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Figure 1: Our far-field grid structure provides an extended domain for fluid simulations of smoke, fire, and water. (Left) A fine grid follows
the sphere in order to resolve the fine scale details of the smoke due to object interaction while the extended grid allows the smoke to rise
until it is off camera – see Figure 5. (Center) A torch that moves through a large extent of the domain uses a fine grid to track the torch
motion while grid extension allows for larger camera angles – see Figure 6. (Right) A large advantage of our extended grid is that it allows
outgoing waves to avoid reflecting off of grid boundaries thus allowing for a large amount of detail and grid resolution near the region of
interest without reflected waves.

Abstract

We present an efficient grid structure that extends a uniform grid
to create a significantly larger far-field grid by dynamically extend-
ing the cells surrounding a fine uniform grid while still maintain-
ing fine resolution about the regions of interest. The far-field grid
preserves almost every computational advantage of uniform grids
including cache coherency, regular subdivisions for parallelization,
simple data layout, the existence of efficient numerical discretiza-
tions and algorithms for solving partial differential equations, etc.
This allows fluid simulations to cover large domains that are of-
ten infeasible to enclose with sufficient resolution using a uniform
grid, while still effectively capturing fine scale details in regions of
interest using dynamic adaptivity.
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1 Introduction

Computer graphics researchers have utilized a number of interest-
ing data structures for fluid simulation including run-length encod-
ed (RLE) grids [Houston et al. 2006; Irving et al. 2006; Chen-
tanez and Müller 2011], octrees [Losasso et al. 2004], particle-
based discretizations [Adams et al. 2007; Solenthaler and Pajaro-
la 2009; Solenthaler and Gross 2011], velocity-vorticity domain
decompositions [Golas et al. 2012], tetrahedral meshes [Feldman
et al. 2005; Klingner et al. 2006], and Voronoi diagrams [Sin et al.
2009; Brochu et al. 2010]. However, uniform grids still remain
a mainstay because of a number of advantages: a cache coheren-
t memory layout, regular domain subdivisions suitable for paral-
lelization, fast iterative solvers such as preconditioned conjugate
gradient for solving partial differential equations, higher-order in-
terpolation schemes which are are often difficult and computation-
ally costly to generalize to unstructured data, and the ability to ac-
celerate ray tracing algorithms for axis-aligned voxel data. Tech-
niques such as adaptive mesh refinement (AMR) [Berger and Oliger
1984; Berger and Colella 1989; Sussman et al. 1999] and chimera
grids [Benek et al. 1983; Benek et al. 1985; Dobashi et al. 2008]
have remained prevalent because they use a number of Cartesian u-
niform grids. Similarly, the FLIP and PIC methods [Zhu and Brid-
son 2005; Losasso et al. 2008] use a background uniform grid for
projection.

We focus on a single uniform grid structure as opposed to the multi-
ple uniform grid structures used in AMR and chimera grid methods
noting that for a variety of applications the added computational
cost and complexity of many grids is unwarranted. However, there
are many applications where one would want to use multiple uni-
form grids. Considering a single uniform grid, one could still add
generality by changing the physical layout of the grid to be a mod-
ification of computational grid along the lines of curvilinear grids
[Anderson et al. 1997]. Typically, a uniform grid exists in compu-
tational space and is mapped in some complex way to the physi-
cal domain where it can be boundary-fitted, stretched, compressed,
etc., and Jacobians of the mapping are stored throughout the grid.
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Figure 2: Our far-field grid structure has a uniform Cartesian grid
enclosing the viewer’s domain of interest (outlined in blue) and ex-
tends much further in each of the other three spatial dimensions to
provide a large simulation domain. There is a one to one mapping
from the far-field grid structure to the standard uniform Cartesian
grid which allows for exceptional cache coherency, ease of paral-
lelism, and a natural mapping to the GPU – just as in the case of
a uniform Cartesian grid. We have made some choices in limiting
the far-field grid structure such as restricting the edge lengths of ex-
tended cells to be a power of two times the edges lengths along each
axis of the uniform Cartesian grid in order to aggressively minimize
overhead as compared to a standard uniform Cartesian grid.

