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Abstract

We present a review of some of the state-of-the-art numerical methods for solving the Stefan problem
and the Poisson and the diffusion equations on irregular domains using (i) the level-set method for
representing the (possibly moving) irregular domain’s boundary, (ii) the ghost-fluid method for imposing
the Dirichlet boundary condition at the irregular domain’s boundary and (iii) a quadtree/octree node-
based adaptive mesh refinement for capturing small length scales while significantly reducing the memory
and CPU footprint. In addition, we highlight common misconceptions and describe how to properly
implement these methods. Numerical experiments illustrate quantitative and qualitative results.

1 Introduction
We are considering three of the main equations in the class of elliptic and parabolic partial differential
equations: the Poisson equation, the diffusion equation and the Stefan problem. The Poisson and the diffusion
equations are two characteristic equations used in a plethora of scientific and engineering applications. They
are important in their own right, for example in predicting the heat distribution in engines or the distribution
of chemical species (see [48] and the references therein); they are also core building blocks in fields as diverse
as fluid dynamics [73, 157, 56], finance (see [17]) and image processing (see e.g. [106, 102] and the references
therein). The Stefan problem is a model often used to describe solidification processes, the method of choice
for growing single crystals with applications in the aerospace industry (see e.g. [33] and the references
therein). It is also used as a component for the study of vaporization processes [156, 35, 44, 145, 153, 146,
131, 132, 133, 134]. In addition, this model is applicable to a wide variety of other applications, including
epitaxial growth [23, 116].

In the large majority of applications, the domains of integration for these equations have irregular shapes
so that no closed-form solutions exist. Numerical methods are thus necessary and face three main challenges.
First, the description of the physical domain must be versatile enough to account for the motion of free
boundaries, which is the case of the Stefan problem. Second, boundary conditions must be imposed at the
boundary of the irregular domain. We are focusing in this review on Dirichlet boundary conditions, i.e.
the solution itself is given at the boundary. The case of imposing Neumann or Robin or jump boundary
conditions is not the focus of this paper and we refer the interested reader to [32, 63, 11, 146, 75, 77, 104, 78,
114, 55, 50, 150, 83] and the references therein. Finally, typical scientific applications exhibit solutions with
different length scales. In the context of electrostatics for example, the electric double layer is an extremely
small region where the potential varies rapidly and must be captured by the numerical solution. From the
numerical point of view, small length scales are related to very fine grids for which uniform grids are too
inefficient to be practical.
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In this paper, we review a successful approach for solving the Poisson and the diffusion equations and
the Stefan problem using (i) a level-set approach to capture the geometry of the physical domain or the
free boundary, (ii) a ghost-fluid method to impose Dirichlet boundary conditions at the irregular domain’s
boundary and (iii) a node-based adaptive mesh refinement framework based on quadtree/octree Cartesian
grids to capture the small length scales of the problem while significantly reducing the CPU and memory
requirements. The methods presented are numerically robust, second-order accurate in the L∞-norm (and
in some case third or fourth-order accurate) and applicable to arbitrary geometries in two and three spatial
dimensions.

2 Equations and Free Boundary Representation

2.1 The Diffusion and the Poisson Equations
Consider a Cartesian computational domain, Ω ∈ Rn, with exterior boundary ∂Ω and a lower dimensional
interface, Γ, that divides the computational domain into disjoint pieces, Ω− and Ω+ (see figure 1). The
diffusion equation on Ω is given by:

∂u/∂t = ∇ · (β∇u) + S, (1)

where u = u(x, t) is the unknown, x = (x, y, z) is the space variable, S(x) is the source term and β(x) is the
diffusion coefficient, i.e. a positive variable bounded from below by a strictly positive constant. Typically, the
values for β are different constants in Ω− and Ω+. On ∂Ω, either Dirichlet or Neumann boundary conditions
are specified. A Dirichlet boundary condition of u(x) = uΓ(x) is imposed on Γ. The initial condition for
u is also given to close the system. The Poisson equation is the steady-state of the diffusion equation and
therefore given by:

∇ · (β∇u) + S = 0. (2)
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Figure 1: Schematic and notations of a typical computational domain.

2.2 The Stefan Problem
In the context of solidification phenomena, the Stefan problem describes the evolution of a scalar field, T
(the temperature), equal to Ts in Ω− and Tl in Ω+, such that: ∂Ts/∂t = ∇ · (Ds∇Ts) in Ω−,

∂Tl/∂t = ∇ · (Dl∇Tl) in Ω+,
(3)
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where the subscripts s and l denote the solid and liquid phases, respectively. In general, the diffusion
constants Ds and Dl are discontinuous across the solidification front Γ. The temperature at the solid-liquid
interface is continuous, which is written as:

Ts = Tl = TΓ on Γ,

where TΓ denotes the local interface temperature. The relation between the relevant physical quantities at
the interface is given by Gibbs-Thompson boundary condition (see e.g. [6, 5]):

TΓ = −εcκ− εvV · n, (4)

where V denotes the interface velocity field, n denotes the normal vector to the interface and κ denotes
the interface’s mean curvature. The parameters εc and εv control the strength of surface tension forces and
molecular kinetics, respectively. Finally, the normal velocity at the interface is given by the jump in the
temperature fluxes across the interface:

V · n = −(Dl∇Tl −Ds∇Ts) on Γ. (5)

2.3 Domain Representation - The Level-Set Method

Figure 2: Level-set representation of a free boundary (blue solid line) in two spatial dimensions, moving
in its normal direction, and subsequent changes in topology that are handled automatically. The level-set
function is depicted in red. (Color online).

