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Data for Facial Reconstruction from Sparse

Markers
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Abstract—When considering sparse motion capture marker data, one typically struggles to balance its overfitting via a high
dimensional blendshape system versus underfitting caused by smoothness constraints. With the current trend towards using more and
more data, our aim is not to fit the motion capture markers with a parameterized (blendshape) model or to smoothly interpolate a
surface through the marker positions, but rather to find an instance in the high resolution dataset that contains local geometry to fit
each marker. Just as is true for typical machine learning applications, this approach benefits from a plethora of data, and thus we also
consider augmenting the dataset via specially designed physical simulations that target the high resolution dataset such that the
simulation output lies on the same so-called manifold as the data targeted.
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1 INTRODUCTION

Realistic facial animation has a wide variety of applications in
both computer vision and the entertainment industry [1]. It is
typically achieved through a combination of keyframe animation,
where an animator hand-adjusts controls corresponding to the
motion of different parts of the face, and facial performance
capture, which uses computer vision to track the motion of an
actor’s face recorded from one or more cameras. Despite the
many techniques developed over the years, facial performance
capture remains a difficult task, and the high degree of accuracy
required to generate realistic facial animation severely suppresses
its widespread impact.

One class of techniques which has a proven track record uses
markers painted on an actor’s face in conjunction with a stereo
pair of head mounted cameras [1], [2]. These markers are tracked
in each camera in 2D and triangulated to obtain a sparse set of an-
imated 3D bundle positions representing the motion of the actor’s
face. In order to reconstruct a full 3D facial pose for each frame of
3D bundles, one often uses a parameterized (blendshape) model
[3], [4]. However, these parameterized models often have large
infeasible spaces. While a skilled animator can aim to avoid these
infeasible spaces, an optimization algorithm would need them
explicitly specified which is typically not practical. Another com-
monly used approach interpolates bundle displacements across the
face [2]. However, this results in reconstructed geometry that is
overly smooth since the sparse bundle positions cannot represent
high-resolution details between the bundles, especially details that
appear during expressions, e.g. folds, furrows, and wrinkles. To
address these shortcomings, we follow the current trend in the
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deep learning community of adding more and more data by using
a large dataset of facial shapes to inform the reconstruction of the
face surface geometry from the tracked bundle positions.

Our approach to this problem can be thought of as local
geometric indexing wherein each bundle needs to identify relevant
associated geometry from the dataset. To accomplish this, we
envision the dataset as a separate point cloud for each bundle;
this point cloud is obtained by evaluating the 3D position of the
relevant bundle on each face shape in the dataset. These point
clouds are then used to index the dataset in order to figure out the
most relevant shapes given a bundle position. A bundle position
that lies outside of its associated point cloud indicates a lack of
data and can be projected back towards the point cloud. On the
other hand, it is also possible for many candidate points to exist
in the point cloud in which case neighboring bundles and their
associated point clouds can be used to disambiguate. Finally, the
shapes chosen for each bundle are combined to obtain a high-
resolution dense reconstruction of the facial geometry.

We begin the exposition by describing the creation of our facial
shape dataset, which is initially bootstrapped via a combination of
dense performance capture and hand sculpting for a small set of
expressions and is further augmented using physical simulation.
Then, we detail our local geometric indexing scheme and show
how it can be used to find the shapes that are most relevant to
a bundle given its position. This is followed by a discussion of
the various smoothness considerations that are used to inform
our approach for spatially blending the relevant shapes across
the face to recover a high-resolution dense reconstruction of the
full face. Finally, we apply our algorithm to a series of feature
film production examples and compare the results to other popular
approaches.
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2 PRIOR WORK

2.1 Capture

High-resolution facial geometry can be captured using dense
performance capture techniques such as [5], [6], [7], [8]. However,
these methods typically require environments with controlled
lighting and dedicated camera hardware. These restrictions, along
with the limitations on the actor’s motion, often make these
techniques unsuitable for on-set capture where an actor often
needs to interact with the set and/or other actors. On-set capture
typically involves painting a marker pattern on an actor’s face and
recording the actor’s performance with a set of helmet mounted
cameras. The markers can be tracked in the resulting footage and
triangulated to recover a sparse set of bundle positions that follow
the actor’s facial performance.

