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Abstract— Grid-based methods have difficulty resolving fea-
tures on or below the scale of the underlying grid. Although
adaptive methods (e.g. RLE, octrees) can alleviate this to some
degree, separate techniques are still required for simulating
small-scale phenomena such as spray and foam, especially since
these more diffuse materials typically behave quite differently
than their denser counterparts. In this paper, we propose a two-
way coupled simulation framework that uses the particle level set
method to efficiently model dense liquid volumes and a smoothed
particle hydrodynamics (SPH) method to simulate diffuse regions
such as sprays. Our novel SPH method allows us to simulate both
dense and diffuse water volumes, fully incorporates the particles
that are automatically generated by the particle level set method
in under-resolved regions, and allows for two way mixing between
dense SPH volumes and grid-based liquid representations.

Index Terms— physically based modeling, fluid simulation,
smoothed particle hydrodynamics, particle level set

I. INTRODUCTION

The physics-based simulation of water has become prevalent
in modern feature films, especially for scenes that include re-
alistic secondary effects such as spray, foam, or bubbles. Such
simulations have been used extensively in both photorealistic [1],
[2] and animated [3]–[5] features. We differentiate between dense
and diffuse water volumes noting that the incompressible Navier-
Stokes equations are not appropriate for modeling diffuse regions
such as spray/air mixtures which are clearly compressible. While
dense volumes are adequately modeled with the incompressible
Navier-Stokes equations as in [6], SPH methods are more appro-
priate for spray and foam because they can more accurately reflect
the physical characteristics of the diffuse or aerated material.
Thus, we propose a novel SPH method that is suitable for both
dense and diffuse regions as well as the interactions between
them. Moreover, since state-of-the-art grid-based solvers yield
high fidelity results for dense regions (and especially for smooth
surfaces), we also show how to two-way couple our SPH solver
to the particle level set method.

Particle systems were first shown to be useful for computer
graphics applications in [7]. Early works on using particles to
model liquids include [8]–[10]. [11], [12] introduced the notion
of smoothed particle hydrodynamics in which spatially smoothed
particle representations can be used to solve the Navier-Stokes
equations. [13] leveraged the smoothed particle representation to
model gaseous phenomena, and [14] later introduced the full SPH
methodology to the graphics community. [14] used an equation of
state (EOS) to model pressure, thus imposing a severe time step
restriction to resolve the sound waves present in compressible
flow (similar to [15]). Notably, the computational cost of their
method increases as the desired compressibility decreases, be-
coming most expensive in the incompressible flow limit. Contem-
poraneously, [16], [17] introduced another method for simulating
particles with the Navier-Stokes equations based on [18]. Instead

of integrating the Navier-Stokes equations on a smoothed particle
basis, they carried out all calculations on a background grid,
thus allowing for an efficient, fully incompressible simulation
where the implicit handling of the acoustic waves removes the
related time step restrictions (see also [19]). Later, [20] used
level sets to represent the liquid interface downgrading particles
from physical representations of fluid mass to auxiliary markers
for interface tracking. Although this trend was continued by [6]
adding interface trackers on the air side of the interface, [20]
and subsequent papers [21]–[24] used these marker particles to
represent spray and bubbles when they crossed over the interface.

Although various authors mixed grid-based solvers with parti-
cle methods for spray and foam using explicit rules for particle
behavior [25], [26], one attractive aspect of the particle level
set method is that it automatically produces particles in under-
resolved regions. This is similar in spirit to the particle finite
element method [27] where a standard finite element mesh is
created for particles dense enough to form a continuum, and
stray particles are simulated with methods more appropriate for
spray. As researchers explored the strengths and weaknesses of
different techniques, the distinction between grid-based methods
and particle-based methods has blurred. For example, many vortex
particle algorithms make use of some sort of background grid in
order to decrease computational cost and algorithmic complexity
(see e.g. [28]), and [29] use a background grid for all non-
advection terms in their particle-based fluid solver. [22] attempted
to use SPH for the removed particles in a standard particle level
set implementation, but had difficulties using EOS-type methods
to adequately enforce incompressibility. Thus, they handled the
removed particles with a method similar to [29]. Our method is
most similar in spirit to these works.

II. PREVIOUS WORK

Building on the initial work of [14], [30] used EOS-based SPH
for lava flows. This EOS SPH framework was also used in a series
of papers to simulate water [31], melting solids [32]–[34], solid
fluid coupling [35], [36], and multiphase flows [37]. [38] pointed
out that the typical SPH EOS methods for simulating incompress-
ible fluids lead to very stiff systems, making incompressible flow
difficult to simulate. In fact, [39] states that SPH methods can only
solve compressible fluid flows and proposes an SPH variant which
does not use an EOS relationship for the pressure, but instead
solves a global Poisson equation similar to grid-based methods.
They obtain some rather impressive simulations of liquids.