The irregular geometries and, in the case of the Stefan problem, the motion of the free boundary are
described by the level-set method of Osher and Sethian [103]. This approach represents a curve in two spatial
dimensions or a surface in three spatial dimensions by the zero-contour of a higher dimensional function, φ,
called the level-set function, which is defined as the signed distance function to Γ:

φ(x) =

 − d for x ∈ Ω−,
+ d for x ∈ Ω+,

0 for x ∈ Γ,

where d is the Euclidian distance to Γ. Under a velocity field V, the interface deforms according to the
level-set equation:

∂φ

∂t
+ V · ∇φ = 0. (6)
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Figure 3: Front-tracking representation (dots) of a free boundary (black solid line) in two spatial dimensions,
moving in its normal direction, and subsequent changes in topology that require surgical procedures and
extra logics. The advantage of front-tracking methods is their accuracy. (Color online).

The main advantage of an implicit representation of a moving front is its ability to naturally handle changes
in topology, as illustrated in figure 2. This is in contrast to explicit methods, e.g. the front-tracking method
of Tryggvason et al. [64, 65, 115, 146, 153] for which changes in topology require extra work (see figure
3). We note, however, that front-tracking methods have the advantage of accuracy (front-tracking preserve
volumes better than level-set methods for the same grid resolution) and we refer the interested reader to
the work of [18] for a front-tracking method that handle changes in topology. Volume of fluid methods also
adopt an implicit formulation using the volume fraction of one phase in each computational cells (see e.g.
[9, 13, 12, 34, 36, 54, 100, 117, 139, 154, 161, 163] and the references therein). These methods have the
advantage of conserving the total volume by construction. They are however more complicated than level-
set methods in three spatial dimensions and it is difficult to compute accurate smooth geometric properties
such as curvatures from the volume fraction alone, although we refer the reader to the interesting work of
Popinet on this issue [111]. Also, we note that phase-field models have been extensively used in the case of
solidification processes [20, 37, 57, 68, 69, 67, 94, 57, 112, 113]. However, these models do not represent the
interface in a sharp fashion, which in turn leads to a degradation of the accuracy where it matters most and
impose sometimes stringent time step restrictions.

The level-set function can also be used to compute the normal to the interface n and the interface’s mean
curvature κ:

n = ∇φ/|∇φ| and κ = ∇ · n.

To keep the values of φ close to those of a signed distance function, i.e. |∇φ| = 1, the reinitialization
equation introduced in Sussman et al. [140]:

∂φ

∂τ
+ S(φo) (|∇φ| − 1) = 0, (7)

is traditionally iterated for a few steps in fictitious time τ . Here S(φo) is a smoothed-out signum function
and φ0 is the value of the level-set function at the beginning of the reinitialization procedure.

3 The Ghost-Fluid Method for the Diffusion and the Poisson Equa-
tions

The Ghost-Fluid method (GFM), introduced in Fedkiw et al. [42] in the case of compressible gas dynamics, is
a numerical technique designed to apply sharp boundary conditions at irregular domains and free boundaries.
The basic idea is to consider two copies of the solution and, by defining ghost values that implicitly capture
jump conditions, avoid numerically differentiating across discontinuities . This methodology has been applied
to a wide range of applications including deflagration in Fedkiw et al. [43], compressible/incompressible fluids
in Caiden et al. [24], flame propagation in Nguyen et al. [97], the Poisson equation with jump conditions
in Liu et al. [78], free surface flows in Enright et al. [40], as well as in computer graphics [96, 39]. It was
developed for the Poisson and the diffusion equations on irregular domains with Dirichlet boundary conditions
and their applications in Gibou et al. [47, 45, 44, 46]. In what follows, we describe the algorithms, point out
common misconceptions and describe how to properly implement those methods. We also note that several
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Figure 4: Definition of the ghost value uGi+1 using a linear extrapolation. First, construct a linear interpolant
ũ(x) = ax+ b of u such that ũ(0) = ui and ũ(θ∆x) = uΓ. Then define uGi+1 = ũ(∆x). (Color online).

authors have proposed both different and similar approaches to these types of problems, following the pioneer
work of Shortley and Weller; see [84, 129, 75, 16, 152, 62, 61, 109, 107, 108, 168] and the references therein.
Finally, we point out that the definition of the ghost nodes does not seek to impose conservative properties at
the discrete level and therefore offer more flexibility is designing numerical schemes. It is important to note
that, while conservation properties are necessary in the design of numerical methods for nonlinear hyperbolic
conservation laws to guarantee the correct speed of propagation (Rankine-Hugoniot jump condition) where
shocks are present, this is not the case for Elliptic and Parabolic equations. Therefore, even though the
equations we seek to solved are based on conservation laws, approximating this condition (as opposed to
enforcing it at the discrete level) is often sufficient and allows much flexibility to design accurate, simple and
efficient schemes. We also refer the interested reader to a conservative Ghost-Fluid method for the study of
detonation waves [98].