One drawback of these methods is that given a point in physical s-
pace, it is still difficult and computationally expensive (notO(1) in
general) to find out which grid cell contains that point.

We propose a simple modification of the uniform grid where one
can simply slide the vertical and horizontal planes left and right
maintaining a Cartesian grid that allows for simple O(1) lookups
of arbitrary points. Our grid structure can be seen as a subset of
the general curvilinear/rectilinear grids used in other areas, while
many optimizations (see Section 2) are made to this special case to
gain significant computational efficiencies. Related work includes
the far-field grid of Sussman [Sussman and Smereka 1997], where
one layer of grid cells around the outside of the grid was extended
in order to add relaxation to a pressure solver. We found this work
highly motivating and generalize it to extending any number of lay-
ers but restrict those extensions in certain ways in order to make
the lookups more efficient. Another related work is the Soroban
grid [Yabe et al. 2004; Takizawa et al. 2007] where planes are s-
lid in one dimension, lines in another, and grid points in another.
While also motivating, this Soroban grid structure also struggles to
identify the cell in which an arbitrary point is located. In particu-
lar, we stress that the cost of identifying the cells in which arbitrary
locations are located as well as all other costs of our far-field grid
structure only incur about a 10% overhead compared to a standard
uniform grid.

2 Grid Structure

A far-field grid in three spatial dimensions is constructed by inde-
pendently choosing a number of points in each of the three spatial
dimensions and then taking the Cartesian product to obtain the lo-
cations of the corners of the grid cells. As illustrated in Figure 2,
we store our data on this grid in the usual fashion with the scalar
pressure at cell centers and velocities at the faces. Computing the
cell that contains an arbitrary point in this general representation

Figure 3: Grid structures for the performance test covering domain
sizes of .5× 1, 1× 2, 2× 4, and 3× 6. The blue outline shows the
fine grid domain of .5× 1.

of the far-field grid requires a binary search along each axis of the
grid and therefore requires O(logNx + logNy + logNz) runtime
where Nx, Ny , and Nz are the number of points in each dimen-
sion. We can improve the asymptotic runtime of this data access
by changing the layout as follows. First, the stretched cells in each
dimension are organized hierarchically into n different layers. The
edge length of a cell in the ith layer where 1 ≤ i ≤ n is given by
2i−1δx where δx denotes the edge length of the finest cells on the
grid. For each layer i > 1, we place k−ij stretched cells on the nega-
tive side of the previous layer along the jth axis (j ∈ {1, 2, 3}) and
k+ij stretched cells on the positive side of the previous layer. This
particular implementation allows one to efficiently compute the cell
which contains an arbitrary point in O(1) time. Recall that on a u-
niform grid, locating this cell can be achieved by simply dividing
by δx and truncating in each dimension. On the far-field grid, this
is accomplished with the aid of one precomputed one-dimensional
array for each axis.

If we construct a uniform grid with the finest resolution, then each
cell in the uniform grid will be contained entirely within a cel-
l on the far-field grid. For example, the cell in the bottom left
of Figure 3 would contain eight uniform fine grid cells. Thus, in
each spatial dimension we can construct a simple one dimension-
al array which contains for each uniform grid cell the far-field cell
that would contain it. In Figure 2, the x-dimension array would
be {1, 1, 1, 1, 2, 2, 3, 4, 5, . . .} allowing us to map the uniform cell
number to the far-field cell number. Once we identify the cell that
contains an arbitrary point, we can interpolate values from the cor-
ners of that cell without any further information. However, MAC
grids store information at faces and cell centers requiring a slightly
modified approach. In order to determine the four (eight in three
spatial dimensions) nearest neighbors for interpolating velocity or
pressure, one needs to know whether a given location lives in the
first or second half of the grid cell in each of the spatial dimensions.
One simple way of encoding this information would be to make our
one dimensional array twice as long and encode the terms in the ar-
ray based on whether each half-size fine uniform cell is contained
in the first or second half of the far-field cell. For example, using a
“−”-sign for the left half and a “+”-sign for the right half of a cel-
l one obtains {−1,−1,−1,−1, 1, 1, 1, 1,−2,−2, 2, 2,−3, 3, . . .}
for the aforementioned case. These arrays can be precomputed and
stored in each dimension separately and therefore incur a negligible
memory cost – and is especially elegant for a GPU implementation.



