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Abstract
While much progress has been made in capturing high-quality facial performances using 
motion capture markers and shape-from-shading, high-end systems typically also rely on 
rotoscope curves hand-drawn on the image. These curves are subjective and difficult to 
draw consistently; moreover, ad-hoc procedural methods are required for generating match-
ing rotoscope curves on synthetic renders embedded in the optimization used to determine 
three-dimensional (3D) facial pose and expression. We propose an alternative approach 
whereby these curves and other keypoints are detected automatically on both the image and 
the synthetic renders using trained neural networks, eliminating artist subjectivity, and the 
ad-hoc procedures meant to mimic it. More generally, we propose using machine learning 
networks to implicitly define deep energies which when minimized using classical optimi-
zation techniques lead to 3D facial pose and expression estimation.

Keywords Numerical optimization · Neural networks · Motion capture · Face tracking

Mathematics Subject Classification 65K10 · 90C30 · 68T07

 * Jane Wu 
 janehwu@stanford.edu

 Michael Bao 
 mikebao@stanford.edu

 Xinwei Yao 
 yaodavid@stanford.edu

 Ronald Fedkiw 
 fedkiw@cs.stanford.edu

1 Department of Computer Science, Stanford University, 353 Jane Stanford Way, Stanford, 
CA 94305, USA

2 Epic Games, 620 Crossroads Blvd, Cary, NC 27518, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00256-y&domain=pdf
http://orcid.org/0000-0003-2700-0732


 Communications on Applied Mathematics and Computation

1 3

1 Introduction

For high-end face performance capture, either motion capture markers [5] or markerless tech-
niques such as shape-from-shading [1, 4] or optical flow [65] are typically used; however, 
these methods are generally unable to capture the intricacies of the performance, especially 
around the lips. To obtain high-end results, artists hand-draw rotoscope curves on the captured 
image; then, a variety of techniques are used to construct similar curves on the synthetic ren-
der of the estimated pose and to determine correspondences between the hand-drawn and syn-
thetically generated curves. The simplest such approach would be to use a pre-defined contour 
on the three-dimensional (3D) face model, clip it for occlusions, and create correspondences 
in a length proportional way; although this provides some consistency to the curves generated 
on the synthetic render, it is quite difficult for an artist to emulate these curves. Thus, practical 
systems implement a number of ad-hoc methods to match the artist’s more subjective interpre-
tation. The inability to embed the artist’s subjectivity into the optimization loop and onto the 
synthetic render coupled with the artist’s inability to faithfully reproduce procedurally gener-
ated curves leaves a gaping chasm in the uncanny valley.

Although one might debate what works best to align a 3D virtual model with an image, it 
is clearly the case that a consistent metric should be applied to evaluate whether the synthetic 
render and image are aligned. This motivates the employment of a machine learning algorithm 
to draw the rotoscope curves on both the captured image and the synthetic render, hoping 
that accurately representing the real-world pose would lead to a negligible difference between 
the two curves. Although one might reasonably expect that the differences between real and 
synthetic camera behavior, albedo, lighting, etc. may lead to different rotoscope curves being 
generated by the deep learning algorithm, GAN-like approaches [26, 42] could be used to 
rectify such issues.

Recent advancements in using deep neural networks to detect face landmarks (see e.g., [8]) 
make using machine learning to detect not only the lip curves but also other facial landmarks 
on both the captured image and the synthetic render an attractive option. A traditional opti-
mization approach can then be used to minimize the difference between the outputs from the 
captured image and the synthetic render. This is feasible as long as one can backpropagate 
through the network to obtain the Jacobian of the output with respect to the synthetic render. 
Of course, this assumes that the synthetic render is fully differentiable with respect to the face 
pose parameters, and we use OpenDR [44] to satisfy this latter requirement; however, we note 
that any differentiable renderer can be used (e.g., [41]).

This approach is attractive as it replaces human subjectivity with a consistent, albeit some-
times consistently wrong, network to evaluate the semantic difference between two images. 
Furthermore, as networks improve their ability to detect facial features/descriptors on a wider 
variety of poses and lighting conditions, our approach will also benefit. More generally, we 
propose to use machine learning networks to embed various subjective, but consistent, “evalu-
ations” into classical optimization approaches that estimate facial pose and expression.