The diffusion equation (1) is discretized in time by the Crank-Nicolson scheme1:

un+1 − 1

2
∆t ˜∇ · (β∇u)

n+1

= un +
1

2
∆t ˜∇ · (β∇u)

n

+
1

2
∆t
(
Sn + Sn+1

)
,

where ∆t is the time step and ˜∇ · (β∇u)
n

and ˜∇ · (β∇u)
n+1

are the spatial approximations of ∇ · (β∇u)
at time tn and tn+1, respectively. The discretization of the spatial operator, including the special treat-
ments needed at the interface, is performed in a dimension-by-dimension fashion. Therefore, without loss of
generality, we only describe the discretization for the one-dimensional diffusion equation:

∂u

∂t
=

∂

∂x

(
β
∂u

∂x

)
+ S,

with a Dirichlet boundary condition of u(x) = uΓ(x) on the interface Γ.
The computational domain is discretized into cells of size ∆x, with the grid nodes xi located at the cells’

center. The cell edges are referred to as faces, and the two faces bounding the grid node xi are located at
xi± 1

2
. The numerical solution of the diffusion equation is computed at the grid nodes and is denoted by

ui = u(xi, t
n), where tn = n∆t. Using second-order accurate central difference formulas for discretizing the

1For stiff problems, one may prefer the first-order accurate implicit Euler method.
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spatial operator, the full discretization is written as:

un+1
i − 1

2
∆t

βi+ 1
2
(
un+1
i+1 −u

n+1
i

∆x )− βi− 1
2
(
un+1
i −un+1

i−1

∆x )

∆x
= uni +

1

2
∆t

βi+ 1
2
(
un
i+1−un

i

∆x )− βi− 1
2
(
un
i −un

i−1

∆x )

∆x

+
1

2
∆t(Sni + Sn+1

i ). (8)

In order to avoid differentiating the fluxes across the interface, where the solution presents a kink, a ghost
value is used. Referring to figure 4, let xΓ be an interface point between the grid points xi and xi+1, with
a Dirichlet boundary condition of unΓ at time tn and of un+1

Γ at time tn+1, applied at xΓ. We define the
ghost values

(
uni+1

)G and
(
un+1
i+1

)G
at xi+1 across the interface at time tn and tn+1, respectively, and rewrite

equation (8) as:

un+1
i − 1

2
∆t

βi+ 1
2
(
(un+1

i+1 )
G−un+1

i

∆x )− βi− 1
2
(
un+1
i −un+1

i−1

∆x )

∆x
= uni +

1

2
∆t

βi+ 1
2
(
(un

i+1)
G−un

i

∆x )− βi− 1
2
(
un
i −un

i−1

∆x )

∆x

+
1

2
∆t(Sni + Sn+1

i ). (9)

The ghost values
(
uni+1

)G and
(
un+1
i+1

)G
are defined by first constructing an interpolant ũn(x) of un at time

tn and another interpolant ũn+1(x) of un+1 at time tn+1 on the left of the interface, such that ũn(0) = uni ,
ũn+1(0) = un+1

i , and then defining
(
uni+1

)G
= ũn(∆x) and

(
un+1
i+1

)G
= ũn+1(∆x). Figure 4 illustrates the

definition of the ghost cells in the case of a linear extrapolation. Linear, quadratic and cubic extrapolations
are defined by2:

Linear Extrapolation: Take ũn+1(x) = ax+ b with:

• ũn+1(0) = un+1
i ,

• ũn+1(θ∆x) = un+1
Γ .

Quadratic Extrapolation: Take ũn+1(x) = ax2 + bx+ c with:

• ũn+1(−∆x) = un+1
i−1 ,

• ũn+1(0) = un+1
i ,

• ũn+1(θ∆x) = un+1
Γ .

Cubic Extrapolation: Take ũn+1(x) = ax3 + bx2 + cx+ d with:

• ũn+1(−2∆x) = un+1
i−2 ,

• ũn+1(−∆x) = un+1
i−1 ,

• ũn+1(0) = un+1
i ,

• ũn+1(θ∆x) = un+1
Γ .

In these equations, θ ∈ [0, 1] refers to the cell fraction occupied by the subdomain Ω−. The construction
of ũn is similar, with the solution u and the boundary condition uΓ taken at time tn instead of time tn+1.
Similar constructions define

(
un+1
i

)G
and (uni )

G using values to the right of xi+1. Equation (9) gives a linear
system for un+1. Likewise, the interface location (and therefore θ) is found by first constructing a linear or
higher-order interpolant of the level-set function φ and then finding the zero of the interpolant. Note that
the quadratic extrapolation is equivalent to the Shortley-Weller method [129].

Remarks:

• The approximation of the Poisson equation follows trivially from that of the diffusion equation.
2One may prefer a Newton’s form for constructing the interpolant ũ(x).
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• The interpolation formulas for the construction of the different extrapolations are not well-behaved if θ
is too small. However, in this case, the interface Γ is close to a grid point, say x∗, which in turn asserts
that the solution is close to the known boundary condition uΓ(x∗). Therefore, if the interface is too
close to a grid point x∗, then we simply define the solution at x∗ as u(x∗) = uΓ(x∗). The heuristic we
have used is to do so if θ < ∆x in the case of linear extrapolations; if θ < ∆x2 in the case of quadratic
extrapolations; and if θ < ∆x3 in the case of cubic extrapolations.

• In the case where not enough grid points are available to construct an interpolant, a lower degree
interpolant is built. We refer the reader to the numerical tests sections for a discussion on the influence
of lower extrapolations on the overall accuracy.

• In the case where the interface crosses to the left and right of a grid point, the interface boundary
condition to the left and right are both used in the construction of the interpolant.