III. PARTICLE LEVEL SET METHOD

Our fluid solver is predicated on previous grid-based Navier-
Stokes implementations such as [40], which ignore viscous effects
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Fig. 1. (Left) We start an SPH simulation targeting a uniform particle number
density. (Center) We then increase the target particle density causing the liquid
to compress. (Right) Finally, we decrease the target particle density, and the
fluid expands.

and use the inviscid form of the Navier-Stokes equations

~ut + (~u · ∇)~u +∇p/ρ = ~f

∇ · ~u = 0

where ~u = (u, v, w) is the velocity, ρ is the density, and ~f accounts
for body forces such as gravity and vorticity confinement. First,
an intermediate velocity field ~u? is computed

(~u? − ~uk)/∆t + (~uk · ∇)~uk = ~f

using a second-order unconditionally stable MacCormack method
[41]. Since the modified MacCormack method can create spurious
oscillations when sampling extrapolated velocities, we revert to
the standard first-order accurate semi-Lagrangian method [42]
near the liquid/air interface and object boundaries. These sorts
of oscillations are acceptable (and may even be desirable) within
a fluid volume to facilitate the simulation of complex flows, but
they are detrimental to the visual quality of the surface when
present near the interface. The transition point between the two
methods can be controlled by the user of the system, but a small
constant number of cells is usually sufficient. We employed a
three-cell band in our simulations.

Next, we compute a scaled pressure p̂ = p∆t via

∇ · (∇p̂/ρ) = ∇ · ~u? (1)

and use it to make the velocity field divergence free

(~uk+1 − ~u?) +∇p̂/ρ = 0. (2)

We use the standard particle level set method to model the
interface with particles on both sides as in [6]. The removed
particles generated by the particle level set method are used to
simulate secondary effects like spray and foam via our new SPH
solver.

[14] proposed an SPH method predicated on an EOS of the
form p = k(ρ− ρ0) where ρ0 represents the target density of the
fluid. However, [43] noted that equations of the form p = kρ are
generally better behaved since attractive forces between particles
are known to cause instabilities in SPH simulations. While this
latter formulation is more stable, it no longer provides any
mechanism for density targeting. Density targeting is important
for adaptivity: being able to control the spatial density essentially
allows one to create multiresolution SPH simulations in the
same way that octrees and RLE grids allow for multiresolution
simulations.

Fig. 2. SPH liquid flowing into a 120×240 box. The target particle number
density is set to be low everywhere except in a region delineated by outlines
of the letters “IEEE”.

To avoid the time step restrictions induced by acoustic waves
in EOS-based SPH models, one can instead solve a global
Poisson equation for the pressure similar to the standard grid-
based methods. [39] took this approach solving a Poisson equation
that targeted the desired number density of particles based on the
work of [44], [45]. These same authors ( [46]) later realized that it
is desirable to have an incompressible flow field regardless of the
current particle density and proposed solving a Poisson equation
for the pressure, targeting the removal of any divergence in the
intermediate velocity field exactly as in grid-based methods. A
similar projection procedure which uses pressure to make the
velocity field divergence free was proposed for SPH simulation
in [47] (see also [48]).

Later, [49] realized that it is desirable to both have a divergence
free flow field and provide a mechanism for number density
targeting. They first solve a Poisson equation for pressure to
obtain a divergence free velocity field. Then, in order to target
the desired particle number density, they solve a second Poisson
equation to artificially alter the particle positions. However, since
the velocities derived from this second solve are discarded, the
method yields non-physical solutions. Consider, for example, a
stationary flow field containing a subregion with particle density
lower than the target density. The second Poisson solve will force
particles from the higher density region to the lower density region
as desired, but simply changing particle positions and ignoring
the resulting velocities will leave the initially static velocity field
unaltered. This is contrary to the true physical behavior where the
subregion lower in density should have induced a flow of material
into it.