2  Related Work

Rotoscope Lip/Mouth Curves Motion capture markers are commonly used to esti-
mate facial pose and expression for a facial performance [16, 47, 56]. The corresponding 
points on the triangulated facial mesh are either selected by hand or found by projecting 
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two-dimensional (2D) markers from the image to the 3D mesh when the face is in a neu-
tral pose [5]. Rotoscope curves are typically used to refine the results around the lips to 
produce higher fidelity [5, 17]. For view-independent curves such as the outer lip, the cor-
responding contour on the mesh can be pre-defined [5]; however, for view-dependent/sil-
houette curves such as the inner lip, the corresponding contour must be defined based on 
the current camera viewpoint and updated iteratively [5, 17].

Face Alignment The earliest approaches to regression-based face alignment trained a 
cascade of regressors to detect face landmarks [11, 12, 22, 36, 70]. More recently, deep 
convolutional neural networks (CNNs) have been used for both 2D and 3D facial landmark 
detection from 2D images [34, 66]. These methods are generally classified into coordinate 
regression models [30, 34, 61, 67] and heatmap regression models [8, 15, 68]. Heatmap-
based architectures are generally derived from stacked hourglass [8, 15, 29, 50] or convo-
lutional pose machine [63] architectures used for human body pose estimation. Pixel coor-
dinates can be obtained from the heatmaps by applying the argmax operation; however, 
[18, 58] used soft-argmax to achieve end-to-end differentiability. A more comprehensive 
overview of face alignment methods can be found in [31].

Optical Flow Optical flow has had a long successful history started in part by [6]. 
Variational methods such as the Lucas-Kanade method [46] and the Brox method [7] are 
commonly used. Other correspondence finding strategies such as EpicFlow [53] and Flow-
Fields [2] have also been used successfully. End-to-end methods for learning optical flow 
using deep networks were first proposed by [20] and later refined in [28].

Face Capture It is common to use optimization to estimate facial deformation param-
eters from painted markers and hand-drawn rotoscope curves for high-quality facial per-
formance capture [5]. When such an approach is not feasible, automatically detected 2D 
features [10, 13, 23], depth data [13, 35, 64], RGB images [60], and optical flow data [9, 
23] are often used in the optimization instead. Neutral networks have recently been used to 
estimate these deformation parameters as well [33, 37, 59]. A more complete overview of 
facial performance capture methods can be found in [72].

“Deep Energies” Using deep networks such as VGG-16 [57] for losses has been shown 
to be effective for training other deep networks for tasks such as style transfer and super-
resolution [32], image generation [19], and face swapping [39]. Furthermore, deep net-
works have been used in energies for traditional optimization problems for style transfer 
[24], texture synthesis [55], and image generation [48, 62]. While [24, 55] use the L-BFGS 
[69] method to minimize the optimization problem, [48, 62] use gradient descent methods 
[54].

3  Overview

In this paper, we advocate for a general strategy that uses classical optimization where the 
energy to be minimized is based on metrics ascertained from deep neural networks. In par-
ticular, this removes the rotoscope artist and the ad-hoc contour drawing procedures meant 
to match the artist’s work, or vice versa, from the pipeline. This pins advancements in the 
3D facial pose and expression estimation to those being made in machine learning, which 
are advancing at a fast pace. Generally, we take the following approach. First, we estimate 
an initial rigid alignment of the 3D face model to the 2D image using a facial alignment 
network. Then, we estimate an initial guess for the jaw and mouth expression using the 
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same network. Finally, we temporally refine the results and insert/repair failed frames (if/
when necessary) using an optical flow network.

We use a blendshape model hybridized with linear blend skinning for a six degree of 
freedom jaw joint [40]; let w denote the parameters that drive the face triangulated surface 
x(w). The resulting surface has a rigid frame given by Euler angles � , rotation matrix R(�) , 
and a translation t such that the final vertex positions are

We note that other geometry such as the teeth can be trivially handled by (1) as well. 
The geometry xR is rendered using OpenDR [44] obtaining a rendered image F(xR) . As a 
precomputation, we estimate the face’s albedo and nine coefficients for a spherical harmon-
ics light [52] on a frame where the face is close to neutral; however, we note that a texture 
captured using a light stage [14] (for example) would potentially work just as well if not 
better. Then, our goal is to determine the parameters � , t, and w that best match a given 
captured image F∗.