2.2 Reconstruction

In order to animate the neutral mesh of an actor, one could
compute a smooth deformation of the face mesh by interpolating
the motion of the bundles (see e.g. the corrective shape computed
in [2] and the non-rigid ICP approach of [9]). However, this
usually results in a deformed mesh that contains too much of
the high-frequency detail of the neutral mesh and too little of
the high-frequency detail associated with a particular expression.
In order to add high frequency details to the reuslting deformed
mesh, [9] projects the smoothly deformed mesh towards per-frame
dense scans. Several approaches that do not require additional per-
frame scans have also been proposed including [10], [11], [12],
[13], and [14] which use deformation gradients, a nonlinear shell
energy, feature graph edge strains, polynomial displacement maps,
and neural networks respectively. Masquerade [15] combines
some of these approaches for facial performances solved from
helmet mounted cameras. However, such approaches may not
remove high-frequency details in the neutral mesh that are not
present in the expression. Furthermore, if the smooth deformation
interpolates the bundles, the addition of fine scale details in this
manner can potentially move the surface farther away from the
bundles.

2.3 Blendshapes

Instead of interpolating the motion of the bundles directly, one
could use the markers and/or bundles to drive a blendshape facial
rig [3] which specifies the deformation of the face as a linear
combination of facial shapes. These facial shapes are acquired
using dense performance capture (see e.g. [5], [6], [7], [8]) and/or
sculpted by an experienced modeler [16], [17]. Then, one can
optimize for the shape weights that minimize the differences
between the marker and bundle positions and their associated
projected surface positions and surface positions respectively on
the resulting mesh [2], [18], [19], [20]. Alternatively, one could
minimize the difference between synthetic renderings of the face
and the corresponding input images (see e.g. [21], [22]). However,
such approaches often result in unnatural combinations of shapes
with weights that are difficult to interpret [23], [24], [25], [26].
These infeasible combinations can be avoided by experienced ani-
mators but are extremely problematic for optimization algorithms.
In order for an optimization algorithm to avoid these combina-
tions, one would need to specify all such invalid combinations in
the high-dimensional Cartesian space of facial shapes, which is
intractable.

2.4 Patch-Based Approaches
The patch-based model of [27] is particularly notable because it
uses a smaller number of facial shapes compared to a traditional
blendshape rig. Despite the small number of facial shapes, the
resulting per-patch shape in this model still lies in the Cartesian
product of the input shapes. Thus, as the size of the dataset
increases, one would still expect the model to overfit on a per-
patch basis. The FaceIK editing technique of [28] also uses a
localized blendshape deformation model by adaptively segmenting
the face mesh based on user specified control points, solving for
blendshape weights for each control point based on its position,
and spatially blending the resulting weights across the mesh
using a radial basis function. In order to improve sparsity of the
blendshape weights and reduce overfitting, blendshapes that are
farther away from the control points are penalized. Unlike [28],
which uses an interpolatory approach, our approach uses a non-
manifold mesh and other considerations to boost the domain from
R3 into higher dimensions. Other localized models have also been
proposed such as [29] which uses PCA-based patches.

3 DATASET

Given the high-resolution mesh of an actor in the neutral or rest
pose, we construct a dataset of high-quality facial shapes that
sufficiently samples the actor’s range of motion and expression.
We bootstrap this process by acquiring high-resolution facial
geometry for a selection of the actor’s (extreme) facial poses taken
from a range of motion exercise using the Medusa performance
capture system [5], [6], [30]. For each facial pose, Medusa both
deforms the neutral mesh to the pose based on images from
multiple cameras and estimates the cranium rigid frame associated
with the deformed mesh. The cranium rigid frame is manually
refined (if necessary), validated against the images from each of
the cameras, and then used to stabilize the associated deformed
mesh. Each stabilized deformed mesh is then stored as a per-vertex
displacement from the neutral mesh.

These stabilized facial shapes are further improved using
physical simulation. Starting from the high-resolution neutral
mesh, we build a simulatable anatomical face model by morphing
an anatomically and biomechanically accurate template model
following the approach of [31]. Then, we use the art-directed
muscle simulation framework of [32] to target each captured
facial shape to obtain a corresponding simulated facial shape with
improved volume conservation, more realistic stretching, and a
more plausible response to contact and collision. The captured
and simulated facial shape are then selectively blended together
by a modeler to obtain a combined facial shape that incorporates
both the high degree of detail obtained from capture as well
as the physical accuracy obtained from simulation. Finally, this
combined facial shape is further refined by a modeler based on
the images in order to resolve any remaining artifacts before being
added to the dataset. See [16], [17].

At this point, the dataset consists of facial shapes correspond-
ing to various extreme poses. We augment the dataset with in-
betweens to better represent subtle motions and combinations
of expressions. To do this, one could construct a blendshape
system using the facial shapes already in the dataset and evaluate
this blendshape system at fixed intervals in the high-dimensional
Cartesian space; however, the resulting in-betweens would suffer
from well-known linear blendshape artifacts such as volume
loss. Instead, one could use the aforementioned process targeting
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Fig. 1. Top Left: Voronoi diagram on the neutral mesh. Top Right: Ap-
plying the locally indexed surface geometry to each Voronoi cell results
in discontinuities across cell boundaries. Bottom Left: Natural neighbor
weights for a single bundle. The weight is 1 at the bundle surface position
and 0 at the surface positions corresponding to neighboring bundles.
Bottom Right: Using natural neighbor weights, we obtain a smoother
reconstruction that interpolates the bundle positions.

the high-dimensional Cartesian space blendshapes with the art-
directed muscle simulation framework of [32], or alternatively
one could use the approach of [32] alone to move between
various extreme facial poses creating in-betweens. We utilize
a combination of these options to add anatomically motivated
nonlinear in-betweens to the dataset.