As we show below, the Navier-Stokes equations allow for
both the enforcement of incompressibility and the targeting of
particle number density within a single Poisson solve, yielding
the physically correct solution. This is clearly less expensive
than a method that requires two Poisson solves. The equation
for conservation of mass is

1

ρ

Dρ

Dt
+∇ · ~u = 0

where D/Dt = ∂/∂t + ~u · ∇ is the material derivative, and ρ

is the density which can be written in terms of the number of
particles per region nr , the mass per particle mp, and the volume
per region Vr as ρ = nrmp/Vr . This yields

1

nr

Dnr

Dt
+∇ · ~u = 0. (3)
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Fig. 3. Two-way coupling between SPH and the particle level set method to pour water into a glass. Note the small splashes provided by SPH that would
not be resolvable by a traditional particle level set method.

Taking the divergence of both sides of equation (2) gives

∇ · (∇p̂/ρ) = ∇ · ~u? −∇ · ~uk+1.

Substituting the value of ∇ · ~uk+1 from equation (3) yields

∇ · (∇p̂/ρ) = ∇ · ~u? +
1

nr

Dnr

Dt
. (4)

When the goal is to obtain a divergence free flow field as in
equations (1) and (2), the divergence of ~uk+1 is set identically
to zero. However, [50] noted that for certain physical phenomena
(such as expansion caused by explosions) the ability to target a
nonzero divergence can be useful. The above derivation illustrates
that the same concept can be used to target a particle number
density by replacing Dnr/Dt in equation (4) with the desired
change in particle number density. Since Dnr/Dt is a material
derivative it necessarily includes an advection term of the form
~u ·∇, however our SPH-based solver is in the Lagrangian (rather
than Eulerian) frame and therefore implicitly accounts for this
term. Thus, we approximate

1

nr

Dnr

Dt
=

1

nk+1
r

 
nk+1

r − nk
r

∆t

!
to obtain

∇ · (∇p̂/ρ) = ∇ · ~u? +
1

nk+1
r

 
nk+1

r − nk
r

∆t

!
(5)

Examples of our targeting can be seen in figures 1 and 2.
If the target number density is too far from the current density,

our targeting scheme can introduce large velocities that result in
substantial oscillations. In our implementation, we compensate by
averaging the target divergence over a small time interval ∆τ . If
we represent the last term in equation (5) as T = 1

nr

∆nr
∆t , we

obtain the integral expressionZ ntarget
r

nk
r

dnr

nr
=

Z tk+∆τ

tk

Tdt

which can be solved to obtain T = 1
∆τ ln

“
ntarget

r

nk
r

”
replacing the

last term in equation (5). In our simulations, we took ∆τ between
.25 and 1 seconds, which was sufficient to prevent any noticeable
stability issues from arising.

IV. DIFFUSE SPH

The formulation described above is valid for dense fluid
regions, but fails to adequately allow for diffuse behavior such
as in spray/air mixtures. In diffuse fluid volumes, it is incorrect
to assign a target density at each point in space, since diffuse
regions are highly compressible and the distribution of particles
is governed primarily by ballistic motion. Thus we modify our
divergence formulation to better account for diffuse fluid by
clamping the target divergence to be non-negative, which will
force overly-dense regions to expand without causing diffuse
regions to non-physically contract. However, this solution is not
totally satisfactory since it still enforces incompressibility in
regions below the target density threshold which is inappropriate
for ballistic fluid features. The problem with equation (5) for
diffuse regions is that one cannot ascertain the desired target
density a priori without accounting for the ballistic motion of
all the surrounding regions of flow.

To correct this problem, we observe that particles in dense
regions should be incompressible, and thus move according to
the velocities generated by the Poisson solve. On the other
hand, solitary particles that are far from any other fluid feature
should follow ballistic trajectories independent of incompressibil-
ity. Therefore, our SPH method introduces the notion of particle
slip in which the smoothed number density at each particle
position determines the degree to which the particle is affected by
the Poisson solve. This slipping is highly desirable for scenes with
both dense and diffuse particle regions as it allows particles to
smoothly transition between incompressible and ballistic behavior
in a physical manner.

As in most SPH algorithms, each particle represents a
smoothed, radially-symmetric attribute field that distributes its
associated quantities in a local neighborhood of influence. For
a single particle p with radius rp and position xp, we define the
influence at a point x to be

ωp(x) =


c(1− ‖x− xp‖2/r2

p) when ‖x− xp‖2 ≤ r2
p

0 otherwise
(6)

where c is a normalization constant. Since our method enforces
incompressibility in an efficient fashion using a background MAC
grid, we compute the influence of each particle at both cell centers
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Fig. 4. (Top) A thin particle level set source pouring onto an upturned bowl on a 150× 200× 200 grid. The grid cannot resolve the thin film at the point
of impact and catastrophically loses mass. (Middle) The simulation with the removed negative particles visualized. The particles have no notion of volume
and thus end up compressed on the bottom right edge of the domain. (Bottom) Our SPH solver treats the removed negative particles as an integral part of
the liquid representation, and convincingly conserves volume.

and faces. A different normalization constant is used for each,
and cumulative number densities are also calculated separately
for cells and faces.

