
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Energy Conservation for the Simulation of
Deformable Bodies

Jonathan Su, Rahul Sheth, and Ronald Fedkiw

Abstract—We propose a novel technique that allows one to conserve energy using the time integration scheme of one’s choice.
Traditionally, the time integration methods that deal with energy conservation, such as symplectic, geometric, and variational integrators,
have aimed to include damping in a manner independent of the size of the time step, stating that this gives more control over the look
and feel of the simulation. Generally speaking, damping adds to the overall aesthetics and appeal of a numerical simulation, especially
since it damps out the high frequency oscillations that occur on the level of the discretization mesh. We propose an alternative technique
that allows one to use damping as a material parameter to obtain the desired look and feel of a numerical simulation, while still exactly
conserving the total energy - in stark contrast to previous methods in which adding damping effects necessarily removes energy from
the mesh. This allows, for example, a deformable bouncing ball with aesthetically pleasing damping (and even undergoing collision)
to collide with the ground and return to its original height exactly conserving energy, as shown in Figure 2. Furthermore, since our
method works with any time integration scheme, the user can choose their favorite time integration method with regards to aesthetics
and simply apply our method as a post-process to conserve all or as much of the energy as desired.

Index Terms—Computer Graphics, Physically-based Modeling

F

1 INTRODUCTION

D EFORMABLE models have been used in computer
graphics for over twenty years, dating back to the

early work of [1]–[3]. While our work will focus on mass-
spring models, the main ideas should be extendable to
finite element methods (such as those in [4] and [5]),
though we do not evaluate FEMs within the scope of this
paper. Many authors have explored various time integra-
tion schemes, such as fully implicit methods (e.g. [2], [6]),
semi-implicit schemes (e.g. [7], [8]), and explicit schemes
(e.g. [9]).

Damping plays a much larger role in a numerical
simulation than one might otherwise first expect. Im-
plicit time integration schemes possess inherent damp-
ing, which can lead to undesirable artifacts as discussed
by [10]. Other authors, such as [11], stressed the desir-
ability of schemes that add a known quantitative amount
of damping independent of the time step, as opposed
to an unknown quantity of scheme-inherent damping
present in many implicit schemes. It is important to note
that while some schemes require damping in order to
achieve stability, even those that do not require it for
stability use damping to achieve aesthetically pleasing

• J. Su is with the Computer Science Department, Stanford University,
Stanford, CA, 94305 and Intel Labs, Intel Corporation, Santa Clara, CA
95054.
E-mail: jonsu@stanford.edu.

• R. Sheth is with the Computer Science Department, Stanford University,
Stanford, CA 94305.
Email: rbsheth@stanford.edu.

• R. Fedkiw is with the Computer Science Department, Stanford University,
Stanford, CA 94305 and Industrial Light + Magic, San Francisco, CA,
94129.
E-mail: fedkiw@cs.stanford.edu.

Fig. 1. Our global energy correction allows one to use
damping to improve the aesthetics of a simulation while
maintaining energy conservation, enabling a stretched
cube to oscillate uniformly in and out while exactly con-
serving energy. In contrast, the variational integrator seen
in [14] exhibits either high speed oscillations when exactly
conserving energy or loss of energy when damping is
added to make the simulation more visually appealing.

results. For example, [12] states “in application practice,
one generally wishes to have damping” but stresses the
importance of damping independent of the time step
in contrast to numerical damping, similar in vein to
arguments in [10]. Similarly in the case of fluids, [13]
states “completely inviscid [undamped] flows may look
unnatural” and “fluid animation in computer graphics
requires a small amount of viscosity to render the motion
more realistic.” We take this one step further. The afore-
mentioned papers first achieve energy conservation and
then add an explicitly controlled amount of time step-
independent damping to achieve realistic results, but
that damping leads to a loss of energy conservation. In
fact, the authors of [12] show exactly this phenomena in
their paper talk [14], where the energy conserving vari-
ational integrator produces high-frequency vibrations in
an oscillating cube, and damping is used to achieve
a more visually appealing simulation at the cost of
energy conservation. Instead, our scheme allows for any

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 2. Our global energy correction technique is used to restore all energy lost during evolution and collisions,
allowing the sphere to bounce to its original height. It also restores energy lost from damping, as this simulation uses
the semi-implicit Newmark scheme from [8].

amount of explicit or implicit damping in one’s time
integration scheme of choice and subsequently applies a
correction that yields exact energy conservation as well
- something not present in any contemporary methods
in computer graphics or computational mechanics. This
allows damping to be used as a material property to
control the visual attractiveness of the simulation while
maintaining energy conservation. Using our scheme,
the cube from [14] can oscillate uniformly with the
addition of damping while still conserving energy in
Figure 1. Furthermore, the simulation shown in Figure 2
with an aesthetically pleasing time-integration scheme
including damping (and collisions) allows for the sphere
to bounce back to its original height with an effective
elastic restitution coefficient of 1. Any other method that
allows for any amount of implicit or explicit damping,
independent of the time step or not, would dissipate
energy, modeling a coefficient of restitution strictly less
than 1. Any method that ignores damping (assuming it
can correctly handle the collisions) in order to achieve
exact energy conservation to allow the ball to return to
the same height would then lose the ability to achieve
the aesthetically pleasing results that damping allows.

We stress that both damping and energy conserva-
tion are important aspects of our approach. Whereas
damping allows for aesthetically pleasing results, with-
out energy conservation, the ball cannot return to its
original height. Energy conservation also guarantees that
simulations do not become unstable, which is especially
important if one considers large time steps and real-time
applications. Also pertinent to large time steps in real-
time simulations as well as long-time simulations is the
notion of cumulative damping. Whether the damping is
intrinsically inherent in an implicit method or explicitly
added independent of the time step in a method that
otherwise conserves energy, repeated damping time step
after time step will eventually lead to large amounts
of energy being lost from the system. This situation is
even worse for implicit damping where larger time steps
mean faster energy loss in shorter periods of time. So in
spite of methods that add explicit damping independent
of the time step fairing better than other methods, over
a long enough period of time the damping added to
increase the visual fidelity of the system at each time
step eventually removes significantly large amounts of
energy from the system, cumulatively damping it out.

A large advantage of our technique is that one can
obtain the same visual fidelity with the same amount
of damping yet never lose any energy from the system.
Instead of removing high frequency energy via damping,
we essentially move high frequency energy into lower
frequencies, giving both visual fidelity and exact energy
conservation.