While our algorithm provides the best results with a set of
individualized high-quality facial shapes for the actor, it is also
possible to use our method with a set of generic facial shapes and
just the actor’s neutral mesh. However, this can yield lower-quality
results due to differences in range of motion and expression. One
could mitigate this loss of quality to some degree by transferring
an existing set of facial shapes to another actor using approaches
such as [33].

4 LOCAL GEOMETRIC INDEXING

Our local geometric indexing scheme begins by creating a bundle
(~pi, Ci) for each painted dot on the actor’s face where ~pi denotes
the 3D position of the painted dot in 3D space. Since the dots
are painted on and follow the motion of the skin, we also compute
correspondences Ci between the bundles and the actor’s face mesh.
For each bundle, we find the triangle on the neutral mesh where it
is located and calculate the barycentric coordinates of the bundle
position with respect to the triangle’s vertices. This enables us to

Fig. 2. In the nonoverlapping manifold triangulation of vertices A, B,
C, D, and E formed by the solid black lines, interior bundle ~p ∈ R2

is located in exactly one triangle CDE and therefore has a unique
candidate surface geometry shown by blue line cde. In the overlapping
non-manifold triangulation obtained by adding the dashed black lines
between AC and DB, ~p is now located in triangles CDE, BDE, ABD,
and ACD and has multiple candidate surface geometries shown by the
blue lines cde, bde, abd, and acd respectively. Thus, we have removed
the uniqueness of the candidate surface geometry with respect to R2.
In order to disambiguate among the candidate surface geometries and
minimize kinks in the reconstruction, we choose triangle BDE which
yields local surface geometry bde minimizing the distance to neighboring
bundles ~q, ~r ∈ R2. Consequently, the triangle associated with ~p depends
on ~p, ~q, and ~r which boosts the domain from R2 to R6. Note that the
nonoverlapping triangulation resulting in cde would have yielded the
most discontinuous reconstruction. The generalization to tetrahedra in
R3 is straightforward.

evaluate the surface position of a bundle for a given deformed
mesh via barycentric interpolation.

For each bundle, we construct a point cloud Pi by evaluating
the surface position of the bundle on each facial shape in the
dataset. The brute force version of our algorithm would tetra-
hedralize each point cloud Pi with all possible combinations of
four points resulting in a per-bundle non-manifold tetrahedralized
volume Vi (See Sec. 4.1). Then, given an input bundle position
~pi, we find Qi, the set of all the tetrahedra in the associated tetra-
hedralized volume Vi that contain ~pi. Since the tetrahedralized
volumes are only dependent on the dataset, this process can be
accelerated by precomputing a uniform grid spatial acceleration
structure [34], [35].

For each of tetrahedron (a, b, c, d) ∈ Qi, we compute the
convex barycentric weights (λa, λb, λc, λd) of the bundle position
and use these to blend together the four facial shapes ~sa, ~sb, ~sc,
and ~sd corresponding to the vertices of the tetrahedron. Then,
we use these barycentric weights to evaluate candidate surface
positions ~x via

~x = ~x0 +
∑

k∈{a,b,c,d}

λk~sk (1)

where ~x0 represents the neutral mesh positions. By construction,
the candidate surface geometry is guaranteed to intersect the
bundle position and lie within the convex hull of the facial shapes.
Repeating this process for each tetrahedron which contains ~pi
yields a set of per-bundle candidate surface geometries from
which we choose the local surface geometry following the criteria
outlined in Section 5.

If there are no tetrahedra that contain the bundle position, we
project the bundle position to the convex hull of the associated
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Fig. 3. Left: The Voronoi diagram for bundles ~p1, ~p2, ~p3, and ~p4 consists
of the distinctly colored Voronoi cells C1, C2, C3, and C4 respectively.
Right: In order to compute natural neighbor interpolation weights for
a given mesh vertex ~p, we insert ~p into the Voronoi diagram and
recompute the Voronoi cells to obtain C′

1 . . . C
′
4 and C′. The latter is the

Voronoi cell associated with ~p and is shown as the highlighted region that
overlaps prior Voronoi cells C1 . . . C4. The natural neighbor interpolation
weight for the inserted vertex ~p with respect to ~pj is then given by
wj =‖ C′ ∩ Cj ‖ / ‖ C′ ‖, j = 1 . . . 4 i.e. the area of the intersection
of the Voronoi cell C′ and the prior Voronoi cell Cj divided by the total
area of Voronoi cell C′. It follows that

∑
wj = 1 since the sum of the

areas of the intersections is equal to the total area of Voronoi cell C′.

point cloud by using the barycentric coordinates for the closest
point on the associated tetrahedralized volume. The lack of tetra-
hedra containing a bundle position indicates a need for additional
facial shapes in the dataset; however, this projection approach
gives reasonable results in such scenarios.