Figure 4: Smoke simulations are performed in domains of sizes
.5 × 1 × .5, 1 × 2 × 1 and 2 × 4 × 2 (outlined by the gray wire-
frames) obtained by extending the uniform domain of .5 × 1 × .5
(outlined by the blue wireframes) with our new grid structure. Note
how the simulation on the domain with size 2 × 4 × 2 allows for
large camera angles without distracting grid boundaries. As seen
in Table 1, using the far-field grid only increases the simulation time
by a factor of 6 as opposed to using a fine grid for the entire domain
which would increase the simulation time by a factor of 160.

Since the overhead of the far-field grid is so small (around 10%
in our final implementation), we took a slightly different approach
to the precomputed array in order to have access to more infor-
mation. We modify the array to tell us the level i = 1, . . . , n of
the grid cell that contains the uniform grid cell, i.e. then our array
becomes {3, 3, 3, 3, 2, 2, 1, 1, 1, . . .}. This means that it requires
slightly more work to calculate the cell that contains an arbitrary
point. For example, given a position x, we compute the index I(x)
via

I(x) =

⌊
x− x0i
2i−1δx

⌋
+ I0i (1)

where b·c is the floor function and x0i and I0i are the precomputed
location and index offsets for layer i respectively. For example, if
x lies in the first cell in Figure 2, then x0i and I0i come from the left

Figure 5: The fine grid dynamically follows the kinematic sphere
resolving the fine details due to its interactions with the smoke. Fine
cells are allocated with a resolution of 1923 around the sphere, and
the entire far-field grid has a resolution of 320× 448× 320.

hand corner of the grid as indicated by the green dot. However, if
x lies in the last cell, then one needs to obtain x0i and I0i from the
blue dot lying two-thirds of the way to the right in Figure 2. This
requires an “if”-statement to decide if the location in question is to
the right of the second x0i or not. In fact, this “if”-statement can
be avoided by precomputing and storing a “+”-sign or “−”-sign
in the array indicating which of the two x0i s to use. Note that one
does not need to use an “if”–statement on the “±”-sign, but rather
can compute x0i and I0i quickly by adding or subtracting the un-
signed values stored in the array and multiplying those quantities
with the appropriate x0i and I0i before combining them. For exam-
ple, if the value indexed in the precomputed array is m = ±3, then
|m|−m
2|m| x

0
|m|− + |m|+m

2|m| x
0
|m|+gives us either x03− or x03+.

The converse of Equation 1 is useful for computing the location cor-
responding to a given index via x(I) = 2i−1δx(I−I0i )+x0i where
I is the input index and x(I) is the output cell center location. Note
that one needs to use the larger x0i and I0i pair that produces a pos-
itive I − I0i when computing x(I). We experimented with many
implementations and discovered that it is actually quite quick to
calculate on the fly which half cell contains a location for interpo-
lating quantities such as velocities and pressure, and therefore only
store the normal length (as opposed to double length) array.