Given the importance of energy conservation, we
begin our exposition in Section 2 with a bottom-up
approach to energy conservation for non-linear elastic
systems similar to some of the earliest papers on the
topic, such as [15] which considered the motion of a
single particle and the subsequent paper [16] that consid-
ered systems of particles. This leads us one step at a time
towards a conclusion similar to theirs, that an iterative
approach is required (one of their methods requires
iteration and the other requires dual iteration). However,
our bottom-up approach looks at the problem a bit
differently in that we consider it from the standpoint
of forces. Our resulting scheme is really no different in
spirit from any number of contemporary energy con-
servative time integration schemes in addition to those
already mentioned above. We refer the interested reader
to a selection of papers on the topic (e.g. [17]–[21]) as
well as the book [22]. We note that the energy conserving
time integration scheme that we propose in Section 2 is
not intended to directly compete against the plethora of
methods in the literature, but rather is used to illustrate
a slightly different approach to driving a scheme of this
type and as such lends itself to what we refer to as an
energy budgeting process.

This energy budgeting process is a key ingredient in
our novel technique which allows one to exactly con-
serve energy for any time integration method, explicit or
implicit, with inherent or explicit damping for aesthetics
as well as collisions, self-collisions, etc. For this reason,
we continue the development of this scheme from the
single spring force in Section 2.1, to multiple springs in
Section 2.2, gravity in Section 2.3, multiple dimensions
in Section 2.4, and more complex meshes in Section 3,
before stating the main result of this paper in Sections 4
and 5. Notably, the method proposed in Section 4 does
not require iteration, but instead achieves exact energy
conservation through solving a single quadratic formula.
This is in the spirit of the projection-type method in [23],
but since our approach is different our method lends

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

itself to the simulation of more complex phenomena such
as damping, collisions, and self-collisions (see Sections 4
and 5).

2 SPRING FORCES

2.1 Simple Spring
We begin by considering the evolution of a single spring
in one spatial dimension. For the sake of illustration,
we have chosen to use a Newmark time integration
scheme similar to [8], but a similar approach for energy
conservation could be taken with other time integration
schemes. Recall that in the context of a Newmark time
integration scheme, the evolution of a single particle is
defined as follows:

I. vn+1/2 = vn + ∆t
2mF

II. xn+1 = xn + ∆tvn+1/2

III. vn+1 = vn + ∆t
m F

where F is the net force on the particle. In the context
of a single spring, this will result in changes in kinetic
and potential energy which look like

∆KE =
1

2
m1

h
(vn+1

1)2 − (vn
1)2

i
+

1

2
m2

h
(vn+1

2)2 − (vn
2)2

i
(1)

∆PE =
1

2

k

`0

“
|xn+1

2 − xn+1
1 | − `0

”2
−

1

2

k

`0
(|xn

2 − xn
1 | − `0)2 (2)

where k is the Young’s modulus and l0 is the restlength
of the spring. Substituting the updates for position and
velocity from steps I, II, and III in for xn+1 and vn+1

leads to

∆KE =
1

2

∆t2

m̂
F 2 + ∆t(vn

1 − vn
2)F (3)

∆PE =
1

2

k

`0
(2ba + b2 + 2acF + 2bcF + c2F 2

− 2`0|a + b + cF | + 2`0|a|) (4)

where

a = xn
2 − xn

1 (5)
b = (vn

2 − vn
1)∆t (6)

c = −
1

2

∆t2

m̂
(7)

1

m̂
=

1

m1
+

1

m2
. (8)

In order for energy to be conserved, ∆KE = −∆PE
must be true. We note that using the typical elastic spring
force F = k

l0
(l−l0), where l is the spring’s current length,

does not in general satisfy this equation and therefore is
not guaranteed to conserve energy.

To find an energy conserving spring force, we plug
equations 3 and 4 into ∆KE = −∆PE and solve for F ,
making the assumption that the spring does not change
directions (which removes the absolute values). This
produces the quadratic equation

AF 2 + BF + C = 0 (9)

where

A =
1

2

∆t2

m̂
+

1

2

k

`0
c2 (10)

B = ∆t (vn
1 − vn

2) +
k

`0
(ac + bc − `0c) (11)

C =
k

`0

„
ab +

1

2
b2 − `0b

«
. (12)

Fig. 3. (Left) A single unconstrained spring released from
a stretched state and evolved using our new spring force,
allowing it to continue to oscillate about the restlength.
(Right) A single spring constrained at the left endpoint,
released from a stretched state and evolved using our
new spring force, allowing it to continue to oscillate about
the restlength. Note that we chose a time step equal to
the size of the framerate for both simulations.

Solving equation 9 produces two possible spring forces
that exactly conserve energy given the current spring
state and time step size. One root corresponds to a
spring force which would result in a compressed energy-
conserving final state for the spring, whereas the other
root would result in an expanding final configuration
for the spring. In order to choose the correct one, we
compare the resulting velocity to the analytic velocity
for the spring. Recall that the analytic solution for the
velocity of the endpoints of a spring are

vn+1
1 = vn

cm −
m2

m1 + m2
[−ωα sin ω∆t + ωβ cos ω∆t] (13)

vn+1
2 = vn

cm +
m1

m1 + m2
[−ωα sin ω∆t + ωβ cos ω∆t] (14)

where vcm is the velocity of the center of mass of the
spring, and

ω =

s
k

l0m̂
(15)

α = (xn
2 − xn

1) − l0 (16)

β =
1

w
(vn

2 − vn
1) . (17)

We choose the solution that produces velocities vn+1
1 and

vn+1
2 closest to the analytic velocities.

Figure 3 (left) shows how using this new spring force
allows a spring to exactly conserve its energy, oscillating
back and forth about its restlength. Moreover this works
for large time steps, and Figure 3 was computed using
a time step equal to the framerate.

To handle constrained nodes, one should note that
constrained nodes have infinite mass and a prespeci-
fied velocity. Given this, it is straightforward to handle
constraints. In equation 9, any inverse mass terms cor-
responding to constrained nodes will become zero, and
any velocity terms corresponding to constrained nodes
will just be constants determined by the constrained
velocity of those nodes. Figure 3 (right) shows how our
new spring force correctly conserves energy even when
one node of the spring is constrained.