Local geometric indexing can be viewed as a piecewise linear
blendshape system, although the pieces are difficult to describe
due to overlapping non-manifold tetrahedra and various nonlinear,
nonlocal, and higher dimensional strategies for choosing between
multiple overlapping tetrahedra. Still, by augmenting the dataset
with more in-betweens, we can insert so-called Steiner points
[36] allowing for increased efficacy – stressing the importance
of collecting more and more data.

4.1 Tetrahedralization

As the size of the point cloud increases, the construction of all
possible tetrahedra quickly becomes unwieldy. Thus, we aggres-
sively prune redundancies from the point cloud, e.g. removing
points corresponding to expressions that do not involve them. For
example, we do not add bundle evaluations to a forehead bundle’s
point cloud from expressions that only involve the lower half of
the face. Besides reducing the number of points, we may also
eliminate tetrahedra especially those that are poorly shaped: too
thin, too much spatial extent, etc. Moreover, tetrahedra which are
known to be problematic admitting shapes that are locally off-
model can also be deleted. Similar statements hold for unused
or rarely used tetrahedra, etc. Importantly, through continued use
and statistical analysis, our tetrahedral database can evolve for
increased efficiency and quality. Alternatively, one could construct
ad-hoc tetrahedra on-the-fly following the approach of [37] which
demonstrates that even a sparse subset of tetrahedra is sufficient
to interpolate high-dimensional unstructured data.

Instead of considering all possible combinations of four points,
one could tetrahedralize each point cloud using a space-filling
tetrahedralization algorithm such as constrained Delaunay tetra-
hedralization [38]. However, this would restrict a bundle position
to lie uniquely within a single tetrahedron and create a bijection

Fig. 4. In order to verify our approach, we input 3D bundle positions from
each shape in our dataset into our local geometric indexing algorithm;
the results obtained are nearly identical to the original shapes. Top:
Shape. Bottom: Local geometric indexing. A video showing the results
on the entire dataset is available in the supplementary material.

between a bundle position and local surface geometry. This is
problematic because different expressions can map to the same
bundle position with different local curvature. For example, a
bundle along the midline of the face on the red lip margin can
have the same position during both a smile and a frown. Thus, it is
better to construct an overlapping non-manifold tetrahedralization
in order to allow for multiple candidate local surface geometries
for a bundle position, later disambiguating using additional criteria
as discussed in Section 5. Moreover, as discussed later, one may
create more than one point cloud for an associated bundle with
each point cloud corresponding to different criteria. For example,
the shapes one uses for an open jaw could differ significantly
when comparing a yawn and an angry yell; different point clouds
for sleepy, angry, happy, etc. would help to differentiate in such
scenarios.

Again, we stress that a space-filling manifold tetrahedralized
volume allows a bundle only three degrees of freedom as it moves
through the manifold tetrahedralized volume in R3, whereas
overlapping non-manifold tetrahedra remove uniqueness in R3

boosting the domain to a higher dimensional space; then, other
considerations may be used to ascertain information about other
dimensions and select the appropriate tetrahedron.

5 SMOOTHNESS CONSIDERATIONS

Our local geometric indexing scheme generates local surface
geometry for (the neighborhood of) each bundle independently,
and we subsequently sew the local surface geometry together
to create a unified reconstruction of the full face. Because only
local geometry is required, we only need to store small surface
patches (and not the full face geometry) for each point in the
point cloud making the method more scalable. To sew the local
patches together, we first construct a Voronoi diagram on the
neutral mesh using the geodesic distances to the surface position
of each bundle in the rest pose. See Figure 1 (Top Left). These
geodesic distances are computed using the fast marching method
[39]. The local surface geometry for each bundle could then be
applied to its associated Voronoi cell on the mesh, although the
resulting face shape would typically have discontinuities across
Voronoi cell boundaries as shown in Figure 1 (Top Right).