Both the pixels of captured image F∗ and the pixels of the rendered image F(xR) are fed 
through the same deep network to get two sets of landmark positions N(F∗) and N(F). See 
Fig. 1. We use the L2 norm of the difference between them

as the objective function to minimize via nonlinear least squares, which is solved using the 
Dogleg method [45] as implemented by Chumpy [43]. This requires computing the Jaco-
bian via the chain rule of the energy function; �N∕�F , �F∕�xR , and �xR∕�p where p is one 
of � , t, and w all need to be evaluated. We use OpenDR to compute �F∕�xR , and (1) yields 
�xR∕�p . �N∕�F is computed by backpropagating through the trained network using one’s 
deep learning library of choice; in this paper, we use PyTorch [51]. Note that for computa-
tional efficiency, we do not compute �N∕�F explicitly, but instead compute the Jacobian of 
(2) with respect to the rendered image pixels output by F instead.

(1)xR(�, t,w) = R(�)x(w) + t.

(2)‖N(F∗) − N(F(xR(�, t,w)))‖2

Fig. 1  An overview of our approach: we use our 3D face model of the actor (a) and estimate the albedo 
and spherical harmonics lighting in a neutral pose (b). Then, we can deform the face model into a variety 
of poses by changing the rigid parameters � and t and blendshape parameters w (c), and generate synthetic 
images by rendering the face model in those poses (d). We feed that synthetic render through the network 
to produce a set of outputs (e), which are then compared to the outputs produced by the same network when 
feeding it the captured image (f)
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4  Rigid Alignment

We first solve for the initial estimate of the rigid alignment of the face, i.e., � and t using 
the pre-trained 3D-FAN network [8]. Note that 3D-FAN, and most other facial alignment 
networks, require taking in a cropped and resized image of the face as input; we denote 
these two operations as C and S, respectively. The cropping function requires the bounding 
box output of a face detector D; we use the CNN-based face detector implemented by Dlib 
[38]. The resize function resizes the crop to a resolution of 256 × 256 to feed into the net-
work. The final image passed to the network is thus S(C(F(xR),D(F(xR))),D(F(xR))) where 
we note that both the crop and resize functions depend on the output of the face detector; 
however, aggressively assuming that �D∕�F = 0 did not impede our ability to estimate a 
reasonable facial pose. Given D, C is merely a subset of the pixels of F so �C∕�p = �F∕�p 
for all the pixels within the detected bounding box and �C∕�p = 0 for all pixels outside. S 
resizes the crop using bilinear interpolation, so �S∕�C can be computed using the size of 
the detected bounding box.

3D-FAN outputs a tensor of size 68 × 64 × 64 , i.e., each of the 68 landmarks has a 
64 × 64 heatmap specifying the likelihood of a particular pixel containing that landmark. 
While one might difference the heatmaps directly, it is unlikely that this would sufficiently 
capture correspondences. Instead, we follow the approach of [18, 58] and apply a differen-
tiable soft-argmax function to the heatmaps obtaining pixel coordinates for each of the 68 
landmarks. That is, given the marker position mi computed using the argmax function on 
heatmap Hi , we use a 3 × 3 patch of pixels Mi around mi to compute the soft-argmax posi-
tion as

where � = 50 is set experimentally and Hi(m) returns the heatmap value at a pixel coordi-
nate m. We found that using a small patch around the argmax landmark positions gives bet-
ter results than running the soft-argmax operation on the entire heatmap.

The soft-argmax function returns an image coordinate on the 64 × 64 image, and these 
image coordinates need to be remapped to the full-resolution image to capture transla-
tion between the synthetic face render and the captured image. Thus, we apply inverse 
rescale S−1

m
 and crop operations C−1

m
 , i.e., m̃i = C−1

m
(S−1

m
(4m̂i,D),D) . The multiplication by 

4 rescales from the 64 × 64 heatmap to the original 256 × 256 . To summarize, we treat 
the 68 m̃i as the output of N, and (2) measures the L2 distance between the 68 m̃i on the 
captured image and the corresponding m̃i on the synthetic render. We once again assume 
�D∕�F = 0 . �C−1

m
∕�S−1

m
 is the identity matrix, and 𝜕S−1

m
∕𝜕m̂i contains the scalar multipliers 

to resize the image from 256 × 256 to the original cropped size. We stress that this entire 
process is end-to-end differentiable. See Fig. 2.

5  Expression Estimation

After the rigid alignment determines � and t, we solve for an initial estimate of the mouth 
and jaw blendshape parameters (a subset of w). Generally, one would use hand-drawn roto-
scope curves around the lips to accomplish this as discussed in Sect.  2; however, given 

(3)m̂
i
=

∑
m∈M

i

me𝛽Hi
(m)

∑
m∈M

i

e𝛽Hi
(m)

,
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the multitude of problems associated with this method as discussed in Sect. 1, we instead 
turn to deep networks to accomplish the same goal. We use 3D-FAN in the same manner 
as discussed in Sect. 4 to solve for a subset of the blendshape weights w keeping the rigid 
parameters � and t fixed. It is sometimes beneficial or even preferred to also allow � and t 
to be modified somewhat at this stage, although a prior energy term that penalizes these 
deviations from the values computed during the rigid alignment stage is often useful.