2.2 Multiple Springs
When multiple springs are connected together, the equa-
tions from Section 2.1 are no longer correct, as the ∆KE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 4. (Left) Two unconstrained springs released from a stretched state and evolved using our new spring force,
allowing them to continue to oscillate about their restlengths. (Right) Two identical springs are constrained on their
non-shared endpoints, while the shared node is offset from the center. The shared node is then released and the
springs are evolved using our new spring force, allowing the shared node to continue to oscillate back and forth. Note
that we chose a time step equal to the size of the framerate for both simulations.

of a node with multiple incident springs cannot simply
be attributed to the ∆PE of any single one of the
incident springs, but must instead be shared among the
∆PEs of all the incident springs. If F is the spring force
under consideration, and

∑
Fi is the sum of all other

forces incident on node i, then ∆KE becomes

∆KE =
1

2
m1

"„
v̂n
1 +

∆t

m1
F

«2

− (v̂n
1)2

#
+

1

2
m2

"„
v̂n
2 −

∆t

m2
F

«2

− (v̂n
2)2

#
. (18)

where

v̂n
1 = vn

1 +
∆t

m1

X
F1 (19)

v̂n
2 = vn

2 −
∆t

m2

X
F2 (20)

In a sense, we are just replacing vn
i by v̂n

i . This simplifies
to

∆KE =
∆t2

2m̂
F 2+ ∆t(vn

1 − vn
2)F +∆t2

„ P
F1

m1
−

P
F2

m2

«
F. (21)

However, this is still not completely correct, since if
one tries to sum all the ∆KE terms from all the equa-
tions together, one would notice that the cross terms
∆t2

(P
F1

m1
−

P
F2

m2

)
F are double counted. As each cross

term involves two forces, we simply split the cross term
evenly between the two equations, to give the final ∆KE

∆KE =
∆t2

2m̂
F 2+ ∆t(vn

1 − vn
2)F +

∆t2

2

„ P
F1

m1
−

P
F2

m2

«
F. (22)

The equation for ∆PE follows a similar logic when mul-
tiple springs are present, simply replacing occurrences of
vn

i in equation 4 with v̂n
i .

Now that we have adapted ∆KE = −∆PE to the
multiple spring case, we would like to solve for the
actual spring forces. However, each ∆KE = −∆PE
equation contains multiple spring forces in it. Our ap-
proach to this problem is to simply iterate over all the
springs in a Gauss-Jacobi fashion. Since each equation
is associated with a particular spring, we just set all the
other spring forces in that equation to whatever estimate
for their value was obtained in the last iteration. This
leaves a set of quadratic equations with only one variable
spring force in each, which we can solve the same way
we did for the single spring case.

It is possible that this iterative technique takes many
iterations to converge, particularly for large systems of
springs. This is where the second half of the New-
mark integration scheme, the velocity update, comes in
handy. In the velocity update, the same ∆KE = −∆PE
equations are set up for each spring, but as the new
positions are already known, ∆PE can be computed and
plugged into each equation as a constant. This allows
one to handle a position update that produces erroneous
positions, whether that stems from non-convergence in
the method we described above, or simply from using
other less accurate methods for the position update. In
particular, this means that even if the position update is
erroneous, one can fix the velocity to still conserve total energy.

As the velocity update for multiple springs is solved
with the same iterative approach as the position update,
it is also possible that it may not converge. If so, this
means that at the end of the time step energy is not
exactly conserved, with too much or too little energy
existing in the system. However, we can compute exactly
what this residual energy error, which we will call PEres,
is for each spring as PEres = ∆KE+∆PE, where ∆KE
and ∆PE are computed using the spring force from the
last iteration of the solve.

PEres can then be used in the next time step by adding
it to the ∆PE term of the ∆KE = −∆PE equation for
the spring it corresponds to. This can be thought of as
slightly compressing or expanding the spring in the next
time step to account for any energy error (hence why
we call it potential energy residual). Keeping track of
the energy error in this fashion allows one to fix the
energy error in the system over time, so that the energy
error does not accumulate. This process of computing
and using PEres is what we refer to as energy budgeting.
Figure 4 shows how our new spring force works to
conserve energy exactly for multiple springs, even with
large time steps.

2.3 Gravity

The same ideas described above for energy conserving
spring forces can be extended to other forces as well, in-
cluding gravity. Consider a single particle in one spatial
dimension which corresponds to the gravity direction

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 6. A single spring rotating about its center of mass while conserving energy. The time step size is set to the
framerate.

Fig. 7. Three springs constrained at their non-shared endpoints, where the shared node is given an initial velocity to
the upper right. The shared node is then released and the springs are evolved using our new spring force, allowing the
shared node to continue to oscillate back and forth. The time step size is set equal to the framerate of the simulation.

and where the only force on that particle is gravity. ∆KE
can be written down as

∆KE =
1

2
m

"„
vn +

∆t

m
F

«2

− (vn)2
#

(23)

Recalling that the PE of a particle due to gravity is
−mgh, where g is the (downward) gravity force and h
is the height of the particle, ∆PE can be written down
as

∆PE = −mgxn+1 + mgxn (24)

= −mg(xn + vn+1/2∆t− xn) (25)

= −mg

„
vn +

∆t

2m
F

«
∆t (26)

Then we simply solve ∆KE = −∆PE in the same
manner we do for springs to get the gravity force.
Gravity can be combined with springs using the same
strategy for handling multiple spring forces as described
in Section 2.2, replacing vn everywhere with v̂n. Figure 5
shows a spring interacting with gravity while fully con-
serving energy.

Fig. 5. A single spring under gravity which is constrained
at the top endpoint, released from a stretched state and
evolved using our new spring force, allowing it to continue
to oscillate about the restlength. The time step size of this
simulation was set to the framerate.

2.4 Multiple Dimensions
Until this point, we have only dealt with forces in one
spatial dimension. In particular, we have assumed that
the spring force direction stays constant throughout the
time step. Now we consider how the equations change in
multiple spatial dimensions. We approximate the spring
direction over the entire time step by the spring direction
at the beginning of the time step. This means, that at the
end of the update, when all forces are applied and new
positions and velocities are computed, energy will not
be exactly conserved. We can again utilize our energy
budgeting framework, computing PEres to keep track
of this error to be fixed in subsequent time steps. This
is highly desirable from the standpoint of efficiency as
compared to a requirement of exact energy conservation
every time step.

First, consider a single spring in isolation. ∆KE be-
comes

∆KE =
1

2
m1

"„
vn
1 +

∆t

m1
Fu

«T„
vn
1 +

∆t

m1
Fu

«
− (vn

1)Tvn
1

#
+

1

2
m2

"„
vn
2 −

∆t

m2
Fu

«T„
vn
2 −

∆t

m2
Fu

«
− (vn

2)Tvn
2

#
(27)

=
1

2

∆t2

m̂
F 2 + ∆t(uTvn

1 − uTvn
2)F (28)

where F is the magnitude of the spring force and u
is the spring direction. Notice that equation 28 and the
equivalent equation 3 for a single spring in one spatial
dimension differ only in that all velocities are projected
into the spring direction u.

Now, consider what happens to ∆PE.