We have experimented with a number of scattered interpola-
tion methods aimed at smoothing the local patches across Voronoi
cell faces including, for example, radial basis functions as in
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Fig. 5. Top: A high-resolution facial performance processed using the Medusa performance capture system [5], [6], [30]. The shapes from this facial
performance are not included in our dataset. Bottom: Reconstruction obtained using local geometric indexing driven by the bundle positions on the
captured geometry. None of the high-resolution facial shapes in the performance were included in the dataset used by our algorithm. A number of
the differences, such as those in the mouth corners and eyebrows, are actually due to artifacts in the Medusa performance capture geometry that
are cleaned up by our reconstruction indicating that our approach provides some degree of regularization. The remaining differences are outside of
the region spanned by the bundles where we would expect less accuracy due to limited data. A video showing the results on the entire performance
is available in the supplementary material.

[27]. We experimentally achieved the best results leveraging our
Voronoi diagram using natural neighbor interpolation [40], [41].
For a given vertex on the neutral mesh, natural neighbor weights
are computed by inserting the vertex into the precomputed Voronoi
diagram, computing the areas stolen by the new vertex’s Voronoi
cell from each of the pre-existing neighboring Voronoi cells, and
normalizing by the total stolen area. See Figure 3 for details. For
each vertex, the natural neighbor weights are used to linearly
blend the shapes used for each surrounding bundle. Note that a
vertex placed at a bundle position would not change the Voronoi
cells of surrounding bundles and would merely adopt the Voronoi
cell from the bundle it is coincident with; this guarantees that the
resulting blended surface still exactly interpolates the bundle posi-
tions. In this way, we obtain aC0 continuous reconstructed surface
[42] that passes through all of the bundle positions. See Figure 1
(Bottom Right). We found that constructing the Voronoi diagram
and calculating the natural neighbor weights in UV/texture space
and subsequently mapping them back onto the 3D mesh yielded
smoother natural neighbor weights than performing the equivalent
operations on the 3D mesh directly.

5.1 Choosing Tetrahedra

In order to minimize kinks in the C0 continuous reconstructed
surface, we use an additional smoothness criterion when choos-
ing between overlapping tetrahedra and their resulting candidate
surface geometries. If there are multiple tetrahedra which contain
the bundle position, we choose the tetrahedron that results in local
surface geometry that minimizes the distances from neighboring
bundle positions to their respective surface positions as shown
in Figure 2. This indicates that the local surface geometry is
representative of the bundle as well as the neighborhood between
the bundle and its neighboring bundles.

In the case where no tetrahedra contain the bundle position,
one can apply a similar criterion to project the bundle back to
the dataset in a smooth manner. When deciding which tetrahedron
to project to, one could consider not only the distance from the

bundle under consideration to the resulting surface, but also the
distances that neighboring bundles would be from the resulting
surface.

In the case of an animated bundle with time-varying position,
we apply additional criteria to prevent disjoint sets of shapes from
being chosen in neighboring frames, ameliorating undesirable
oscillations in the animated reconstructed surface. To do this, we
assign higher priority to tetrahedra which share more points and
therefore facial shapes with the tetrahedron used on the previous
frame, biasing towards a continuous so-called winding number on
the non-manifold representation.

6 JAW ARTICULATION

So far, we have considered facial shapes and bundle positions
relative to the neutral mesh. However, these shapes and bun-
dle positions may include displacements due to rotational and
prismatic jaw motion [43], [44]. This can result in significant
linearized rotation artifacts in the reconstruction which reduces
the generalizability of our approach. In order to address this, we
hybridize our approach by using linear blend skinning to account
for the jaw pose.

To do this, we modify Eq. 1 with a block diagonal matrix of
spatially varying invertible transformations T (θ) calculated using
linear blend skinning from the jaw parameters θ and a set of
unskinned facial shapes ~s∗k to obtain

~x = T (θ)

~x0 + ∑
k∈{a,b,c,d}

λk~s
∗
k

 . (2)

For a shape with known jaw parameters θk, setting Eq. 1 equal to
Eq. 2 and rearranging terms gives an expression for the unskinned
facial shape

~s∗k = T (θk)
−1 (~x0 + ~sk)− ~x0

as a function of the facial shape ~sk. See [3], [45]. In order to
utilize this approach, every shape in the database needs the jaw
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Fig. 6. Far Left: Helmet mounted camera footage. Middle Left: The reconstruction obtained by interpolating the bundle displacements across the
mesh using [2] conveys a yawn as opposed to the anger/tension because it does not utilize any additional high-resolution detail beyond that of the
neutral mesh. Middle: The typical overfitting symptomatic of blendshape rigs; with enough regularization, one would expect the detail to fade similar
to the result using [2]. Middle Right: Using Gaussian RBF interpolation instead of natural neighbor interpolation in our approach results in additional
high-resolution detail but does not interpolate the bundle positions. Far Right: Our approach passes through the bundles, conveys the expression,
and captures high-resolution details that are not present in the neutral mesh.

parameters θk estimated so that we may store ~s∗k instead of
~sk. Similarly for each frame, θ must be estimated using one of
the usual methods for head and jaw tracking so that the bundle
positions can be unskinned before indexing into the point cloud.