• In the case where third- or fourth-order accuracy is desired, the second-order central differencing used
in equations (8) and (9) are replaced by the standard fourth-order accurate central differencing (see
[45]).

3.1 Order of Accuracy and Common Misconceptions
We briefly present the typical accuracy that can be expected for the Poisson and the diffusion equations on
irregular domains depending on the order of extrapolations. We use a conjugate gradient with incomplete
Cholesky in the case where the linear system is symmetric and a BiCGSTAB with an ILU preconditioning
in the case where the linear system is non-symmetric [49, 120]. We then turn our attention to common
misconceptions and pitfalls in implementing this approach.

3.1.1 Typical Results for the Poisson Equation
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(a) Solution profile.

Slope ⇠ �1

Slope ⇠ �2
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(b) Accuracy.

Figure 5: Typical results for the Poisson equations with Dirichlet boundary conditions. The results are for
example 3.1.1. (a) The computed solution inside Ω− (red) is decoupled from the computed solution outside
(blue). (b) Loglog plot of the error in the L∞-norm for constant (black), linear (green), quadratic (blue)
and cubic (red) extrapolations. (Color online).

Consider the Poisson equation (2) on Ω = [−1, 1] × [0, 3] with an exact solution of u = 5 − exp(.5(1 −
t)(x2 + y2 − π2

25 )). The interface is parametrized by:{
x(α) = .6 cos(α)− .3 cos(3α)
y(α) = 1.5 + .7 sin(α)− .07 sin(3α) + .2 sin(7α)

,
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where α ∈ [0, 2π]. The numerical solution is illustrated in figure 5(a) and the accuracy using different
extrapolations is depicted in figure 5(b). The order of accuracy is typically ∼ 1 for constant extrapolations,
∼ 2 for linear extrapolations, ∼ 3 for quadratic extrapolations and ∼ 4 for cubic extrapolations3. The
reduction in accuracy for some resolutions is due to how many grid points are available to construct the
interpolant and thus how the ghost values are defined.

3.1.2 Typical Results for the Diffusion Equation
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(a) Solution profile.
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(b) Accuracy.

Figure 6: Typical results for the diffusion equations with Dirichlet boundary conditions. The results are for
example 3.1.2. (a) The computed solution inside Ω− (red) is decoupled from the computed solution outside
(blue). (b) Loglog plot of the error in the L∞-norm for constant (black), linear (green), quadratic (blue)
and cubic (red) extrapolations. (Color online).

Consider the diffusion equation, equation (1), on Ω = [−1, 1] × [−1, 1] with an exact solution of u =
sin(πx)+sin(πy)+cos(πx)+cos(πy)+x6 +y6. The interface is star shaped, given by the set of points where
φ = r − 0.5 − y5+5x4y−10x2y3

3r5 = 0, and r =
√
x2 + y2. The numerical solution is illustrated in figure 6(a),

and the accuracy using different extrapolations is depicted in figure 6(b). The order of accuracy is typically
∼ 1 for constant extrapolations, ∼ 2 for linear extrapolations, ∼ 3 for quadratic extrapolations and ∼ 4 for
cubic extrapolations.

3.1.3 Nature of Linear Systems and Accuracy on Gradients

In [45], it was shown that defining the ghost point
(
un+1

)G by a linear extrapolation produces a symmetric
linear system and that the linear system is non-symmetric for higher-order extrapolations. Also, the degree
of the interpolation is important for the accuracy of the method. We refer the interested reader to Ng et
al. [95], which concluded that a linear interpolation produces second-order accurate solutions and first-order
accurate gradients, while a quadratic extrapolation produces second-order accurate solutions and second-
order accurate gradients. This was first observed in [85]. We note that the location of the interface must also
be found using a quadratic interpolation of the level-set function in the vicinity of the interface if second-
order accurate gradients are to be calculated. Figure 7 demonstrates that the error of the gradient is largest
close to the interface regardless of the order of interpolation for the interface location and extrapolation for
the ghost values. This will be part of the reasons why adaptive grids where smaller cells are located near
the interface are desirable (see section 5). Finally, the condition number of the linear system is affected by
the choice of definition of the ghost values. Figure 8 depicts the typical trend. In this work we use a PCG
(symmetric case) and a BiCGSTAB (non-symmetric case) solvers.

3We use a time step of ∆t = ∆x3/2 and ∆t = ∆x2 to emulate a third- and a fourth-order scheme in time.
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Figure 7: Typical error for the gradients of the solution in the L∞ norm. The ghost cell values are defined
by linear extrapolation of the solution in the top figures and by quadratic extrapolation of the solution in
the bottom figures. The interface location is found by linear interpolation of φ in the left figures and by
quadratic interpolation of φ in the right figures. Note that the errors are normalized.

3.1.4 Importance of Time Dependent Boundary Conditions

It is important to note that the boundary condition at the interface must be imposed at the appropriate
time. I.e. we set un+1

Γ = uΓ(x, tn+1) when building the linear system and set unΓ = uΓ(x, tn) when evaluating
the right-hand-side of equation (9). Setting the boundary condition as un+1

Γ = uΓ(x, tn) in the linear system
introduces a lagging in time (i.e. a first order perturbation) and thus a drop in the accuracy from second-
order to first-order. We propose here an example and refer the interested reader to [45] for a discussion on
the influence of perturbations in the location of the boundary condition on the accuracy of the method.