We note that the ideal solution would be to instead create new network architectures and 
train new models that are designed specifically for the purpose of detecting lip/mouth con-
tours, especially since the 64 × 64 heatmaps generated by 3D-FAN are generally too low 
resolution to detect fine mouth movements such as when the lips pucker. However, since 
our goal in this paper is to show how to leverage existing architectures and pre-trained 
networks, especially so one can benefit from the plethora of existing literature, for now, 
we bootstrap the mouth and jaw estimation using the existing facial landmark detection in 
3D-FAN.

6  Optical Flow for Missing Frames

The face detector used in Sect. 4 can sometimes fail, e.g., on our test sequence, the Dlib’s 
HOG-based detector failed on 20 frames, while Dlib’s CNN-based detector succeeded on 
all frames. We thus propose using optical flow networks to infer the rigid and blendshape 
parameters for failed frames by “flowing” these parameters from surrounding frames where 
the face detector succeeded. This is accomplished by assuming that the optical flow of the 
synthetic render from one frame to the next should be identical to the corresponding opti-
cal flow of the captured image. That is, given two synthetic renders F1 and F2 and two cap-
tured images F∗

1
 and F∗

2
 , we can compute two optical flow fields N(F1,F2) and N(F∗

1
,F∗

2
) 

using FlowNet2 [28]. We resize the synthetic renders and captured images to a resolution 
of 512 × 512 before feeding them through the optical flow network. Assuming that F∗

2
 is the 

image the face detector failed on, we solve for the parameters p2 of F2 starting with an ini-
tial guess p1 , the parameters of F1 , by minimizing the L2 difference between the flow field 
vectors ‖N(F∗

1
,F∗

2
) − N(F1,F2)‖2 . �N∕�F2 can be computed by backpropagating through 

the network.

Fig. 2  A visual overview of our approach applied to facial landmark detection. We pass the full-resolution 
image through a facial detector and crop the face out of the image. This crop is then resized to pass through 
the neural network which outputs, in this case, heatmaps for every landmark. These heatmaps are processed 
using a soft-argmax operation to get facial landmark coordinates on the cropped and resized image. These 
positions are then transformed back onto the full-resolution image before being used as part of the objective 
function. An identical process is performed for the synthetic render
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7  Temporal Refinement

Since we solve for the rigid alignment and expression for all captured images in paral-
lel, adjacent frames may produce visually disjointed results either because of noisy facial 
landmarks detected by 3D-FAN or due to the nonlinear optimization converging to dif-
ferent local minima. Thus, we also use optical flow to refine temporal inconsistencies 
between adjacent frames. We adopt a method that can be run in parallel. Given three 
sequentially captured images F∗

1
 , F∗

2
 , and F∗

3
 , we compute two optical flow fields N(F∗

1
,F∗

2
) 

and N(F∗
2
,F∗

3
) . Similarly, we can compute N(F1,F2) and N(F2,F3) . Then, we solve for the 

parameters p2 of F2 by minimizing the sum of two L2 norms ‖N(F∗
1
,F∗

2
) − N(F1,F2)‖2 and 

‖N(F∗
2
,F∗

3
) − N(F2,F3)‖2 . The details for computing the Jacobian follow that in Sect.  6. 

Optionally, one may also wish to add a prior penalizing the parameters p2 from deviating 
too far from their initial value. Here, step k of smoothing to obtain a new set of parameters 
pk
i
 uses the parameters from the last step pk−1

i±1
 ; however, one could also use the updated 

parameter values pk
i±1

 whenever available in a Gauss-Seidel style approach.
Alternatively, one could adopt a self-smoothing approach by ignoring the capture image’s 

optical flow and solving for the parameters p2 that minimize ‖N(F1,F2) − N(F2,F3)‖2 . 
Such an approach in effect minimizes the second derivative of the motion of the head in the 
image plane, causing any sudden motions to be smoothed out; however, since the energy 
function contains no knowledge of the data being targeted, it is possible for such a smooth-
ing operation to cause the model to deviate from the captured image.