As mentioned in Sec. 4.1, having a large number of points can
result in an unwieldy number of tetrahedra. Thus, one could bin
points into different point clouds based on a partition computed
using the jaw parameters θ; each point cloud would only contain a
range of jaw parameters and would therefore be smaller. Moreover,
it makes more sense to interpolate between shapes with similar jaw
parameters as opposed to significantly different jaw parameters.
One should likely still unskin all of the shapes in the point cloud
to have the same jaw parameter value for better efficacy; however,
choosing a non-neutral reference shape for the unskinning (e.g. in
the middle of the relevant jaw parameter range) could be wise.

7 EXPERIMENTS

7.1 Verification
In order to verify our algorithm, we calculated a set of 3D bundle
positions for each facial shape in our dataset by evaluating the

surface position of each bundle on the facial shape. Then, we
inputted each set of bundle positions into our local geometric
indexing algorithm, and verified that the resulting reconstruction
is nearly identical to the original facial shape. See Figure 4.

7.2 High-Resolution Capture Comparison

Next, we evaluate our algorithm on a high-resolution performance
outputted from the Medusa performance capture system [5], [6],
[30]. The jaw is tracked using the lower teeth during the portions
of the performance where they are visible and interpolated to
the rest of the performance using the chin bundles as a guide.
Like the previous experiment, we calculate a set of 3D bundle
positions for each frame of the performance and use this animated
set of 3D bundle positions as input into our local geometric
indexing algorithm. The resulting high-resolution reconstruction
of the performance using our dataset is very similar to the original
performance. See Figure 5. The differences in the mouth corners
and lips are due to artifacts in the Medusa performance capture.
By indexing the most relevant cleaned up shapes in our dataset, we
obtain a cleaner reconstruction while also adding detail sculpted

Fig. 7. Far Left: Helmet mounted camera footage. Middle Left: The reconstruction obtained using our approach captures a subtle expression
in the helmet mounted camera footage. This performance also shows the effectiveness of our temporal smoothness constraints. See video in
supplementary material. Middle Right: Adding simulated in-betweens allows us to improve the smoothness of the reconstruction in the philtrum
and the right jowl while also improving the lift in the upper right cheek. Far Right: Heatmap highlighting the differences between (Middle Left) and
(Middle Right).
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by a modeler such as lip wrinkles. Other differences, such as those
on the forehead and side of the face, occur because there are
no bundles in those locations and thus our algorithm extrapolates
from the nearest bundle.

7.3 Comparison to Other Approaches
In Figure 6, we compare our approach to other popular approaches
on a performance captured using two vertically stacked helmet
mounted fisheye cameras. Footage from the top camera placed
at nose level is shown in Figure 6 (Far Left). The images from
both cameras are undistorted and the cameras are calibrated
using the markers on the helmet. Given 2D marker positions
~mtop

i and ~mbottom
i in each camera obtained from tracking the

dot pattern painted on the actor’s face, we can estimate the 3D
positions of the corresponding bundles ~pi visible in both cameras
using triangulation such that ~pi minimizes the reprojection error
with respect to both ~mtop

i and ~mbottom
i . The triangulated bundle

positions rigidly aligned to the neutral mesh using a combination
of the bundles on the nose bridge, forehead, and the cheeks with
varying weights based on the amount of non-rigid motion in those
regions. The jaw is tracked in the same manner as the previous
experiment. In Figure 6 (Middle Left), we calculate bundle dis-
placements by subtracting the neutral pose bundle positions from
the triangulated bundle positions followed by interpolating these
bundle displacements across the mesh using [2] in order to obtain
per-vertex displacements on the mesh. Adding these displacements
to the neutral mesh reconstructs a yawn instead of the angry face
in the corresponding helmet mounted camera footage because
it does not contain any additional high-resolution detail beyond
that of the neutral mesh. Since the neutral mesh represents one’s
face while expressionless, similar to that when asleep, using the
displacements relative to the neutral mesh and its features often
leads to expressions that appear tired. In order to obtain Figure 6
(Middle), we first constructed a blendshape rig using the facial
shapes in our dataset. Then, we solved for the blendshape weights
that minimize the Euclidean distances from the bundles to their
relevant surface points subject to a soft constraint that penalizes
the weights to lie between 0 and 1. The result incorporates more
high-resolution details than Figure 6 (Middle) but suffers from
overfitting resulting in severe artifacts around the mouth and eyes.
Even though the resulting weights lie between 0 and 1, they are
neither convex nor sparse which leads to unnatural combinations.
Of course, increased regularization would smooth the artifacts
shown in the figure creating a result that looks more like Figure 6
(Middle Left). In comparison, the reconstruction obtained using
our local geometric indexing algorithm shown in Figure 6 (Far
Right) captures many of the high-resolution details that are not
present in the neutral mesh including the deepened nasolabial
folds, jowl wrinkles, and lip stretching without the overfitting
artifacts of Figure 6 (Middle).