∆PE =
1

2

k

`0

»“
||xn+1

2 − xn+1
1 || − `0

”2
− (||xn

2 − xn
1 || − `0)2

–
(29)

=
1

2

k

`0
(2bTa + bTb + 2cFaTu + 2cFbTu + c2F 2−

2`0||a + b + cFu|| + 2`0||a||) (30)

where
a = xn

2 − xn
1 (31)

b = (vn
2 − vn

1)∆t (32)

c = −
1

2

∆t2

m̂
(33)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

The presence of the magnitudes makes it difficult to
rewrite ∆PE as a quadratic in terms of the spring force
F . However, if we recall that equation 28 and equation 3
differed only in that all velocities and positions were pro-
jected into the spring direction, projecting the problem
back into one spatial dimension, we will do the same
for ∆PE. Therefore, we can simply use equation 4 for
∆PE, where c represents the same value, and a and b
change to

a = (xn
2)Tu− (xn

1)Tu (34)

b =
h
(vn

2)Tu− (vn
1)Tu

i
∆t (35)

Though this is again an approximation of ∆PE, the
energy error that occurs can be put into PEres to be fixed
in subsequent time steps. Figures 6 and 7 show how
our approach conserves energy for springs in multiple
dimensions.

3 MORE COMPLEX ENERGY BUDGETING

The method proposed in Section 2 focuses on energy
conservation from a force based perspective in that
one aims to solve for the force that gives exact energy
conservation. While this force is simple to determine for
a simple spring in Section 2.1, iteration was required for
multiple springs in Section 2.2. Thus we introduce the
concept of energy budgeting, where computing PEres =
∆KE+∆PE accounts for errors in energy conservation.
This is useful if one does not desire to perform Gauss-
Jacobi iterations to convergence. Although this leads to
non-conservation of energy in a single time step, those
errors are accounted for and accumulated so that they
can be accounted for in future time steps, producing a
scheme that is energy conserving in the long run. We
take advantage of this in Section 2.4 in order to approx-
imate the direction of rotating springs as constant over
a time step. In this section, we consider more complex
meshes constructed from basic elements such as triangles
and tetrahedra and explain the energy budgeting process
for more complex altitude and bending springs. The
intent is to give the reader a broader view of energy
budgeting so that they may use it to account for their
own favorite elements.

3.1 Altitude Springs
Following the work of [24] and [25], we use altitude
springs when simulating triangles and tetrahedra for
volume preservation. For simplicity, we will consider

Fig. 8. A single tetrahedron with edge and altitude springs
is stretched and then released. It is evolved using our new
spring force, which allows it to oscillate back and forth
continuously about its rest state. The time step size of
this simulation is set equal to the framerate.

just triangle altitude springs, as the extension to tetra-
hedra is straightforward. An altitude spring is placed
between each particle of the triangle, and a virtual node
projected onto the plane of the opposite edge. An equal
and opposite spring force is applied to the particle and
the virtual node, and the virtual node distributes its
forces barycentrically to the particles of the edge. As
discussed in [26], the inverse mass and velocity of this
virtual node are defined as

1

mv
=

„
w2

1

m1
+

w2
2

m2

«
(36)

vv = w1v1 + w2v2 (37)

where nodes 1 and 2 form the edge along which the
virtual node lies, and w1 and w2 are the barycentric
weights of those two nodes. If one considers a single
altitude spring in isolation where the altitude goes from
node 3 to the edge formed by nodes 1 and 2, then the
equation for ∆KE becomes

∆KE =
1

2
mv

h
(vn+1

v)T(vn+1
v) − (vn

v)T(vn
v)

i
+

1

2
m2

h
(vn+1

3)T(vn+1
3) − (vn

3)T(vn
3)

i
(38)

=
1

2
∆t2

„
1

mv
+

1

m3

«
F 2 + ∆t((vn

v)Tu− (vn
3)Tu)F (39)

which we note is exactly what one gets with a normal
spring, except that one of the endpoints is replaced
by the weighted sum of two nodes. The equation for
∆PE is easily modified in a similar fashion. However,
as noted in [27], if all three altitude springs in a tri-
angle are used at once, one might encounter negative
barycentric weights. To prevent these degenerate cases,
we only ever use the shortest altitude spring, which also
means we only need to keep track of one PEres per
triangle/tetrahedron. However, as the shortest altitude
spring will switch throughout the course of a simulation,
and because the restlength and Young’s modulus may
be different for each altitude, simply switching springs
while using the same PEres is not sufficient. To handle

Fig. 9. A graph showing the total energy at the end
of each frame in the simulation of a single tetrahedron
with altitude springs shown in Figure 8. The green line
shows the energy using our new energy conserving
spring forces, and the red line shows the total energy if
normal spring forces were used for that frame.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 10. Two connected triangles with edge, altitude,
and bending springs are constrained at their non-shared
nodes. The shared nodes are given an initial velocity,
and the triangles are evolved using our new spring force,
allowing the triangles to oscillate back and forth about
their rest state. The time step size of this simulation is
set equal to the framerate.

this, whenever we switch altitude springs in a triangle
or tetrahedra, we update the PEres associated with that
element as follows

I. PEtotal = PEold altitude − PEres

II. PEres = PEnew altitude − PEtotal

This ensures that energy is conserved when altitude
springs are added and removed from the simulation. As
future work, it would be interesting to try to adapt this
scheme to a method that handles remeshing, such as [28].
Figure 10 shows a simulation with energy conserving
triangle altitude springs, and Figure 8 shows the exten-
sion of this method to energy conserving tetrahedron
altitude springs. Figure 9 shows the total energy at the
end of each frame in the simulation, where the green
line shows the energy using our new energy conserving
spring forces, and the red line shows the total energy if
normal spring forces were used for that frame.

3.2 Bending Springs

To simulate thin deformable materials such as cloth, we
add a simple bending model composed of two springs
to resist bending motion. One of these springs connects
opposite vertices across an edge shared by two triangles
and can be made energy conserving by simply consid-
ering what is done for normal edge springs, as it just
connects two nodes in the mesh. However, if the two
triangles become coplanar, this spring cannot recover the
rest curvature as it lies in-plane with the triangles. A
second axial bending spring is added to alleviate this
problem by connecting a virtual node on the shared edge
to a virtual node on the first bending spring.

To make the axial bending spring energy conserv-
ing, we apply a similar approach to handling altitude
springs, except that instead of only one endpoint being
a virtual node, both endpoints are now virtual nodes.
However, one will notice that this axial bending spring
is actually a zero-length spring. To handle this in our
energy conserving framework, we first recall that the
potential energy of a zero-length spring is

PEzero−length =
1

2

k

l0
(l − l̂0)2 (40)

where the only difference with a normal spring is the
use of the visual restlength l̂0 in addition to the normal
restlength l0, which prevents division by zero. Replacing

l0 by l̂0 in equation 4 allows us to handle zero-length
springs in an energy conserving way. Figure 10 shows
a simple example of these energy conserving bending
springs. It is feasible that these ideas could be extended
to other bending models, such as [8], [29], [30]. Moreover,
we imagine one could extend these energy conservation
techniques to other models based on mass-spring sys-
tems, such as the hard and soft constraints in [26] (see
also [31]).