While we focus on exploring deep learning based techniques, more traditional smoothing/
interpolation techniques can also be applied in place of or in addition to the proposed optical 
flow approaches. Such methods include: spline fitting the rigid parameters and blendshape 
weights, smoothing the detected landmarks/bounding boxes on the captured images as a pre-
process, smoothing each frame’s parameters using the adjacent frame’s estimations, etc.

8  Results

We estimate the facial pose and expression on a moderately challenging performance 
captured by a single ARRI Alexa XT Studio running at 24 frames-per-second with a 180 
degree shutter angle at ISO 800 where numerous captured images exhibit motion blur. 
These images are captured at a resolution of 2 880 × 2 160 , but we downsample them to 
720 × 540 before feeding them through our pipeline. We assume that the camera intrinsics 
and extrinsics have been pre-calibrated, the captured images have been undistorted, and 
that the face model described in (1) has already been created. Furthermore, we assume that 
the face’s rigid transform has been set, such that the rendered face is initially visible and 
forward-facing in all the captured viewpoints.

8.1  Rigid Alignment

We estimate the rigid alignment (i.e., � and t) of the face using 3D-FAN. We use an energy 
E1 = W(N(F) − N(F∗)) where N are the image space coordinates of the facial landmarks 
as described in Sect. 4 and W is a per-landmark weighting matrix. Furthermore, we use an 
edge-preserving energy E2 =

∑
i(m̃

F∗

i
− m̃F∗

i−1
) − (m̃F

i
− m̃F

i−1
) where m̃F∗

i
 are the landmark 

positions on the captured image and m̃F
i
 are the landmark positions on the synthetic renders 
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to ensure that the face does not erroneously grow/shrink in projected size as it moves 
toward the target landmarks, which may prevent the face detector from working.

First, we only solve for t using all the landmarks except for those around the jaw to 
bring the initial state of the face into the general area of the face on the captured image. 
See Fig. 3. We prevent the optimization from overfitting to the landmarks by limiting the 
maximum number of iterations. Next, we solve for both � and t in three steps: using the 
non-jaw markers, using only the jaw markers, and using all markers. We perform these 
steps in stages as we generally found the non-jaw markers to be more reliable and use them 
to guide the face model to the approximate location before trying to fit to all existing mark-
ers. See Fig. 4.

Fig. 3  The green dots denote the landmarks detected on the synthetic render, the teal dots denote the land-
marks detected on the captured image, and the red lines show correspondences. Left: the initial state where 
the face is front facing and centered (note the figured is cropped) in the image plane. Right: the initial trans-
lation stage in the rigid alignment step roughly aligns the synthetic render of the face to the face in the 
captured image (Note that we display the synthetic render without the estimated albedo for clarity, but the 
network sees the version with the albedo as in Figs. 1d, f, not c)

Fig. 4  From left to right: the result after solving for � and t using the non-jaw markers, using only the jaw 
markers, and using all the markers
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8.2  Expression Estimation

We run a similar multi-stage process to estimate facial expression using the detected 
3D-FAN landmarks. We use the same energy term E1 as Sect. 8.1, but also introduce L2 
regularization on the blendshape weights E2 = �w with � = 1E + 2 set experimentally. In 
the first stage, we weight the landmarks around the mouth and lips more heavily and esti-
mate only the jaw open parameter along with the rigid alignment. The next stage estimates 
all available jaw-related blendshape parameters using the same set of landmarks. The final 
stage estimates all available jaw and mouth-related blendshapes as well as the rigid align-
ment using all available landmarks. See Fig. 5. This process will also generally correct any 
overfitting introduced during the rigid alignment due to not being able to fully match the 
markers along the mouth. See Fig. 6.

Our approach naturally depends on the robustness of 3D-FAN’s landmark detection 
on both the captured images and synthetic renders. As seen in Fig.  7, the optimization 
will try to target the erroneous markers producing inaccurate � , t, and w which overfit to 
the markers. Such frames should be considered a failure case and thus require using the 
optical flow approach described in Sect.  6 for infill. Alternatively, one could manually 
modify the multi-stage process for rigid alignment and expression estimation to remove 
the erroneous markers around the jaw; however, such an approach may then overfit to the 

Fig. 5  From left to right: the results after solving for only the jaw open blendshape, all jaw-related blend-
shapes, and all jaw- and mouth-related blendshapes

Fig. 6  From left to right: the rigid alignment overfit to the mouth markers, the correction by expression esti-
mation, and the target captured image. The rigid alignment overfits to the non-jaw contour markers during 
the initial translation and rotation steps; however, this is corrected during expression estimation when the 
jaw is allowed to open
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potentially inaccurate mouth markers. We note that such concerns will gradually become 
less prominent as these networks improve.