7.4 RBF Interpolation
Alternatively, instead of using natural neighbor interpolation, one
could use radial basis functions to smooth with our local geometric
indexing algorithm. As long as the radial basis function is applied
on the facial shape weights as opposed to the vertex positions
themselves, this still yields high-resolution features from the
dataset in the reconstruction; however, the reconstructed surface
will typically not pass through the bundles. This can be corrected
by smoothly interpolating the remaining displacements needed to

Fig. 8. Left: The combination of sneer, snarl, and upper lip raiser blend-
shapes leads to severe pinching artifacts in the cheeks and excessive
deformation in the nose. These blendshapes are often used in con-
junction to animate an angry face. Right: Reconstruction obtained using
our local geometric indexing algorithm with the bundles calculated from
(Left) as input. The reconstruction fixes the aforementioned artifacts in
the cheek and nose, improves the shape of the upper lip, and preserves
the emotional intent associated with each of the individual blendshapes.

properly interpolate the bundles across the mesh (with e.g. [2]).
As shown in Figure 6 (Middle Right), the reconstruction obtained
using a combination of radial basis function interpolation and a
smoothly interpolated deformation has a higher degree of detail
than smoothly interpolating the deformation from neutral mesh.
In a similar manner, additional rotoscoped constraints such as
lip occlusion contours [2], [46], markers visible in only a single
camera, etc. can be incorporated as a postprocessing step on top of
our approach; in fact, we utilized [2] to incorporate lip occlusion
contours in Figure 6.

7.5 Temporal Smoothing

Figure 7 demonstrates the ability of our method to capture subtle
expressions while also maintaining temporal coherency in the
presence of bundle positions with random and systematic errors
(e.g. errors in depth due to the limited parallax between the two
cameras). If necessary, one can obtain a smoother performance by
either temporally smoothing the input bundle positions or smooth-
ing the barycentric weights on each bundle. In this performance,
we apply temporal smoothing by taking a central moving average
of the barycentric weights associated with each bundle relative to
the jaw skinned neutral mesh in order to avoid smoothing the jaw
animation. Because transitions between different sets of shapes
typically occur when the same bundle position is achievable
using multiple tetrahedra, we found this straightforward temporal
smoothing scheme to have negligible impact on the ability for the
reconstruction to interpolate the bundles.

7.6 Data Augmentation via Simulation

Figure 7 also illustrates the efficacy of augmenting the dataset
using the art-directed muscle simulation framework of [32]. Fig-
ure 7 (Middle Left) was the result obtained without augmenting
and Figure 7 (Middle Right) was the improved result obtained
by adding a number of new facial shapes via [32] as outlined in
Section 3.
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Fig. 9. Top: Helmet mounted camera footage. Bottom: Reconstructions obtained using our method.

7.7 Generating/Correcting Rigs

Facial rigs often use a standardized set of controls for keyframe
animation. For example, facial expressions in the mouth region
may be split into many different subregions in order to provide
fine-tuned localized control to the animator. These synthetically
decomposed facial shapes rarely appear on their own during a
real-world performance capture session and are usually sculpted
by a skilled modeler based on a set of facial scans. Our local
geometric indexing algorithm can automate this time intensive
process and generate actor-specific facial rigs from a generic tem-
plate blendshape rig with the standardized set of controls. Given a
generic template blendshape rig applied to the actor neutral mesh,
we evaluate bundle positions for individual blendshapes and use
these bundle positions as input into our local geometric indexing
algorithm to reconstruct corresponding actor-specific blendshapes.
We apply the same approach to combinations of blendshapes in
order to obtain corresponding actor-specific corrective shapes [2]
that do not exhibit the artifacts commonly found in combinations
of blendshapes. See Figure 8. These actor-specific blendshapes
and corrective shapes can be incorporated into an actor-specific
nonlinear blendshape facial rig for use in keyframe animation and
other facial capture applications.

Unlike many of the prior use cases where the bundle layout is
dictated by the on-set facial performance capture, this particular
use case allows the user to choose their bundle layout. Thus, it
may be possible to further improve the fidelity of the output shapes
and correctives by tuning the bundle layout and consequently the
associated Voronoi diagram. This process could be accomplished
either by hand and/or via an optimization procedure such as [47]
and has the potential to improve the semantics of the patches
and/or increase the orthogonality of deformations across patches.
We defer this avenue of investigation to future work.