4 OUR NEW SCHEME

In Section 2 we outlined a force based iterative approach
to conserving energy in a mass-spring system which
relied on an energy budgeting process where exact
changes in kinetic and potential energy were computed
and the net change in energy was denoted PEres =
∆KE+∆PE. Using an iterative approach one can drive
PEres to zero, which is the typical goal of contemporary
energy conserving time integration schemes. However,
we instead exploited the ability to carry non-zero val-
ues of PEres forward in order to simplify the iterative
schemes in multiple dimensions in Section 2.4 and in
order to cut down on the number of iterations required.
In this section we propose our novel approach to energy
conservation which allows one to set PEres to zero
exactly conserving energy by solving a simple quadratic
equation requiring no iteration. In fact one could use
their favorite time integration scheme with their favorite
forces, including elasticity and damping(!), and simply
insert their value of F into the formulas for ∆KE and
∆PE in order to compute PEres for their scheme. Then
our new global correction method (explained below)
would allow them to exactly conserve the energy in post
process for that scheme. Because one only needs to know
PEres for their favorite scheme, we dedicated Section 3
to a few more complex elements such as altitude and
bending springs to give the reader some insight into how
they might compute PEres for various elements.

4.1 Motivation
First, for the sake of motivation, let us consider ether
drag, which usually takes the velocity and scales it back
based on some ether drag coefficient. Now, imagine if a
mesh had too much energy as indicated by PEres. One
could simply add some ether drag to every node to slow
everything down, such that the overall change in kinetic
energy due to ether drag accounts for the total PEres
still present in the mesh. We write this down as

KEafter − KEbefore = −
X

PEres (41)X 1

2
m

h
(vn+1)Tvn+1 − (vn)Tvn

i
= −

X
PEres (42)

where

vn+1 = vn −
∆t

m
εvn (43)

This simplifies toX
∆t

»
−ε +

1

2

∆t

m
ε2

–
(vn)Tvn = −

X
PEres (44)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 11. A piece of cloth is constrained by two points
and let go from its horizontal initial state. Our energy
conservation framework enables it to continue swinging
back and forth and achieve its initial height.

where ε is the global ether drag coefficient. This
quadratic equation can be solved for ε, which produces
an ether drag force on each node that will decrease the
global energy to be closer to the correct amount. Of
course one can only decrease the KE to zero, so there
could still be PEres left over to be fixed in the next
time step, but applying this global correction will bring
the total energy closer to the correct amount. If instead
the mesh did not have enough energy, one could do
the opposite of ether drag and increase all the velocities
slightly to get the correct total energy.

Since ether drag does not conserve momentum we do
not propose using it as a method to fix the global energy,
but it is useful in conceptualizing the main idea. We will
now introduce two momentum preserving forces that
can be used in a similar way to correct the total energy
while also conserving momentum.

4.2 Momentum Conserving Correction Forces
The motivational exposition in Section 4.1 for ether
drag actually extends in a straightforward way to other
forces that conserve momentum. The first force we will
consider is the elastic spring force used in the standard
velocity update. Replacing the elastic force for the ether
drag force in equation 42 givesX 1

2
m

h
(vn+1)Tvn+1 − (vn)Tvn

i
= −

X
PEres (45)

where

vn+1 = vn −
∆t

m
ε

X
Fe (46)

This simplifies toX
∆t

»
−ε(vn)T

X
Fe +

∆t

2m
ε2

X
FT

e

X
Fe

–
= −

X
PEres

(47)

where
∑

Fe is the sum of all elastic forces felt on a
specific node. Again, we have a quadratic in ε, which we
can solve in the same manner as when using ether drag.
Using the elastic force instead of an ether drag force
allows the global energy correction to be momentum
conserving.

Instead of using the elastic force for the global cor-
rection, one could also use the damping force from the

Fig. 12. The same cloth as in Figure 11, except run
using a small time step of the semi-implicit Newmark time
integration scheme from [8]. (Left) No physical damping
is added, causing the cloth to oscillate on the scale of the
grid. (Right) A small amount of physical damping is added,
alleviating the high-frequency oscillations while resulting
in near-energy preservation, at the cost of a impractically
small time step.

velocity update. One arrives at the same quadratic equa-
tion in ε as for the elastic force case, except with

∑
Fe

replaced by
∑

Fd, where
∑

Fd is the sum of all damping
forces felt by a specific node. As with using elastic forces,
using a damping force for the global energy correction
allows for momentum conservation.

Note that what we are doing here is we have a mo-
mentum that we like, but we want a better total energy.
This is similar to the energy correction in [32], where
angular momentum is conserved but a new rigid body
orientation is obtained that conserves energy. Through
various tests, we found the best results are produced
when damping forces are used in the cases where energy
needs to be taken out of the mesh (something damping
forces are known to be good for) and elastic forces are
used in the cases where energy needs to be put back
into the mesh. That is, we use damping when PEres is
positive and elastic forces when PEres is negative.

4.3 A Note on Damping

It is important to keep in mind that we are not simulating
a mass-spring network with the intention of simulating a
mass-spring network, but rather in order to approximate
what a deformable object would do as it experiences real-
world forces. This is especially important for inviscid
(undamped) models where a disturbance in the mass-
spring network can excite frequencies at all scales, all
the way up to the Nyquist frequency. This can appear
rather disturbing, and one typically adds damping to
remove energy at the highest frequencies.

Damping does two things in a simulation; it provides
homogenization of the mass-spring network, limiting the
highest frequency (or smallest scale) that visible vibra-
tions occur and removes energy from the simulation.
The first of these is a necessity for any high-fidelity
simulation, whereas the second is undesirable, and our
approach allows one to keep the first, desirable aspect
of damping while discarding the second. At a high-level
one can think of the first use of damping as a material
parameter that can be used to adjust the look and feel of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

a simulation, whereas the second use is strictly to remove
energy.

Furthermore it is important to note that for a given
simulation on a given mesh, damping can be minimized
but not removed entirely. Take Figure 11, where we show
that a highly deformable piece of cloth is able to recover
its initial height when using our energy conservation
framework. We reran it using a very small time step
of the semi-implicit Newmark integration scheme of [8],
which made the simulation take quite a long time to run.
A time step this small could never be used in practice
but we did it to minimize numerical dissipation as much
as possible. Then to minimize physical dissipation we set
the damping to zero; Figure 12 (Left) shows the result.
The cloth mesh starts to oscillate on the scale of the grid
- as we pointed out earlier in Section 1, this is similar
to what is achieved by a variational method without
damping. Energy is preserved but the simulation does
not mimic an expected material behavior but rather
shows frequencies particular to the scale of the mesh.
If we add just a very small amount of physical damping,
increasing it to .0001, we get the result in Figure 12
(Right), with rather nice energy preserving behavior.
This is about the best we can do preserving energy in
this example, using an impractically small time step and
a hand-tuned, very small amount of damping. Now for
a different mesh, simulation example, time integration
scheme, and mass-spring model one might do better,
but the issues are symptomatic. Numerical damping can
be driven very low with impractically small time steps,
and physical damping can be set very low but still
needs to be big enough to “hide” the mesh discretization.
This is the same conclusion that those doing variational
methods come to without having stated it. One can think
of our method in some ways as a better constitutive
model for the mesh - one that does a better job modeling
a real material without discretization artifacts while not
requiring the removal of energy from the system (either
with numerical or with physical damping).