Consider an irregular domain, Ω−, described in polar coordinates as:{
x(θ) = 0.02

√
5 + (0.5 + 0.2 sin(5θ)) cos(θ)

y(θ) = 0.02
√

5 + (0.5 + 0.2 sin(5θ)) sin(θ)
,

where θ ∈ [0, 2π], and an exact solution of u = exp(−t+ x+ y) in Ω− and u = 0 in Ω+. The right-hand-side
S in equation (1) is defined accordingly. We solve the diffusion equation to a final time of t = .1, in this case
defining the ghost cell by linear extrapolation. Table 1(a) shows that this treatment produces second-order
accurate solution in the L∞-norm. In contrast, if the boundary condition is imposed as uΓ = uΓ(tn,x), table
1(b) shows that the solution process drops from second-order accuracy to first-order accuracy.
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Figure 8: Condition number versus the grid size for a typical two-dimensional Poisson solver in irregular
domains. The four curves illustrate the impact of the extrapolation used to define the ghost values (first
parameter in the legend’s caption) and the order of the interpolation for finding the interface location (second
parameter). The two (superimposed) curves with the smallest condition numbers are associated with the
linear extrapolation for defining the ghost cells. (Color online).

(a) Correctly imposing the boundary condition at tn+1.

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 0.0001061 – 0.0002057 –
642 4.039×10−5 1.39 7.949×10−5 1.37
1282 8.959×10−6 2.17 1.955×10−5 2.02
2562 2.344×10−6 1.93 4.766×10−6 2.04

(b) Incorrectly imposing the boundary condition at tn.

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 0.01892 – 0.04412 –
642 0.01048 0.852 0.02450 0.848
1282 0.005483 0.934 0.01289 0.926
2562 0.002823 0.958 0.006569 0.973

Table 1: (a) Linear extrapolation definition of the ghost cell producing second-order accuracy in the L∞-
norm. (b) The boundary condition is incorrectly imposed at time tn instead of tn+1 leading to first-order
accuracy in the L∞-norm.

3.1.5 The Dimension-by-Dimension Framework

One of the advantages of the Ghost-Fluid Method is the ability to define the ghost values in a dimension-
by-dimension framework. This process is illustrated in two spatial dimensions in figure 9, where two ghost
values Gx and Gy need to be defined in the x- and y- directions, respectively. A misconception set forth in
[165] is that the values Gx and Gy need to be the same. Imposing this assumption, the authors conclude
that multidimensional extrapolations are necessary, which in turn reduces the computational efficiency of the
method. This assumption, however, is incorrect. The two values Gx and Gy may be different, can be com-
puted independently in a dimension-by-dimension framework and only require one-dimensional extrapolation
procedures.

3.1.6 Influence of High Frequency Modes

In [165], Zhang and Liu pose a proof that incorrectly claims that the methods in Gibou et al. [47] would give
lower order accuracy on certain types of problems and set forth an example problem where [47] should then
obtain lower order accuracy. Although their conclusions are incorrect, they nonetheless point out interesting
facts about the behavior of the ghost-fluid method for parabolic and elliptic problems.

According to [165], the drop in the order of accuracy in the method of Gibou et al. [47, 45] can be
observed by considering numerical examples where the solution contains high frequencies. However, in what
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Figure 9: Procedure to define the ghost cells in two spatial dimensions, for each spatial direction indepen-
dently : First construct a one-dimensional interpolant ũ(ξ) using the boundary condition at the interface and
the value of u at as many other grid nodes as it is necessary to achieve the desired accuracy. Then, define
uGi+1 = ũ(∆ξ), where ∆ξ is the distance between two adjacent grid nodes in the spatial direction considered.
In the schematic above, the ghost value Gx, used in the discretizations in the x-direction, is constructed
using the interface value UΓx and a subset of the values of u at the blue triangles’ locations; whereas the
ghost value Gy, used in the discretizations in the y-direction is, constructed using the interface value UΓy

and a subset of the values of u at the red circles’ locations. (Color online).

follows, we present numerical evidence that the order of accuracy of the methods proposed in [47, 45] are
consistent with the conclusions of the authors in the case of the numerical tests of [165].

Consider an irregular domain defined by a disk centered at the origin with radius r = π/5 and an exact
solution defined as:

u =

{
exp

(
a(1 + ct)(x · x− r2)

)
− 1 x · x > r2

0 x · x ≤ r2 , (10)

with c = .01 and a = .5. The source term S in equation (1) is derived accordingly. The diffusion coefficient β
is taken to be constant and equal to β = 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6. Two types of extrapolations
for defining the ghost values are considered: linear and quadratic. The initial and final times are taken
to be tinitial = 20 and tfinal = 21, respectively. Tables 2 through 4 give the results obtained in the case
of linear extrapolations, while tables 5 through 7 give the results in the case of quadratic extrapolations.
It is clear that the method with linear extrapolation is second-order accurate in the L∞-norm, while the
method with quadratic extrapolation is third-order accurate in the L∞-norm, as stated in [47, 45]. We draw
attention to the fact that accuracy analyses based on a Taylor-type expansion, as in [165], can be misleading.
Indeed, Taylor-type analyses can indicate the minimum order of accuracy for a method, but cannot be used
to conclude the highest achievable order of accuracy, as pointed out in [82, 71, 45].