Each time step of our algorithm proceeds as follows. First,
we apply gravity (and other body forces) to the particles. Next,
we compute cell and face weights (i.e. particle number densities)
using the blending kernel given in equation (6). Then we rasterize
weighted particle velocities onto the faces of the grid, and store
a copy of this velocity field for later use. Next we calculate
the target divergence for each cell, solve the variable-density
Poisson equation (5), and update the grid-based velocity field
using equation (2). We calculate the change in the grid-based
velocities and use the FLIP method [29] to compute a candidate
change in velocity ∆v for each particle by taking a linear
combination of nearby face velocity differences weighted by
the particle’s influence at each face center. One disadvantage of
FLIP is that a cell may contain particles with widely varying
velocities and merely mapping ∆v back to each particle adds
no viscous behavior. If the particle velocities in a cell have high
variance, we introduce a weighted average between FLIP and PIC
on a per particle basis, since the PIC method will substantially
damp outlying particle velocities by forcing them to more closely
conform to those computed on the background grid.

Before mapping this change in velocity to the particles we
introduce our notion of particle slip. To determine how much
of the calculated velocity change to apply for a given particle,
we compute a particle slip ratio s as the particle number density
at the particle’s position divided by the global incompressibility
target density. Then, we update each particle’s velocity vk+1

p =

vk
p +s∆v and subsequently update the particle position using this

velocity.
One of the more attractive features of this particle slip method

is that we can control the degree to which the SPH solver
influences our particles simply by adjusting the slip coefficient

s. Also, we typically maintain a ballistic particle threshold of
around 15% of the incompressible target density and remove cells
with weights below this level from the Poisson solve altogether.
Because of this level of control, our method can be trivially
adapted to interact with arbitrary particle systems simply by
disabling or scaling back the influence of our solver in regions
that are subject to other dominant forces. In this manner, we can
take into account spring-based attractive forces, elasticity, or even
completely non-physical particle rules.

V. TWO-WAY COUPLING

In the standard particle level set algorithm, passive marker
particles are seeded on both sides of the fluid interface and
advected along the fluid flow. In areas where the grid is unable to
fully resolve the level set’s behavior, these marker particles will
pass from one side of the interface to the other indicating error
in the level set representation and prompting a local rebuilding of
the level set function with the characteristic information present in
these particles. When a particle strays too far across the interface,
it can be removed from the set of interface tracking markers and
instead used to represent spray or bubbles depending on whether
it is a removed water or air particle, respectively. We use the
removed negative particles that were originally on the interior
of the fluid volume to seed our SPH algorithm (although other
particles can be introduced as well).

For simulations with sparse particles or those in which the
scale of the negative removed particles is small, it suffices for the
fluid to exert force on the particles without the particles affecting
the behavior of the fluid. In these cases, we one-way couple the
grid-based solver to the SPH solver by first carrying out all the
steps of a normal grid-based solve, and then using the result to
generate boundary conditions for the SPH solver. In particular,
each face that lies along the level set interface is set to a Neumann
condition with the velocity provided by the grid-based solver.
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Fig. 5. Two-way coupled SPH and particle level set fluid simulation. The
level set is depicted in green. The far left image shows a few negative removed
particles generated from the level set that are subsequently simulated with
SPH. In the second figure, we have added a source of further SPH particles.
After turning off the source in the third figure, we turn on reincorporation of
particles in dense regions so that they transition to a level set representation
when possible providing for a smoother interface representation.

This coupling strategy is particularly convenient for adding detail
to existing simulations, since it can be run entirely as a post-
process. When employed simultaneously with the fluid solver,
however, we can improve the visual quality of the simulation by
reincorporating particles that penetrate the level set surface and
applying a local momentum conservation force to slightly alter
the level set velocities in reincorporation regions. Figure 4 shows
a thin particle level set source impacting a tilted bowl. At the point
of contact, the grid resolution is insufficient to resolve the thin
liquid sheet resulting in complete mass loss (top). In the middle
row, we see the same simulation visualizing the removed negative
particles generated by the level set following their initial ballistic
trajectories. These particles provide better visual cues, but fail
to exhibit any fluid-like behavior. In the bottom row, we use the
removed negative particles in a one-way coupled SPH simulation
with improved results.