8.3  Optical Flow Infill

Consider, for example, Fig. 8 where frames 1142 and 1146 were solved for successfully 
and we wish to fill frames 1143, 1144, and 1145. We visualize the optical flow fields using 
the coloring scheme of [3]. We adopt our proposed approach from Sect.  6 whereby the 
parameters of frames 1143, 1144, and 1145 are first solved for sequentially starting from 
frame 1142. Then, the frames are solved again in reverse order starting from frame 1146. 
This back-and-forth process which can be repeated multiple times ensures that the infilled 
frames at the end of the sequence have not accumulated so much error that they no longer 
match the other known frame.

Fig. 7  From left to right: the result after rigid alignment, after expression estimation, and the captured 
image. Erroneous markers such as those around the jaw cause the optimization to land in an inaccurate local 
minima

Fig. 8  We use optical flow to infill frames where the face detector fails. Starting from frame 1142, the opti-
mization moves the head to match the optical flow of the synthetic render to the optical flow of the captured 
image. After solving for frame 1145, we perform another round of optimization except that we start from 
frame 1146 instead; this way, each frame will capture optical flow information from both anchor frames. 
Using optical flow allows the mouth to stay open longer (e.g., in frame 1144) than what one would obtain 
using simple interpolation
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8.4  Multi‑camera

Our approach can trivially be extended to multiple calibrated camera viewpoints as it only 
entails adding another duplicate set of energy terms to the nonlinear least squares objective 
function. We demonstrate the effectiveness of this approach in the supplementary video by 
applying our approach from Sects. 8.1 and 8.2 to the same performance captured using an 
identical ARRI Alexa XT Studio from another viewpoint.

We also compare the rigid alignment estimated by our automatic method to the rigid 
alignment created by a skilled matchmove artist for the same performance. The manual 
rigid alignment was performed by tracking the painted black dots on the face along with 
other manually tracked facial features. In comparison, our rigid alignment was done using 
only the markers detected by 3D-FAN on both the captured images and the synthetic ren-
ders. See Fig. 9. Our approach using only features detected by 3D-FAN produces visually 
comparable results. In Fig. 10, we assume that the manually done rigid alignment is the 

Fig. 9  A comparison of the rigid alignment computed manually by a skilled artist versus the rigid align-
ment computed by our approach in both the monocular and stereo case
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“ground truth” and quantitatively evaluate the rigid alignment computed by the monocu-
lar and stereo solves. Both the monocular and stereo solves are able to recover similar 
rotation parameters, and the stereo solve is able to much more accurately determine the 
rigid translation. We note, however, that it is unlikely that the manually done rigid align-
ment can be considered “ground truth” as it likely contains errors as well.

8.5  Temporal Refinement

As seen in the supplementary video, the facial pose and expression estimations are gener-
ally temporally inconsistent. We adopt our proposed approach from Sect. 7. This attempts 
to mimic the captured temporal performance which not only helps to better match the 

Fig. 10  Assuming the manu-
ally done rigid alignment is the 
“ground truth”, we measure 
the errors for rigid parameters 
without temporal refinement for 
the monocular (Sect. 8.2), stereo 
(Sect. 8.4), and stereo preselected 
markers case (Sect. 8.6)

Fig. 11  Smoothing the performance using the captured images’ optical flow fields between adjacent frames 
produces more temporally consistent results. Similar to the optical flow fill-in stage, any errors in the initial 
landmark estimation will propagate into the optical flow solve, e.g., frame 1116 where the jaw opens in an 
attempt to smooth the rigid of the face
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synthetic render to the captured image but also introduces temporal consistency between 
renders. While this is theoretically susceptible to noise in the optical flow field, we did not 
find this to be a problem. See Fig. 11. We explore additional temporal refinement methods 
in the supplementary material.

8.6  Additional Comparisons

We also compare our approach to the monocular face reconstruction approaches using deep 
neural networks proposed by 3DDFA [27, 71], VRN [29], and PRNet [21]. Additionally, 
we demonstrate our approach’s ability to use any deformation and camera model by per-
forming a monocular solve using the orthographic projection of a linear blendshape model 
constructed from the Basel face model [25]. Our approach using the actor-specific face 
model is the only one that is capable of fully capturing the expression, while our monocu-
lar approach using the Basel face model is able to roughly align the face but is unable to 
fully open the mouth. On the other hand, 3DDFA produces an incorrectly aligned face, 
while VRN and PRNet produce more accurate rigid alignments but fail to fully capture the 
mouth open expression. See Fig. 12. Additional details and results are given in the supple-
mentary material.