(a) Linear extrapolation - β = 10−1

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 0.0002446 – 0.0004627 –
642 4.137×10−5 2.56 0.0001310 1.82
1282 1.484×10−5 1.48 3.739×10−5 1.81
2562 3.893×10−6 1.93 9.198×10−6 2.02
5122 6.805×10−7 2.52 2.177×10−6 2.08

(b) Linear extrapolation - β = 10−2

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 0.0001050 – 0.0004459 –
642 1.868×10−5 2.49 0.0001290 1.79
1282 6.016×10−6 1.63 3.692×10−5 1.81
2562 1.556×10−6 1.95 9.133×10−6 2.02
5122 2.741×10−7 2.51 2.172×10−6 2.07

Table 2: Error norms for the example of section 3.1.6.
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(a) Linear extrapolation - β = 10−3

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 4.110×10−5 – 0.0003302 –
642 8.355×10−6 2.30 0.0001186 1.48
1282 2.138×10−6 1.97 3.491×10−5 1.76
2562 5.327×10−7 2.00 8.887×10−6 1.97
5122 9.763×10−8 2.45 2.160×10−6 2.04

(b) Linear extrapolation - β = 10−4

Grid ||u− uh||1 Order ||u− uh||∞ Order
1282 7.84×10−7 – 2.48×10−5 –
2562 1.81×10−7 2.11 7.87×10−6 1.66
5122 3.59×10−8 2.34 2.10×10−6 1.90
10242 9.29×10−9 1.95 5.63×10−7 1.90
20482 2.243×10−9 2.05 1.397×10−7 2.01

Table 3: Error norms for the example of section 3.1.6.

(a) Linear extrapolation - β = 10−5

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 1.01×10−6 – 1.16×10−5 –
642 3.66×10−7 1.47 8.72×10−6 0.420
1282 1.89×10−7 0.956 8.68×10−6 0.006
2562 5.86×10−8 1.69 4.77×10−6 0.86
5122 1.28×10−8 2.19 1.69×10−6 1.49
10242 3.16×10−9 2.02 5.18×10−7 1.71
20482 7.77×10−10 2.02 1.31×10−7 1.98

(b) Linear extrapolation - β = 10−6

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 2.99×10−6 – 2.17×10−5 –
642 1.21×10−6 1.30 1.56×10−5 0.469
1282 5.67×10−7 1.10 1.28×10−5 0.288
2562 2.17×10−7 1.38 5.58×10−6 1.20
5122 8.47×10−8 1.36 1.83×10−6 1.60
10242 2.451×10−8 1.79 5.23×10−7 1.81
20482 5.918×10−9 2.05 1.30×10−7 2.01

Table 4: Error norms for the example of section 3.1.6.

Remarks: Some trends, pointed out in [165], are interesting. What can be observed from tables 2-7 is that
the smaller the diffusion coefficient β, the finer resolution is needed to reach the asymptotic regime. For
example, table 2(a) indicates that the asymptotic regime is reached for grids 2562 and finer in the case where
β = 10−1, while table 7(b) shows that a much finer grid of 20482 is needed in the case of β = 10−6. However,
this trend is natural. A small diffusion coefficient, β, in this problem means that the effect of the source term
S dominates and, in order to see the effects of diffusion, one needs more accuracy, more precision and thus
smaller grid sizes. This is quite similar to turbulence modeling where, to accurately model small viscosity,
one needs incredibly fine grids, which are beyond current computational resources. In fact, researchers in
turbulence do not claim to, or even try to, accurately simulate such a small viscosity. They instead model
it by either adding special tensors or changing the way the convection term (related to the source term S in
the present paper) is treated (see the LES discussion in [158]).

In [165], the authors conclude that a ghost-fluid approach should be avoided for simulating the Navier-
Stokes equations for very small viscosity, because the asymptotic regime requires computationally intractable
fine grids. However, in our view, their conclusions are misleading. First, one should note that even on very
coarse grids, for which the asymptotic regime is not reached at all, the maximum error coming from the
diffusion part is quite small. For example, table 4(b) gives a maximum error on the order of 10−5 on a 64×64
grid in the case of a linear extrapolation, while table 7(b) indicates a maximum error of the order of 10−8

in the case of a quadratic extrapolation. Second, in the case of the Navier-Stokes equations, the numerical
errors induced by the approximations of the momentum term and the treatment of the incompressibility

(a) Quadratic extrapolation - β = 10−1

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 2.233×10−6 – 1.638×10−5 –
642 6.252×10−7 1.84 3.519×10−6 2.22
1282 3.369×10−8 4.21 3.640×10−7 3.27
2562 6.004×10−9 2.49 4.478×10−8 3.02
5122 5.898×10−10 3.35 5.187×10−9 3.11

(b) Quadratic extrapolation - β = 10−2

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 2.030×10−6 – 1.632×10−5 –
642 3.094×10−7 2.71 3.434×10−6 2.25
1282 1.922×10−8 4.01 3.628×10−7 3.24
2562 2.606×10−9 2.88 4.468×10−8 3.02
5122 2.679×10−10 3.28 5.068×10−9 3.14

Table 5: Error norms for the example of section 3.1.6.
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(a) Quadratic extrapolation - β = 10−3

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 1.495×10−6 – 1.427×10−5 –
642 1.663×10−7 3.17 2.734×10−6 2.38
1282 1.328×10−8 3.65 3.503×10−7 2.96
2562 1.154×10−9 3.53 4.405×10−8 2.99
5122 1.300×10−10 3.15 5.622×10−9 2.97

(b) Quadratic extrapolation - β = 10−4

Grid ||u− uh||1 Order ||u− uh||∞ Order
1282 7.612×10−9 – 2.707×10−7 –
2562 6.385×10−10 3.58 4.052×10−8 2.74
5122 6.649×10−11 3.26 8.556×10−9 2.24
10242 5.140×10−12 3.69 7.496×10−10 3.51
20482 5.555×10−13 3.21 9.177×10−11 3.03

Table 6: Error norms for the example of section 3.1.6.