For simulations with dense particle regions, full two-way
coupling is desirable. Thus, we use a single Poisson solve to
compute the divergence free flow field simultaneously for the
grid-based level set fluid volume and the SPH-governed regions.
First we carry out all the non-projection steps of the grid-based
particle level set solver. Then, for faces interior to the level set
that have both valid SPH particle and valid grid-based level set
velocities, we discard the particle velocity and instead use only
the grid-based velocity for the Poisson solve. Cells inside the level
set volume have their divergence set to zero, whereas SPH cells
outside the fluid volume have their divergence set as described
above (section III). After projection and the subsequent updating
of the velocity field according to equation (2), the velocity is
mapped back to the particles incorporating any desired slip. As in
[6] the last step in the particle level set algorithm is to extrapolate
velocities from the valid fluid volume to a band of surrounding
air cells. However if particles occupy part of this region, their
velocities should not be overwritten. Therefore we mark the cells
in the grid-based air volumes where the particles provide an
adequate external velocity field and only extrapolate to cells that
do not contain a sufficient number of particles. Figure 5 shows
a two-way coupled simulation of a particle-only SPH source
interacting with a particle level set source. In this simulation,
the particles are seeded at the target density and thus are given
roughly equal weight to the fluid.

For added efficiency and surface smoothness, one can op-

tionally convert SPH particles back to a grid-based level set
representation in areas with sufficient particle density. This is
accomplished by defining a level set around each particle in
exactly the same manner as is done for the marker particles in
the particle level set method. This computes new values for the
level set function whereas new velocity values are defined directly
from the smooth particle kernel (see rightmost image in figure 5).

VI. EXAMPLES

Our three-dimensional examples were carried out on a number
of 4 processor Opteron machines and averaged between 30 sec-
onds and 3 minutes per frame. We employed 32 particles per cell
for all our 3D examples and 16 for the 2D ones. In figure 6, we
apply our SPH method to an ocean scene with crashing waves on
a 560×120×320 grid. A number of authors have considered using
the three-dimensional Navier-Stokes equations to simulate large
ocean views, but it has proven quite challenging to convincingly
convey the appropriate sense of scale without resorting to non-
physical post-processes. We use full two-way coupling with the
negative removed particles generating convincing SPH-simulated
spray. We also run a secondary one-way coupled simulation of the
air to generate fine-detail mist and foam that is sourced from the
spray particles along the lines of [51]. Positive removed particles
are also passively advected and used to represent bubbles. To
generate good initial conditions for our waves, we use the same
wave formulation as [52]. We rendered this scene in Pixar’s
RenderMan with a deep-water texture applied to the surface.
We also consider the simulated pouring of water into a glass
as in [6]. Figure 3 shows the results obtained using our two-
way coupled variable-density SPH solver with particle to fluid
conversion enabled on a 120×240×120 grid. The particles provide
convincing splashes and add physically-based turbulence to the
fluid surface, resulting in a more realistic simulation that appears
noticeably less viscous than those predicated on the particle level
set method alone.

VII. CONCLUSIONS

We proposed a novel SPH solver which allows us to enforce
incompressibility in an efficient fashion similar to standard grid-
based methods as well as target arbitrary particle number densities
with a single Poisson solve. We introduced the notion of particle
slip in order to extend this SPH solver to simulate diffuse phe-
nomena such as mixtures of spray and air. Finally we showed how
to two-way couple our new SPH solver with a standard particle
level set method and illustrated the efficacy of our approach with
a number of examples including the crashing of ocean waves
against a lighthouse and beach.

One of the main limitations of our approach is that the FLIP
method we employ can introduce unwanted noise, due to the
fact that it encourages particles to have wildly varying velocities.
This problem can be ameliorated to some extent by averaging
with PIC, at the cost of undesirable numerical viscosity. A more
principled approach would be to apply PIC averaging only in
areas of high particle velocity variance, relying entirely on FLIP
in regions where particle velocities are relatively constrained. An-
other limitation is that particle density computation is unreliable
near the air/liquid interface, where SPH particles do not have
neighbors on all sides. We experimented with several strategies to
reduce noise in these areas by reflecting dummy particles across
the interface before computing particle densities, but met with
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Fig. 6. A large ocean scene simulated with two-way coupling between our SPH method and the particle level set method. Besides the full two-way coupling,
a secondary air simulation is used to generate a second layer of fine-detail mist and foam sourced from the SPH particles.

only limited success. Future work in these areas would be broadly
applicable to the simulation community at large, since neither of
these shortcomings is specific to our method.
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