Our strategy is to track the interesting regions of the flow field with
the fine grid interior while still capturing a quite large computation-
al domain with the stretched cells. Since these interesting regions

Grid Domain Resolution DOF Increase Advection Projection Total
Uniform .5× 1× .5 128× 256× 128 1.0 1.0 1.0 1.0
Far-field 1× 2× 1 176× 352× 176 2.6 2.4 3.2 3.1
Uniform 1× 2× 1 256× 512× 256 8.0 5.6 13 12
Far-field 2× 4× 2 208× 416× 208 4.3 3.8 6.4 6.2
Uniform 2× 4× 2 512× 1024× 512 64 37 173 160
Far-field 3× 6× 3 224× 448× 224 5.4 4.5 11 10
Uniform 3× 6× 3 768× 1536× 768 216 - - -

Table 1: Timing data for smoke simulations ran with a CFL number of .99 on both far-field and uniform grids for domains of varying sizes in
three spatial dimensions. Timings are given as the ratio of the time required for a simulation as compared to that for the .5× 1× .5 uniform
grid. Since only coarser cells are added, the number of timesteps per frame is constant over all simulations. The simulations were run on
a single machine using a single thread for two spatial dimensions and 16 threads for three spatial dimensions. The results are only shown
for three spatial dimensions noting that the results in two spatial dimensions were similar. Whereas the fourth column of the table, i.e. DOF
Increase, shows the theoretical increase in degrees of freedom, the actual increase in runtime given in the last column can be significantly
higher for the uniform grid due to the slower nature of convergence for the divergence free projection – meanwhile, the far-field grid not only
has a much lower theoretical DOF increase, but also behaves similarly in performance. In fact, on the 2 × 4 × 2 simulations the uniform
grid is over 25 times slower than the far-field grid. The 3 × 6 × 3 simulation was impractical to run on the uniform grid in three spatial
dimensions; however, the results in two spatial dimensions indicate that it scales even more poorly.



Figure 6: A detailed flaming torch is moved and used to illuminate different sections of a large domain (top). The torch is then dropped on
the ground generating trailing flame details as it falls (bottom). The fine grid has a resolution of 1283 and dynamically tracks the level set
in order to resolve the visually appealing fine scale flame wrinkles, while the entire far-field grid of resolution 208 × 288 × 208 efficiently
resolves the global motion of the fire and smoke.

are usually around objects or at the point of camera focus, they can
potentially move and change size, which we handle by dynamically
changing the structure of the far-field grid. This is accomplished
by moving grid lines in each dimension (see Section 4) as motivat-
ed by [Yabe et al. 2004; Takizawa et al. 2007]. One can also add
and delete grid lines in each dimension noting that one needs to
be careful that the total number of cells does not increase beyond
the original allocation of the array because this would incur the ex-
tra cost of reallocating large arrays for three dimensional data. We
stress that this does not mean that the grid can never grow in the
number of cells; it just means that one should preallocate a buffer
which is large enough to include the maximum number of cells.

3 Incompressible Flow

Our smoke solver follows the general procedure of [Fedkiw et al.
2001]. The inviscid incompressible Navier-Stokes equations are
given by

ut + u · ∇u = −1

ρ
∇p+ f , (2)

∇ · u = 0, (3)

where u is the velocity field, ρ is the density, p is the pressure,
and f is the sum of any external forces (such as vorticity con-
finement, buoyancy, and gravity) scaled by ρ. First we com-
pute the intermediate velocity u∗ ignoring the pressure term via
(u∗ −un)/∆t+ (un · ∇)un = f making use of semi-Lagrangian
advection [Stam 1999; Kim et al. 2005; Selle et al. 2008] before
computing the final velocity as un+1 = u∗ −∆t∇p/ρ. The pres-
sure p is calculated by solving a Poisson equation of the form

Vcell∇ ·
(
∇p̂
ρ

)
= Vcell∇ · u∗. (4)

where p̂ = p∆t is a scaled pressure, Vcell is the volume of a cel-
l, and we have used the volume weighted divergence as outlined in
[Losasso et al. 2004] in order to obtain a symmetric positive definite
system on our stretched grid. Equation 4 can be solved efficiently
using the preconditioned conjugate gradient method with an incom-
plete Cholesky preconditioner.