(a) Quadratic extrapolation - β = 10−5

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 4.95×10−8 – 5.22×10−7 –
642 1.01×10−8 2.29 1.99×10−7 1.39
1282 2.30×10−9 2.13 8.76×10−8 1.19
2562 2.98×10−10 2.95 2.43×10−8 1.85
5122 3.18×10−11 3.23 4.89×10−9 2.31
10242 2.98×10−12 3.42 6.63×10−10 2.88
20482 3.22×10−13 3.21 8.46×10−11 2.97

(b) Quadratic extrapolation - β = 10−6

Grid ||u− uh||1 Order ||u− uh||∞ Order
322 5.04×10−9 – 5.36×10−8 –
642 1.06×10−9 2.25 2.16×10−8 1.31
1282 3.10×10−10 1.77 1.38×10−8 0.65
2562 6.43×10−11 2.27 5.79×10−9 1.25
5122 1.07×10−11 2.59 1.81×10−9 1.68
10242 1.51×10−12 2.82 4.65×10−10 1.96
20482 1.98×10−13 2.93 6.27×10−11 2.89

Table 7: Error norms for the example of section 3.1.6.

condition are likely to dwarf the error produced by the viscous term. In addition, a viscosity of the order
of 10−6 corresponds to highly turbulent flows, for which extremely fine grids are required to capture the
small length scale of the problem. In fact, in those regimes, a turbulence model would use coarser grids, as
discussed above, and the error produced by the model itself would dominate the treatment of the viscous
term.

4 A Level-Set Approach to the Stefan Problem
In [46], Gibou et al. presented a methodology based on the level-set method and the ghost-fluid method to
solve the Stefan problem. In [29], Chen et al. had earlier proposed a similar methodology, except that the
treatment of the boundary conditions was different. Kim et al. applied that framework to the simulation
of the solidification processes in [70]. We note that the first level-set approach to solve the Stefan problem
was given in Sethian and Strain [126]. In that work, the diffusion equation was solved using a boundary
integral approach. Other authors have proposed successful approaches to both the Stefan problem and its
extension to the solidification of binary alloys [160, 162, 151, 167, 142, 164, 141, 7, 52]. In the case of the
Stefan problem, the two main ingredients are:

1. Solving the equations in (3) for the temperature field T on both side of the free boundary, while
imposing at the front the Dirichlet boundary condition given by the Gibbs-Tompson condition (4).

2. Capturing the interface motion using the level-set equation (6) with a given velocity field defined by
equation (5).

However, one additionally needs to ensure that valid values of the solutions on each side of the interface are
defined in the appropriate domains. This is done with extrapolation procedures, following Aslam [8] and
described in 4.2. Also, in the case of the design of high-order accurate schemes, it is necessary to guarantee
that time evolution procedures are adequate; this will be described in section 4.3. Finally, reinitialization
schemes are needed in the framework of the level-set method, and care must be taken to guarantee their
proper behavior. We point out common ill-treatments and their fixes in section 4.4.
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4.1 Algorithm to Solve the Stefan Problem
The methodology introduced in section 3 to solve the diffusion equation can be applied independently to
each of the subdomains, Ω− and Ω+, since their respective solutions can be decoupled using the ghost-fluid
approach and the Dirichlet boundary condition (4). Therefore two copies of the temperature, Tns and Tnl ,
are defined on every grid node of the computational domain Ω. They represent the temperature at time step
tn in the solid region, Ω−, and in the liquid region, Ω+, respectively. Then the diffusion equations in (3)
are solved in both Ω− and Ω+ with the new interface location given by the zero-contour of φ at time tn+1.
Dirichlet boundary conditions are imposed on the interface using the Gibbs-Thomson relation in equation
(4). When computing the Gibbs-Thomson relation, we use the value of the normal velocity V ·n at time tn,
but the interface curvature κ is computed at time tn+1 to reflect the updated morphology of the front. On
the boundary of the computational domain, ∂Ω, either Dirichlet or Neumann boundary conditions can be
imposed.

As detailed in [46, 45] and illustrated in figure 10, the interface may sweep some grid nodes from time tn
to tn+1, so the temperature at these nodes needs to be extrapolated to define a valid right-hand-side in the
Crank-Nicholson formula (9). Also, as noted in [1, 2], the interface’s velocity, given by equation (5), is only
valid exactly at the interface. However, in the discretization of the level-set equation, equation (6), a valid
velocity field is required at the nodes in a small band near the interface. Therefore, the velocity field must be
extended to the nodes in a small band on each side of the interface by constant extrapolation in the normal
direction. The rationale for extrapolations in the normal direction is based on the fact that the interface
propagates only in its normal direction4. The extrapolation procedures we use are those of [8], detailed in
section 4.2. The procedure for solving the Stefan problem follows the algorithm given in algorithm 1.