4.4 Correcting Arbitrary Time Integrators
In summary, the key idea of our method is to compute a
PEres and then apply the correction forces in Section 4.2
to obtain energy conservation. Those correction forces

Fig. 13. A complex deformable armadillo is stretched and
released with its feet constrained. Our energy conserva-
tion framework allows the armadillo to maintain its energy
and continue bouncing over time.

can be used on any mesh, whether it be discretized with
masses and springs or even finite elements. Whereas
the correction forces are proposed in a mass-spring
formulation, the original forces used in the simulation
could come from a finite element model as long as
PEres is properly computed. In fact one could use a time
integration scheme of their choice, whether it be implicit,
semi-implicit, explicit, variational, symplectic, geometric,
etc., and as long as PEres can be computed via an
energy budgeting process, one can use the correction
forces in Section 4.2 to achieve energy conservation.
Moreover, the original time integration method can in-
clude both elastic and damping forces, with damping
being especially important because it gives aesthetic
appeal to a simulation. In fact we chose the method
from [8] with visually appealing damping parameters
for Figures 2, 11, 13, 15, and 16. In each simulation,
we simply computed PEres in each time step using the
methods outlined in Sections 2 and 3 and subsequently
calculated correction forces along the lines of Section 4.2.

In Figure 14, the red line shows the results using
the standard scheme from [8] to simulate the bouncing
sphere shown in Figure 2. However, using our energy
budgeting process to compute PEres and then apply our
correction forces leads to the green graph, where energy
is obviously much better conserved. Note that while the
fact that one can only decrease the KE to zero indicates
that one cannot always exactly zero out PEres every time
step with the correction forces, any left over PEres in
each time step accumulates and is fixed in future time
steps. As can be seen by comparing the green and red
lines on the graph, the correction makes an enormous

Fig. 14. A graph showing the total energy over time in the
simulation of the coarse tetrahedralized sphere shown in
Figure 2. The red line is the total energy when our energy
conservation scheme is not used, whereas the green line
is the total energy when utilizing our new scheme. The
sudden declines in the red line correspond to collisions
between the sphere and the ground.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 15. A deformable wheel is dropped from a height and collides with the ground and itself, producing both
rigid/deformable and self-collisions. Our global energy correction technique is used to restore all energy lost during
evolution and collisions, allowing the wheel to bounce to its original height.

difference in the simulation and produces a line that
appears constant to the naked eye.

5 COLLISIONS
An obvious benefit of our energy budgeting process is
that we can readily incorporate both collisions and self-
collisions. Collisions are handled using the integration
scheme

I. vn+1/2 = vn + ∆t
2m

F

II. xn+1 = xn + ∆tvn+1/2

III. Collisions: Modify vn and xn+1

IV. Self-Collisions: Modify vn and xn+1

V. vn+1 = vn + ∆t
m

F (collision constraints in CG solve)

First, let us consider what happens during collisions
with rigid bodies. In step III above, when a particle
collides with a rigid body, its velocity is set to the
velocity of the body, resulting in a change in kinetic
energy. Moreover, the particle is moved to the surface
of the body, resulting in a change in potential energy
for all springs attached to that particle. If energy is to be
conserved, the ∆KE due to collisions must equal −∆PE
due to collisions. Typically, energy is not conserved dur-
ing collisions and often increases. We stress that stiffer
objects and larger time steps result in a more drastic
∆PE due to collisions. As a result, large energy errors
will be made, which could potentially result in unstable
simulations. To ensure energy is conserved throughout
the simulation, we compute the energy error ∆KE +
∆PE due to collisions, and use our global correction
from Section 4 to correct it. Even if one does not intend
to use our algorithm for energy conservation at all,
monitoring the energy difference during collisions and
identifying any time steps where the energy increases
would be important.

As in [6], [26], [33], we use collisions as constraints on
vn+1 in the conjugate gradients solve during the velocity
update in step V above. In this case, we would again
like to determine the ∆KE due to using these collision
constraints, as this will allow us to determine the energy
gained or lost due to this part of collisions. However,
as these constraints are enforced as projections in the
solve, which includes elastic and damping forces as well,
one cannot simply measure the kinetic energy before
and after the solve. In order to determine the ∆KE
due to just the collision constraints, we take the ∆KE
computed after the CG solve, and subtract off the ∆KE
that would have resulted by applying just the elastic
and the damping forces. Once this is determined, any

energy gained or lost can be corrected using the global
correction from Section 4.

Figure 2 shows an example of an energy conserving
simulation including collisions. We note our method
makes it possible to restore only part of the energy lost
to collisions, allowing an animator to explicitly control
how much energy collisions remove from the simulation.
It is important to note that similar energy conservation
approaches can be applied to other collision handling
schemes. For more on collision handling techniques, we
refer the interested reader to the recent paper of [34].

5.1 Self-Collisions

As the amount of deformation in a mesh becomes
more significant, it becomes important to handle self-
collisions, which we handle using the method of [7].
We first note that self-collisions change both positions
and velocities, resulting in changes to both PE and KE.
Moreover, no energy should be lost to self-collisions, as
all forces are exchanged between elements of the mesh.
Therefore, to conserve energy, we simply measure both
the kinetic and potential energy before and after self-
collisions are applied and fix any error ∆KE + ∆PE
with the global correction described in Section 4. In
Figure 15, we show an energy conserving simulation
with self collisions.

We note that there are many other techniques for
handling self-collisions, referring the interested reader
to [35], and stress that similar energy conservation tech-
niques could be applied to these other methods. In
particular, [36] showed that under various situations,
such as when cloth is pinched in the armpit of a character
(between two bodies), it is sometimes desirable to allow
interpenetration of cloth, which can be untangled after-
wards. Note that this untangling requires changing of
both positions and velocities of the cloth mesh, leading to
changes in potential and kinetic energy. If these changes
are undesired, they can be accounted for and corrected
with our global correction method.