Invoking the second vector form of Green’s theorem on both sides
of Equation 4, we obtain∑

faces

∇p̂
ρ
· dAface =

∑
faces

u∗face · dAface (5)

where dAface is the area-weighted normal of the face. Note that
although the faces are not equidistant between pressure locations
where the edge length along a particular axis changes, we still com-
pute the pressure gradients in the usual way subtracting the adjacent
values and dividing by the actual distance between the cell center-
s. Furthermore, we demonstrate that this pressure discretization on
the far-field grid achieves second-order accuracy as on uniform grid
(see Table 2).

We demonstrate the efficacy of our method by simulating smoke on
the grids outlined in Figure 3 where the initial fine grid is padded
from left to right with a larger and larger far-field grid demonstrat-
ing the significant domain extension obtainable using this approach
(see Figure 4 and Table 1).

4 Dynamic Tracking

Solid objects are handled in the usual manner by setting the velocity
of cells covered by the object to the object velocity and setting Neu-

Figure 7: A dynamically resizing fine grid with a resolution up
to 1603 dynamically tracks the level set in order to resolve local
flame details of a torch moving in the wind. The far-field grid has a
resolution of 210× 300× 210.



Figure 8: A spherical water drop falls into a large body of water 40 times larger than the spherical drop. The stretched grid cells allow the
resulting radially outgoing waves to continue propagating into the coarser domain as opposed to reflecting back into the fine domain. A fine
grid with a resolution of 384 × 96 × 384 is placed near the sphere, and the far-field grid has resolution 672 × 120 × 672. This allows the
grid to resolve the initial splash (top) and capture surface details such as the resulting radially outgoing waves that propagate throughout the
large domain (bottom).

mann boundary conditions inside the object for the pressure solve.
The far-field grid can adaptively place the finest discretizations in a
moving and resizing region of interest that is a subset of the entire
computational domain and dynamically track it during the course
of a simulation. Figure 5 shows smoke interacting with a kine-
matically driven sphere. At the beginning of each simulation, we
choose a bounding box in the vicinity of the object and precompute
a translation from the center of the bounding box to the center of
the object maintaining that offset throughout the simulation. The
fine region of the far-field grid lies entirely within this bounding
box, and the grid lines are redistributed such that the resulting new
stretched cells encompass the rest of the domain. This allows us to
resolve fine scale fluid details in the vicinity of the object.

Solving the Navier-Stokes equations on a grid that dynamically
tracks an object requires storing the grid structure both at time tn

and tn+1 so that the velocity field can be interpolated from the time
tn grid to the time tn+1 grid in order to trace the semi-Lagrangian
rays backward in time and interpolate from the time tn grid. The
projection step does not require modification.

We demonstrate the use of the far-field grid for fire simulation in
Figures 6 and 7 using the thin flame model [Nguyen et al. 2002]
(see also [Hong et al. 2007]). A dynamic surface where the chem-
ical reaction occurs is represented with a level set, and Rankine-
Hugoniot jump conditions for velocity and pressure are enforced
across the interface in order to conserve mass and momentum. Re-
acted and unreacted materials are distinguished with densities of ρr

Grid L1 Error Order L∞ Error Order
128× 128 1.68× 10−4 – 1.02× 10−3 –
256× 256 4.17× 10−5 2.01 2.54× 10−4 2.01
512× 512 1.04× 10−5 2.01 6.33× 10−5 2.01

1024× 1024 2.59× 10−6 2.00 1.58× 10−5 2.00
2048× 2048 6.58× 10−7 1.98 3.93× 10−6 2.01

Table 2: Poisson solver accuracy on the far-field grid. A Poisson
equation with an analytic solution of φ(x, y) = sin(πx) sin(πy) is
solved on a far-field grid.

and ρu respectively in Equation 2. The Poisson equation with pres-
sure jumps across the interface is solved on the far-field grid using
the volume weighted divergence discussed in Section 3. In each
timestep the level set interface is evolved by advecting the signed
distance function φ and applying the fast marching method. All of
these discretizations are straightforward to apply since the far-field
grid is also a Cartesian grid.

