standard kinematic bones.
This allows an artist, for example, to replace the midsection
of a traditionally animated/skinned character with one of our
“deformable bones” and proceed to add elastic and vibrational
modes such as “belly jiggle” or even collisions—see Figure 5.
In fact, motivated by the example-based work of [Martin et al.
2011; Schumacher et al. 2012; Coros et al. 2012] as well as
[Koyama et al. 2012; Koyama and Igarashi 2013], one could aug-
ment the basis with example poses sculpted by the artist (such as an
indentation caused by being hit in the stomach). Furthermore, this
mode could be emphasized by lowering its corresponding eigen-
value. Finally, the results are readily blended back in with the
artist’s performance for the rest of the character. Similar results
were achieved using a different framework in [Hahn et al. 2012].
Although we have only considered standard linear blend skinning,
it would be quite interesting to extend our methodology to a variety
of other skinning models so that a large number of artist tools (and
thus artists) could be impacted.

For collisions, the skin particles follow the derivation in [Sifakis
et al. 2007]. For simplicity, consider a skin particle ¢ which de-
pends on two bodies a and b. Then an impulse ; is conservatively
distributed to the bodies using w;’f and wff to obtain

20T =77 v wiKa) (43)
T =27 +wlKej. (44)

The skin particle ¢’s new velocity is then

-

Et =+t (w0 K)o (w!5)
T4 KL (45)

N

Using the new skinned particle impulse factor K, we can solve

directly for ; for use in both collisions and self-collisions. See Fig-
ure 7.

Using a standard mesh simplification algorithm that can preserve
original particle positions (such as [Garland and Heckbert 1997]),
we build a coarser skin proxy for use in collisions. This new mesh
contains a subset of the original skinned particles with a new topol-
ogy. In this way, we use geometry to simplify the collision point set
instead of finding points using existing simulation data ([Teng et al.
2014]). Using a coarser collision proxy is especially useful when
simulating reduced deformable models, where individual particles
are not free to move on their own since the degrees of freedom are



Figure 9: Twenty-four reduced deformable fish and twelve rigid seashells are dropped onto a slightly slippery floor. After the pile settles,
a reduced deformable octopus (skinned from 50 “bones”) drops on top of the fish and seashells, eventually settling with its tentacles being

nudged by the flopping fish tails.

basis shapes. In addition to our collision proxies, we build a BD-
tree (see [James and Pai 2004]) on the skin for further accelerations.
Although skinned bodies have no intrinsic reduced degrees of free-
dom, we would like to express sphere radii in terms of g for each
“bone” k for efficiency. Thus our radius bound of each skin sphere
is defined as the maximum of its (maximum contained skinning
weight-scaled) “bone” radii over all “bones.” This bound is poten-
tially looser than that in [James and Pai 2004]. The center updates
can be losslessly accelerated by precomputing for each body k a
skinning weight average of rows of Sk, Zo , and Tk corresponding
to each sphere’s contained particles.

9 Results and Discussion

We provide several examples to illustrate the power of our method,
noting that each example uses linear finite elements (i.e. linear
elasticity and linear shape functions) with » < 10 unconstrained
eigenmodes per reduced body unless otherwise specified. Modal
analysis was performed on each reduced body individually; pre-
computation times and other mesh-specific details can be found in
Table 1. Skeletons were created by first manually placing standard
bones in the rest structures of each mesh and obtaining standard lin-
ear skinning weights using Pinocchio ([Baran and Popovié¢ 2007]).
Segmentation into “deformable bones” was then done by mapping

Linear | Basis BD- Oth # of # of
FEM | Gen. Tree T || Bones | Particles
Bunny 0.73 1.93 0.54 0.22 13 Tk

Domino | 0.0081 [ 0.0151 [ 0.0016 | 0.0035 || 1 27K
Armadillo | 7.60 | 4526 | 620 | 2.02 || 21 74K
Armadillo |, 45 6376 | 039 || 21 19k
(Coarse)
Fish 066 | 101 | 047 | 0.18 Z T0k
Octopus | 21.01 | 320.99 | 25.76 | 6.00 || 50 | 244k

Table 1: Pre-computation times (in seconds) and complexity details
for all of our example meshes.

the skinning weights from the surface onto the tetrahedral volume,
thresholding the weights to create a new tetrahedral volume for each
segment, and subsequently re-normalizing the weights over the en-
tire mesh. Rigid joints were created by automatically laying out
three point joints in a cross section of the overlapping joint region,
varying the distance among the three point joints to control rigidity
of the connected “deformable bones.”