9  Conclusion and Future Work

We have proposed and demonstrated the efficacy of a fully automatic pipeline for estimat-
ing facial pose and expression using a hybrid optimization/machine learning approach 
where pre-trained deep networks are used as the objective functions in the traditional non-
linear optimization. Such an approach is advantageous as it removes the subjectivity and 
inconsistency of the artist while maintaining the robustness and flexibility of optimization 
approaches. Our approach heavily depends upon the robustness of the face detector and 
the facial alignment networks, and any failures in those cause the optimization to fail. Cur-
rently, we use optical flow to fix such problematic frames, and we leave exploring methods 
to automatically avoid problematic areas of the search space for future work. Furthermore, 

Fig. 12  From left to right: the geometric output of 3DDFA [71], VRN [29], and PRNet [21], our approach 
using the Basel face model [25] with orthographic projection, our temporally refined stereo approach using 
the actor-specific face model with perspective projection, and the captured image
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as the qualities of these networks improve, our proposed approach would similarly ben-
efit, leading to higher fidelity results. While we have only explored using pre-trained facial 
alignment and optical flow networks, using other types of networks (e.g., face segmenta-
tion, face recognition, etc.) and using networks trained specifically on the vast repository of 
high-quality data from decades of visual effects work are exciting avenues for future work.

Appendix A Optical Flow Infill

Using optical flow information is preferable to using simple interpolation as it is able to 
more accurately capture any nonlinear motion in the captured images (e.g., the mouth stay-
ing open and then suddenly closing). We compare the results of our approach of using opti-
cal flow to using linear interpolation for t and w and spherical linear interpolation for � in 
Fig. 13.

Appendix B Temporal Smoothing Alternatives

Figure 14 (third row) shows the results obtained by matching the synthetic render’s opti-
cal flow to the captured image’s optical flow (denoted plate flow in Fig. 14). Although 
this generally produces accurate results when looking at each frame in isolation, 

Fig. 13  Using optical flow to interpolate missing frames produces results that better match the plate than 
simple linear interpolation. Notice how the lips and the face boundary match better in the optical flow 
results (particularly in frame 1144) than in the simple interpolation results
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adjacent frames may still obtain visually disjoint results (see the accompanying video). 
Thus, we explore additional temporal smoothing methods.

We first explore temporally smoothing the parameters ( � , t, and w) by computing a 
weighted average over a three frame window centered at every frame. We weigh the cur-
rent frame more heavily and use the method of [49] to average the rigid rotation param-
eters. While this approach produces temporally smooth parameters, it generally causes 
the synthetic render to no longer match the captured image. This inaccuracy is demon-
strated in Fig. 14 (top row, denoted as averaging) and is especially apparent around the 
nose (frames 1147 and 1148) and around the lower right cheek (frame 1150).

One could also carry out averaging using an optical flow network. This can be 
accomplished by finding the parameters p2 that minimize the difference in optical flow 

Fig. 14  A comparison of the geometry produced by the various proposed temporal smoothing methods 
overlayed on the captured images. Notice how the techniques involving optical flow information from the 
captured images better track the nose and the contours of the face
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fields between the current frame’s synthetic render and the adjacent frames’ synthetic 
renders, i.e., ‖N(F1,F2) − N(F2,F3)‖2 . See Fig.  14 (second row, designated self flow). 
This aims to minimize the second derivative of the motion of the head in the image 
plane; however, in practice, we found this method to have little effect on temporal noise 

Fig. 15  A comparison of the rigid parameters � and t from a manual process (blue), from the initial expres-
sion estimation (green), and from the hybrid smoothing approach (red)
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while still causing the synthetic render to deviate from the captured image. These inac-
curacies are most noticeable around the right cheek and lips.

We found the most effective approach to temporal refinement to be a two step pro-
cess. First, we use averaging to produce temporally consistent parameter values. Then, 
starting from those values, we use the optical flow approach to make the synthetic ren-
der flow better target that of the plate. See Fig. 14 (bottom row, denoted hybrid). This 
hybrid approach produces temporally consistent results with synthetic renders that still 
match the captured image. Figure 15 shows the rigid parameters before and after using 
this hybrid approach, along with that obtained manually by a matchmove artist for refer-
ence. Assuming the manual rigid alignment is the “ground truth”, Fig. 16 compares how 
far the rigid parameters are from their manually solved for values both before and after 
the hybrid smoothing approach. Figure 17 compares all the proposed smoothing meth-
ods on this same example.