However, in order resolve the detailed flame wrinkles around the
level set interface, it is preferable to enclose the level set which can
move independently of the torch (e.g. due to wind). We accomplish
this in two steps. First, we track the torch by translating the entire
far-field grid by adding or removing cells as in [Rasmussen et al.
2004] (see also [Shah et al. 2004; Cohen et al. 2010]). Second, the
fine grid dynamically moves around in the interior of the far-field
grid in order to track the level set representation of the flame. This
is accomplished by computing the level set’s bounding box at each
time step and clamping it to a maximum and minimum size along
each dimension.

5 Non-Reflecting Waves

Our fluid solver for free surface flows uses the particle level set
method of [Enright et al. 2002]. A constant number of positive
and negative particles are seeded per cell within a distance of 3δx
(stressing that this is the fine grid δx) from the interface. Since we
would like to resolve fine scale details on the fine grid, we prefer a
large number of particles on the fine grid. In contrast, we place a
coarse grid where we expect to lose detail due to numerical dissipa-
tion and therefore require fewer particles in the coarse regions. In
the projection step, we use the pressure modifications of [Enright
et al. 2003] to achieve second order accuracy at the free surface.
The fast marching method is used to maintain the signed distance
property of φ in the vicinity of the interface and velocity extrapo-
lation is performed using closest point extrapolation to ensure that
the interface moves unhindered by the air. Again, we stress that
the Cartesian nature of our underlying grid makes all of these dis-
cretizations straightforward to apply. We demonstrate our solver for
free surface flows in Figures 8, 9, and 10. (Figure 10 uses vortex
particles [Selle et al. 2005].)



Figure 10: A fine grid dynamically follows a boat allowing the simulation to capture fine scale details of the wake in the presence of far-field
boundary conditions. Vortex particles are seeded behind the boat in order to generate additional fine scale details. The fine grid has a
resolution of 192× 32× 192 and the far-field grid has a resolution of 384× 58× 320.

It is often computationally intractable to sufficiently approximate
far-field boundary conditions on a uniform grid while preserving a
high-degree of detail. The domain needs to be large enough to en-
close the fluid flow without boundaries influencing the fluid motion
while a sufficient number of cells still need to be placed through-
out the domain in order to resolve the fine scale details in the re-
gions of interest. Thus, researchers have explored various methods
for approximating far-field boundary conditions such as perfectly
matched layers [Söderström et al. 2010]. Our grid structure is able
to efficiently approximate far-field boundary conditions by progres-
sively extending the grid cells as one moves farther away from the
fine uniform grid covering the region of interest. Since numerical
viscosity often damps out fine scale features in the fluid flow be-
fore reaching the boundary, the extended grid cells can sufficiently
resolve the flow far away from the highest resolution domain sur-
rounding the region of interest at a much lower computational cost
compared to placing uniform cells throughout the domain. Further-
more, we have verified that the outgoing wave propagation speed
for the simulation shown in Figure 8 is the same on both the far-
field grid and the corresponding uniform grid (where the cell size
on the uniform grid is the same as that in the fine region of the
far-field grid).