We focused on the algorithmic portions of our implementation and
as such there is much room for optimization to achieve better per-
formance, including parallelization. The timing information in Ta-
ble 2 hints at the main bottleneck in our simulations, which is the re-
duced deformable-reduced deformable collision (and self-collision)
step. This aspect of the system could be optimized by implement-
ing or designing alternative acceleration structures for our skinned
reduced deformable bodies, perhaps even using a standard kd-tree
instead of a BD-tree. The costs of our inertia tensor update and an-
gular momentum correction are negligible compared to the cost of
collisions, but they could also be optimized similar to how [An et al.
2008] reduced the cost of [Barbi¢ and James 2005]. One could also
attempt less frequent updates of the inertia tensor, ignoring ficti-
tious forces, and so on to increase speed at the expense of accuracy,
but doing so may introduce instabilities into the system. Our code
currently allows us to run a skinned armadillo with 30k triangles,
19k particles, 21 member “bones,” and 87 point joints with a colli-
sion proxy in the Pachinko scenario at the interactive rate of about
7fps on a single core of an Intel Xeon X5680 CPU.

Although we have used linear finite elements to simplify our discus-
sion, our method can handle non-linear materials as well via [Barbi¢
and James 2005]. Our derivations assume a linear basis (i.e. @ =
S5q), so we would require modal derivatives in the basis to reason-
ably handle non-linear materials. One could extend the ideas in this
paper to even more complex subspaces, including those with mul-
tiple linear bases. We note that it is straightforward to apply our
skinning framework to standard finite element models as well—for
example one could use a very low degree of freedom linear full
space finite element model attached to a rigid frame via Equation 1
for each “deformable bone” (or even a very coarse nonlinear finite



# of Average #of |#of Pointsof | #of |#of Surface # of Collision Self- Reduced-

. . . . Proxy Surface .. Reduced
Frames | Sec/Frame || Bones | Articulation | Particles | Particles . Collision ..

Particles Collision
Bunny and 10 Dominoes 600 354 23 64 10k 6k - on on
Armadillo and Stairs 400 32.4 21 83 T4k 36k - on on
Armadillo with Projectiles 500 4.2 21 83 74k 36k - off off

Armadillos in a Pachinko

Machine (Each Armadillo) 650 0.15 21 87 19k 15k 1536 off off
20 Fish in a Box 480 122.4 80 300 200k 116k 5600 off on
20 Fish in a Box 480 13.38 80 300 200k 116k 5600 off off
24 Fish and 12 Shells 480 81.6 96 360 240k 139k 6720 off on
Fish, Shells, and an Octopus | 204 344 .4 146 591 484k 240k 11762 on on

Table 2: Timing and mesh sizes for all of our examples, which were run using a single core of an Intel Xeon X5680 CPU. For the Pachinko
example, we set collision, contact, and poststabilization iterations to 1 while setting the iterative articulation tolerance to 0.1. We set collision,
contact, and poststabilization iterations to 5 and our iterative articulation tolerance to le-7 for all other examples.

element model). A better friction model than the one we chose to
use could also be investigated in future work.

10 Conclusion

We have presented a general framework for simulating reduced
deformable bodies (each may specialize to be rigid or fully de-
formable) that conserves linear and angular momentum by compen-
sating for the often overlooked change in angular momentum due to
changes in the reduced degrees of freedom. Enforcing momentum
conservation allows us to achieve plausible and stable simulations
of unconstrained bodies. We have developed a scheme for impulse-
based control of individual particle velocities to achieve physically
accurate collisions, contact, and point position articulation. Our
skinning of reduced deformable “bones,” when combined with ar-
ticulation, achieves domain decomposition and produces detailed
and directable local deformations.
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