B.1 Expression Reestimation

The expression estimation and temporal smoothing steps can be repeated multiple times 
until convergence to produce more accurate results. To demonstrate the potential of this 
approach, we reestimate the facial expression by solving for the mouth and jaw blend-
shape parameters (a subset of w) while keeping the rigid parameters fixed after temporal 
smoothing. As seen in Fig. 18, the resulting facial expression is generally more accu-
rate than the pre-temporal smoothing result. Furthermore, in the case where temporal 
smoothing dampens the performance, performing expression re-estimation will once 
again capture the desired expression (frame 1159).

Fig. 16  Assuming the manual 
rigid alignment is the “ground 
truth”, we compare the errors for 
rigid parameters for the stereo 
results (orange) and the tem-
porally smoothed stereo results 
(green). Note that the temporal 
smoothing does not increase the 
errors already found in the stereo 
rigid alignment
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Fig. 17  A comparison of the rigid parameters obtained by averaging (blue), self flow (green), plate flow 
(red), and the hybrid smoothing approach (cyan)
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Appendix C Additional Comparisons

C.1 Preselected Points

We present additional qualitative comparisons between our approach of using 3D-FAN 
to generate 2D landmark positions from the output of a differentiable renderer and 
using the projection of preselected barycentrically embedded points on the face model 
2D landmarks detected by 3D-FAN in the captured image in Fig. 19. We compare the 
result of both approaches after the expression estimation step in the pipeline. We note 
that both sets of results can be improved by applying our proposed temporal refinement 
approach. Our approach takes longer to run due to the need to backpropagate through 
both the differentiable renderer and 3D-FAN, but it generally outperforms the approach 
of using the projection of preselected points on the face model as it produces noticeably 
better rigid alignments. On some frames (e.g., 1132 and 1167), the preselected points 
approach produces a more accurate facial expression; however, such accuracy comes 
at the cost of a worse rigid alignment. Both approaches fail similarly on problematic 
frames with a lot of motion blur (i.e., 1116 and 1135).

Fig. 18  A comparison of the result of stereo expression estimation, stereo temporal smoothing, and stereo 
expression re-estimation after temporal smoothing
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C.2 Deep Neural Networks

We also show additional qualitative comparisons between our approach and the monocular 
face reconstruction approaches of 3DDFA [27, 71], VRN [29], and PRNet [21]. To demon-
strate the flexibility of our approach, we show the results of our approach using the Basel 

Fig. 19  A comparison of projecting preselected points on the face model versus differentiably rendering 
the model and using 3D-FAN to automatically detect 2D landmarks to match the 2D landmarks detected by 
3D-FAN on the captured target image
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face model [25] with orthographic projection from a single camera, an actor-specific face 
model with perspective projection from a single calibrated camera, and an actor-specific 
face model with perspective projection from a stereo pair of calibrated cameras with tem-
poral refinement. See Fig. 20.

We take a slightly modified approach to solving for the parameters of the Basel face 
model. Instead of estimating the albedo and spherical harmonics lighting on a neutral pose, 
we use the mean per-vertex color provided by the Basel face model to render the model. 

Fig. 20  A comparison of 3DDFA, VRN, PRNet, our modified approach using orthographic projection with 
the Basel face model, our monocular approach with the actor-specific model, our temporally refined stereo 
approach with the actor-specific model, and the captured image
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We also solve for an additional uniform scale parameter. We take a four-stage approach for 
solving for the translation, rotation, scale, shape, and expression parameters. First, we solve 
for the rigid translation parameters, then we solve for the translation, rotation, and scale 
parameters, then we solve for the translation, rotation, and shape parameter values, and 
finally, we solve for the translation, rotation, and expression parameter values. We note that 
we only solve for the first 10 shape and expression parameters.

As expected, our approach using the calibrated camera(s) and the actor-specific face 
model produces the most accurate rigid alignment and facial expressions; PRnet produces 
an accurate rigid alignment as well. We note that the deep neural network approaches 
produce inaccurate facial expressions. Our modified approach with the Basel face model 
produces a decent rigid alignment; however, the solve tends to expand the neck to open 
the mouth. Furthermore, any of our optimization approaches can be combined with any of 
optimization-based approaches in [72] or integrated into any complete facial capture pipe-
line to produce better results.
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