6 EXAMPLES

In Figure 2, we show a deformable sphere bouncing on
the ground, and by using our global energy correction
framework, it is able to recover its initial height while
maintaining interesting oscillations due to the collision

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 16. A complex deformable armadillo model is dropped down a flight of stairs, exhibiting both rigid/deformable and
self-collisions.

with the ground. We show that the same global en-
ergy correction can be applied to simulations with self-
collisions in Figure 15, where we drop a deformable
wheel on the ground. Even with both rigid/deformable
and self-collisions, the wheel is able to regain its ini-
tial height. In Figure 11, we show that a highly de-
formable piece of cloth also is able to recover its initial
height when using our energy conservation framework.
It would be interesting to see if we could extend our
methods, especially the energy conserving global fix in
Section 4, to consider other models for cloth, such as the
yarn based model seen in [37]. In the attached videos, a
slight artifact is apparent in the bouncing sphere videos
when the stiffness is high, causing the sphere to bounce
off-center. We hypothesize that this is due to the dis-
cretization of the sphere, as it is noticeably worse when
a coarse discretization is used, and when the sphere is
not allowed to deform significantly, allowing the initial
point of impact to play a significant role in determining
the direction of the sphere’s bounce. A similar artifact is
seen in the video of the hanging cloth, where the swing
of the cloth changes towards the end of the video. We
again believe this bias is due to the coarseness of the dis-
cretization, with the cloth containing roughly only 5500
triangles. It would be interesting to see if increasing the
resolution of the meshes and improving the symmetry
of the discretization removes these simulation artifacts.

Finally, we show that our energy conservation frame-
work works on complex meshes as well. In Figure 13, we
stretch a complex armadillo mesh out and, while con-
straining its feet, we release it and let it bounce around.
Using a typical deformable mesh solver, one would see
this motion damp out over time; using our framework
the armadillo continues to move around while conserv-
ing energy. In Figure 16, we drop the armadillo down
a flight of stairs, showing that rigid/deformable colli-
sions and self-collisions continue to work with complex
meshes.

Energy budgeting, i.e. calculating PEres, is rather

straightforward and adds very little overhead to the cost
of the simulation. Similarly, the calculation of the cor-
rection forces is also straightforward and approximately
equivalent to one explicit time step. Overall in our
simulations, the simulation time was dominated by the
conjugate gradient solve to implicitly handle viscosity
and our energy budgeting correction forces were similar
in cost to the explicit part of the time step.

7 CONCLUSION

We introduced a novel technique for energy conserv-
ing simulation of deformable bodies regardless of the
underlying time integration scheme. Our scheme allows
the incorporation of collisions, self-collisions, and most
importantly damping, which, as authors of other energy
conserving integration schemes have pointed out, is
crucial to the aesthetics of a simulation. However, unlike
other energy conserving schemes where the addition
of visually appealing damping necessarily removes the
energy conservation property, our approach allows one
to maintain energy conservation while using damping
as a material parameter to improve the aesthetics of the
simulation. Finally, the energy budgeting approach that
our method takes allows it to be applied as a lightweight
post-process energy fix to the time integration method
of one’s choice, allowing one to conserve as much or as
little energy as is visually desirable.

One of the main limitations with the global correction
scheme we proposed is that it does not provide control
over where in the mesh the energy error is distributed. In
future work, we would like to explore different momen-
tum conserving correction forces similar to those pre-
sented in Section 4.2, but which allow the energy error to
be distributed less uniformly or targeted to specific parts
of the mesh. Furthermore, we are interested in exploring
whether other less simplistic forces could be used with
our global correction, and whether these forces produce
more visually appealing results as compared to simply
scaling the damping or elastic forces.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

In Figures 2, 15, and 16, we show how our global
energy correction works in the presence of collisions
with kinematic objects. In future work, we would like
to explore how our global energy correction extends to
the interaction of multiple dynamic objects. Namely, one
could keep track of the energy error due only to the
collision of two bodies, and distribute that error back to
the two bodies by applying an epsilon-scaled version of
the original collision forces, much like the other global
correction schemes we introduced in Sections 4 and 5.
This will ensure that energy is conserved during multi-
ple object interaction, while maintaining conservation of
momentum.

Finally, we have only experimentally tested our global
correction for a mass-spring based system using a semi-
implicit Newmark integration scheme. Nothing in our
global correction scheme is specific to mass-spring sys-
tems or semi-implicit Newmark integration, and in fu-
ture work we would like to explore the generality of our
correction scheme in the context of other solvers.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Craig Schroeder
for his help with rendering. Research supported in part
by NSF IIS-1048573, ONR N00014-09-1-0101, ARL AH-
PCRC W911NF-07-0027 and the Intel Science and Tech-
nology Center for Visual Computing. J.S. was supported
in part by an NSF Graduate Research Fellowship.

REFERENCES

[1] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically de-
formable models,” Comput. Graph. (Proc. SIGGRAPH 87), vol. 21,
no. 4, pp. 205–214, 1987.

[2] D. Terzopoulos and K. Fleischer, “Deformable models,” The Vis.
Comput., vol. 4, no. 6, pp. 306–331, 1988.

[3] ——, “Modeling inelastic deformation: viscoelasticity, plasticity,
fracture,” Comput. Graph. (SIGGRAPH Proc.), pp. 269–278, 1988.

[4] J. O’Brien and J. Hodgins, “Graphical modeling and animation of
brittle fracture,” in Proc. of SIGGRAPH 1999, 1999, pp. 137–146.

[5] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements
for robust simulation of large deformation,” in Proc. of the ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim., 2004, pp. 131–
140.

[6] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in
ACM SIGGRAPH 98. ACM Press/ACM SIGGRAPH, 1998, pp.
43–54.

[7] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of
collisions, contact and friction for cloth animation,” ACM Trans.
Graph., vol. 21, no. 3, pp. 594–603, 2002.

[8] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of cloth-
ing with folds and wrinkles,” in Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 2003, pp. 28–36.

[9] M. Hauth and O. Etzmuss, “A high performance solver for
the animation of deformable objects using advanced numerical
methods,” in Computer Graphics Forum, vol. 20, 2001, pp. 319–328.

[10] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 21, pp. 604–611, 2002.

[11] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. Marsden, P. Schröder,
and M. Desbrun, “Geometric variational integrators for com-
puter animation,” ACM SIGGRAPH/Eurographics Symp. on Com-
put. Anim., pp. 43–51, 2006.

[12] I. Chao, U. Pinkall, P. Sanan, and P. Schröder, “A simple geometric
model for elastic deformations,” in Proc. of ACM SIGGRAPH 2010,
2010, pp. 38:1–38:6.

[13] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun, “Energy-
preserving integrators for fluid animation,” in SIGGRAPH ’09:
ACM SIGGRAPH 2009 papers, 2009, pp. 1–8.