We have noticed that if the fine grid is insufficiently large com-
pared to the initial splash and transitions to the coarser grid before
the outgoing waves are sufficiently dissipated, the lower frequency
components of the waves are transmitted into the coarser domain
while the higher frequency components of the waves can be reflect-
ed back into the fine domain. This results in artificial interference
patterns which are especially noticeable in the case of the falling
spherical water drop due to the radial nature of the outgoing waves.
An alternative solution (that we do not follow) for alleviating these
reflected waves is to dynamically resize the fine grid such that the
radially outward propagating initial wave generated by the splash is
always enclosed in the fine region. This approach causes the speed

Figure 9: A solid armadillo falls into a large body of water which
enforces a far-field boundary condition. The fine grid has a reso-
lution of 384 × 96 × 384 and the far-field grid has a resolution of
672× 168× 672.

of the simulation to decrease significantly as the simulation pro-
gresses since the fine grid needs to be expanded along two of the
three dimensions. On the other hand, these extra grid lines can be
removed after the splash dissipates.

6 Extensions and Conclusions

We have presented an efficient grid structure that extends a uniform
grid to create a significantly larger far-field grid that is a heavily-
optimized special case of existing curvilinear grids. Our approach
preserves almost every computational advantage of uniform grids
including cache coherency, regular subdivisions for parallelization,
simple data layout, and the existence of efficient numerical algo-
rithms for solving partial differential equations due to the under-
lying Cartesian nature of our grid. We demonstrate that our grid
structure allows us to simulate significantly larger domains than a
uniform grid thus allowing us to capture far-field boundary condi-
tions while maintaining the same resolution in regions of interest.
Efficient algorithms for ray tracing axis-aligned voxel data on uni-
form grids are straightforward to adapt to the far-field grid which
we demonstrate by performing all of our lighting precomputation
and rendering directly on the far-field grid.

While our specific implementation is unable to simultaneously
track multiple regions of interest with fine grids on a single far-
field grid, one could instead track multiple regions by overlaying
multiple far-field grids that each have a single region of interest.
This adds additional fine regions at the cost of maintaining multiple
hierarchical subdivisions. In fact, an AMR or chimera grid imple-
mentation could readily make use of one or more far-field grids.
Another approach is to relax our restrictions on the general far-field
grid and allow for multiple fine regions on a single far-field grid
by choosing multiple regions of fine grid points along each axis.
However, this approach leads to additional fine regions in areas that
are not regions of interest since the fine regions in the far-field grid
are determined by the Cartesian product of the fine regions along
each axis. For example, if we wanted to track two objects with fine
uniform grids located at (x1, y1) and (x2, y2) in two spatial dimen-
sions, we would also be forced to resolve the regions surrounding
(x1, y2) and (x2, y1) resulting in four fine regions.

There are also visual artifacts that can arise due to the stretched cell-
s. In smoke simulations, there is an increased amount of numerical
dissipation in regions with stretched cells which can manifest when
the smoke density field is rendered. In fire simulations, a similar
problem exists with the temperature field but can be resolved by
enclosing the region of interest (level set wrinkles) within the finest
discretization since a fire simulation is often localized. In water
simulations, the increased dissipation in stretched regions tends to
rapidly smooth out the sharp features of the free surface. How-
ever, outside of the region of interest, there are usually fewer of



these sharp features and the increased numerical dissipation is less
noticeable. Thus, the far-field grid is more suitable to modeling
localized fluid phenomena with a bounded region of interest such
as fire and water as opposed to smoke where the density tends to
distribute itself throughout the entire domain.

Another interesting direction for future work is the implementation
of the far-field grid on the GPU towards real time applications. The
far-field grid can be represented in three spatial dimensions using
three small one-dimensional arrays or textures which can be bound
either as constants or small texture or stored in group shared mem-
ory. Due to the Cartesian nature of the far-field grid, the data stored
on the far-field grid has a direct mapping to three-dimensional tex-
tures or arrays and therefore numerical algorithms optimized for u-
niform grids on the GPU can be easily adapted to operate on the far-
field grid. The far-field grid’s ability to dynamically resolve details
inside a region of interest within a very large domain while main-
taining almost every computational advantage of a uniform grid has
the potential to facilitate the use of fluid simulations in numerous
real time applications.
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