7.8 Usability

The natural neighbor weights are a function of the neutral mesh
and the bundle positions in the neutral pose and can therefore be

precomputed once and reused for each frame of the bundle anima-
tion. This precomputation can be futher accelerated using the GPU
implementation of natural neighbor interpolation demonstrated in
[40]. Furthermore, our local geometric indexing calculations can
be performed independently for each bundle and as expected,
our parallel CPU implementation using Intel Threading Building
Blocks scales linearly yielding runtimes of approximately 1-2
seconds per frame with eight CPU threads. Given this degree of
parallelism in the local geometric indexing scheme [40] and the
significant speedup of traditional blendshape models on the GPU
(see e.g. [48]), our algorithm has the potential to run at interactive
rates on the GPU. Already, our approach is general and efficient
enough to have been incorporated for use in the production of a
major feature film. It has been tested on a wide range of production
examples by a number of different users with significant creative
and technical evaluation on the results. We show a small selection
of our test results in Figure 9.

8 CONCLUSION

We have presented a data-driven approach for high-resolution
facial reconstruction from sparse marker data. Instead of fitting
a parameterized (blendshape) model to the input data or smoothly
interpolating a surface displacement to the marker positions, we
use a local geometric indexing scheme to identify the most
relevant shapes from our dataset for each bundle using a variety
of different criteria. This yields local surface geometry for each
bundle that is then combined to obtain a high-resolution facial
reconstruction.

We have applied our method to real-world production helmet
mounted camera footage to obtain high-quality reconstructions.
Rotoscoped features, including lip occlusion contours, can be
readily incorporated as a postprocess. Finally, our approach has
already been deployed for use in a film production pipeline for a
major feature film where it has been leveraged by many users to
obtain production quality results.
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“User-Guided Lip Correction for Facial Performance Capture,” Computer
Graphics Forum, 2018.

[47] E. Zell and R. McDonnell, “Compact facial landmark
layouts for performance capture,” Computer Graphics Forum,
vol. 41, no. 2, pp. 121–133, 2022. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14463

[48] J. Seo, G. Irving, J. P. Lewis, and J. Noh, “Compression and
direct manipulation of complex blendshape models,” ACM Trans.
Graph., vol. 30, no. 6, p. 1–10, dec 2011. [Online]. Available:
https://doi.org/10.1145/2070781.2024198

Matthew Cong received his Ph.D. in Depart-
ment of Computer Science at Stanford University
in 2016 where he was advised by Professor
Ron Fedkiw and supported by a NDSEG Fel-
lowship. Currently, Matthew works as a Senior
Research Scientist at NVIDIA on the Omniverse
team. From 2012 to 2020, he worked as a R&D
Engineer at Industrial Light & Magic focusing on
facial animation and simulation. He has received
screen credits on movies such as ”Kong: Skull
Island” and ”Avengers: Endgame”.

Lana Lan worked on creatures and characters
at Industrial Light & Magic as a modeler and
model supervisor for 17 years before moving to
real time character work at Epic Games.

Ronald Fedkiw received his Ph.D. in Mathemat-
ics from UCLA and spent part of his postdoctoral
studies at Caltech in Aeronautics before join-
ing the Stanford Computer Science Department.
He was awarded an Academy Award from the
Academy of Motion Picture Arts and Sciences
(twice: 2008 and 2015), the National Academy
of Science Award for Initiatives in Research, a
Packard Foundation Fellowship, a Presidential
Early Career Award for Scientists and Engineers
(PECASE), a Sloan Research Fellowship, the

ACM Siggraph Significant New Researcher Award, an Office of Naval
Research Young Investigator Program Award (ONR YIP), the Okawa
Foundation Research Grant, the Robert Bosch Faculty Scholarship,
the Robert N. Noyce Family Faculty Scholarship, three distinguished
teaching awards including the Tau Beta Pi Teaching Excellence Award
(for 2020-21), etc. He has published over 135 research papers in com-
putational physics, graphics, learning, and vision, a book on level set
methods, and is currently working at the interface between physical
simulation and machine learning - having joined the Stanford Artificial
Intelligence Laboratory (SAIL) in 2017. Currently, he serves on the edito-
rial board of the Journal of Computational Physics. He was a consultant
with Industrial Light + Magic for over 19 years, receiving screen credits
on movies such as ”Terminator 3: Rise of the Machines”, ”Star Wars:
Episode III - Revenge of the Sith”, ”Poseidon”, ”Evan Almighty”, ”Kong:
Skull Island”, etc. Currently, he is a consultant at Epic Games (for 3+
years). He has graduated 38 Ph.D. students so far, and is very proud of
their various amazing accomplishments!