[14] I. Chao, U. Pinkall, P. Sanan, and P. Schröder, “A simple
geometric model for elastic deformations,” Supplemental
Materials Video, Proc. of ACM SIGGRAPH 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1778775

[15] R. A. LaBudde and D. Greenspan, “Energy and momentum con-
serving methods of arbitrary order for the numerical integration
of equations of motion i. motion of a single particle,” Numer.
Math., vol. 25, pp. 323–346, 1976.

[16] ——, “Energy and momentum conserving methods of arbitrary
order for the numerical integration of equations of motion i.
motion of a system of particles,” Numer. Math., vol. 26, pp. 1–
16, 1976.

[17] C. Kane, J. E. Marsden, M. Ortiz, and M. West, “Variational
integrators and the newmark algorithm for conservative and
dissipative mechanical systems,” International Journal for Numerical
Methods in Engineering, vol. 49, pp. 1295–1325, 2000.

[18] A. Lew, J. E. Marsden, M. Ortiz, and M. West, “Variational
time integrators,” International Journal for Numerical Methods in
Engineering, vol. 60, pp. 152–212, 2004.

[19] W. Fong, E. Darve, and A. Lew, “Stability of asynchronous
variational integrators,” J. Comput. Phys., vol. 227, pp. 8367–94,
2008.

[20] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun,
“Asynchronous contact mechanics,” in ACM SIGGRAPH 2009.
ACM Press/ACM SIGGRAPH, 2009, pp. 1–12.

[21] M. Gonzalez, B. Schmidt, and M. Ortiz, “Force-stepping integra-
tors in lagrangian mechanics,” International Journal for Numerical
Methods in Engineering, vol. 84, pp. 1407–1450, 2010.

[22] E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical In-
tegration: Structure-Preserving Algorithms for Ordinary Differential
Equations. Springer Series in Computational Mathematics, 2006,
vol. 31.

[23] J. C. Simo, N. Tarnow, and K. K. Wong, “Exact energy-momentum
conserving algorithms and symplectic schemes for nonlinear dy-
namics,” Comput. Methods Appl. Mech. Eng., vol. 100, pp. 63–116,
October 1992.

[24] N. Molino, R. Bridson, J. Teran, and R. Fedkiw, “A crystalline,
red green strategy for meshing highly deformable objects with
tetrahedra,” in 12th Int. Meshing Roundtable, 2003, pp. 103–114.

[25] R. Bridson, J. Teran, N. Molino, and R. Fedkiw, “Adaptive physics
based tetrahedral mesh generation using level sets,” Eng. w.
Comp., 2005.

[26] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid simulation
of deformable solids,” in Proc. of ACM SIGGRAPH/Eurographics
Symp. on Comput. Anim., 2007, pp. 81–90.

[27] A. Selle, M. Lentine, and R. Fedkiw, “A mass spring model for
hair simulation,” ACM Transactions on Graphics, vol. 27, no. 3, pp.
64.1–64.11, Aug. 2008.

[28] M. Wicke, D. Ritchie, B. Klingner, S. Burke, J. Shewchuk, and
O’Brien, “Dynamic local remeshing for elastoplastic simulation,”
in Proc. of ACM SIGGRAPH 2010, 2010, pp. 49:1–49:11.

[29] E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder, “Discrete
shells,” in Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp.
on Comput. Anim., 2003, pp. 62–67.

[30] P. Volino and N. Magnenat-Thalmann, “Simple linear bend-
ing stiffness in particle systems,” in Proc. of the ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 2006, pp. 101–105.

[31] C. Twigg and Z. Kačić-Alesić, “Point cloud glue: Constraining
simulations using the procrustes transform,” in Proc. of the 2010
ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2010, pp.
45–54.

[32] J. Su, C. Schroeder, and R. Fedkiw, “Energy stability and fracture
for frame rate rigid body simulations,” in Proceedings of the 2009
ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2009, pp.
155–164.

[33] T. Shinar, C. Schroeder, and R. Fedkiw, “Two-way coupling of
rigid and deformable bodies,” in SCA ’08: Proceedings of the 2008
ACM SIGGRAPH/Eurographics symposium on Computer animation,
2008, pp. 95–103.

[34] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and
P. Kry, “Volume contact constraints at arbitrary resolution,” in
Proc. of ACM SIGGRAPH 2010, 2010, pp. 82:1–82:10.

[35] J. Barbič and D. James, “Subspace self-collision culling,” in Proc.
of ACM SIGGRAPH 2010, 2010, pp. 81:1–81:9.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[36] D. Baraff, A. Witkin, and M. Kass, “Untangling cloth,” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 22, pp. 862–870, 2003.

[37] J. Kaldor, D. James, and S. Marschner, “Efficient yarn-based cloth
with adaptive contact linearization,” in Proc. of ACM SIGGRAPH
2010, 2010, pp. 105:1–105:10.

Jonathan Su received his Ph.D. in Computer
Science from Stanford University in 2011, during
which he was awarded the National Science
Foundation Graduate Research Fellowship. He
is currently a Research Scientist in the Parallel
Computing Lab at Intel Corporation where he
has been studying the scalability of physical sim-
ulation algorithms on current and future multi-
core/many-core architectures.

Rahul Sheth received his B.S.E. in Electrical
and Computer Engineering from Rutgers Univer-
sity in 2010. While there, he worked on various
research projects in visualization and computer
vision. He is currently pursuing a Ph.D. in Com-
puter Science at Stanford University and is in-
terested in developing algorithms for real-time
physical simulation.

Ron Fedkiw received his Ph.D. in Mathemat-
ics from UCLA in 1996 and did postdoctoral
studies both at UCLA in Mathematics and at
Caltech in Aeronautics before joining the Stan-
ford Computer Science Department. He was
awarded an Academy Award from The Academy
of Motion Picture Arts and Sciences, the Na-
tional Academy of Science Award for Initiatives
in Research, a Packard Foundation Fellowship,
a Presidential Early Career Award for Scientists
and Engineers (PECASE), a Sloan Research

Fellowship, the ACM Siggraph Significant New Researcher Award, an
Office of Naval Research Young Investigator Program Award (ONR
YIP), the Okawa Foundation Research Grant, the Robert Bosch Faculty
Scholarship, the Robert N. Noyce Family Faculty Scholarship, two dis-
tinguished teaching awards, etc. Currently he is on the editorial board of
the Journal of Computational Physics, Journal of Scientific Computing,
and he participates in the reviewing process of a number of journals
and funding agencies. He has published over 80 research papers in
computational physics, computer graphics and vision, as well as a book
on level set methods. For the past ten years, he has been a consultant
with Industrial Light + Magic. He received screen credits for his work on
“Terminator 3: Rise of the Machines”, “Star Wars: Episode III - Revenge
of the Sith”, “Poseidon” and “Evan Almighty”.