Algorithm 1 : Procedure to Solve the Stefan Problem
1. Initialize φ as a signed distance function,
2. Initialize T 0

s in Ω−, and T 0
l in Ω+ at t0,

3. while (the final time is not reached)
4. tn := tn+1,
5. Quadratically extrapolate, in the normal direction, Tns from Ω− to Ω+ and Tnl from Ω+ to Ω−,
6. Calculate the velocity V at grid nodes and constantly extrapolate it in a band around Γ,
7. Evolve the interface by solving equation (6) for φn+1, and reinitialize using (7),
8. Solve the diffusion equations in Ω− and Ω+ for Tn+1

s and Tn+1
l , using the

Gibbs-Thomson relation (4) as the Dirichlet boundary condition on Γ,
end while

4.2 High-Order Extrapolation - Aslam’s Technique
As mentioned in section 4.1, it is necessary to extrapolate scalar quantities across an interface in the normal
direction. In the case of defining the velocity field in a band around the interface, a constant extrapolation
procedure is sufficient. However, in the case of defining a valid right-hand-side for equation (9), high-order
extrapolations are necessary. Such high-order extrapolations in the normal direction are performed in a series
of steps, as proposed in Aslam [8]. For example, suppose that one needs to generate a cubic extrapolation
of a scalar quantity Q from the region where φ ≤ 0 to the region where φ > 0. The procedure is to first
compute Qnnn = ∇ (∇ (∇u · n) · n) · n in the region φ ≤ 0 and then extrapolate it across the interface in a
constant fashion by solving the following partial differential equation:

∂Qnnn
∂τ

+H(φ+ offset)∇Qnnn · n = 0,

where H is the Heaviside function and offset accounts for the fact that Qnnn is not numerically well-defined
in the region where φ ≥ offset. Typically, in the case where Qnnn is computed by central differencing, we
take offset = 2

√
∆x2 + ∆y2 .

4The tangential component of a velocity field changes a curve’s parameterization (if any), not its location.
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Figure 10: Interface at time tn (red solid line) and tn+1 (red dashed line). The black solid disks represent
grid nodes that are swept over by the interface between the two consecutive time steps and where valid
values of Tn are needed in order to evaluate the right-hand-side in equation (9). Those values are obtained
by extrapolating Tn from φn ≤ 0 to φn > 0 in the direction normal to the interface (black dotted lines).
(Color online).

The value of Q across the interface is then found by solving the following three partial differential
equations. First solve

∂Qnn
∂τ

+H(φ) (∇Qnn −Qnnn) = 0,

defining Qnn in such a way that its normal derivative is equal to Qnnn. Then solve

∂Qn
∂τ

+H(φ) (∇Qn −Qnn) = 0,

defining Qn in such a way that its normal derivative is equal to Qnn. Finally solve

∂Q

∂τ
+H(φ) (∇Q−Qn) = 0,

defining Q in such a way that its normal derivative is equal to Qn. These equations are solved using a
fifth-order accurate WENO scheme [59, 60, 79] in space and a third-order accurate TVD scheme [130] in
fictitious time τ . This step is computationally expensive and it is therefore important to localize this process
as much as possible: We use a few iterations in fictitious time (typically 15), since one usually only seeks to
extrapolate the values of Q in a narrow band of a few grid cells around the interface. The operations can
also be performed in a small band near the interface to improve the efficiency of this step. In addition, one
may use a ‘local’ approach to store and compute the desired quantities. We refer the interested reader to
the work of Brun et al. [21], who have introduce a truly local level-set method using hash-table constructs.
In particular, their approach allows for the storage of only a band of grid points around the free boundary,
while accessing the data with a O(1) complexity. Their method thus combine efficiency in CPU as well
as in memory requirement for local level-set methods. We will also discuss an efficient approach based on
Quadtree/Octree data structure in section 5. Figure 11 illustrates the constant, linear, quadratic and cubic
extrapolation results obtained with this technique.

Remark: In the illustrative example above, we presented a third-order accurate extrapolation. We note
that a third-degree extrapolation will be needed only in the case where an overall fourth-order solution is
computed. Therefore, since Q is fourth-order accurate in that case, its third derivative is convergent.

4.3 Time Discretization
In [45], Gibou and Fedkiw pointed out that special care is needed when defining the interface’s normal
velocity and evolving the level-set equation in time. They considered the Frank-Sphere solution in one
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(a) Exact extrapolation.

(b) Constant. (c) Linear. (d) Quadratic. (e) Cubic.

Figure 11: Extrapolation results using the methodology of Aslam [8] with different degree of extrapolations.
The red lines represent the iso-contour of the solution, which is defined analytically inside the circular domain
(blue line) and extrapolated outside. (Color online).

spatial dimension on a domain Ω = [−1, 1] with Dirichlet boundary conditions at the domain boundaries.
The Frank sphere solution in one spatial dimension describes a slab of radius R(t) = S0

√
t, for which the

exact solution takes the form:

T =

{
0 s ≤ S0,

T∞
(

1− F (s)
F (S0)

)
s > S0,

where s = |x|/
√
t. In one spatial dimension F (s) = erfc(s/2), with erfc(z) = 2

∫∞
z
e−t

2

dt/
√
π.

Choosing the initial time to be tinitial = 1 and T∞ = −.5, the initial radius is defined through the
definition of the normal velocity, Vn = −D [∇T ]|Γ · n, as S0 ≈ .86. The initial interface is defined using
φ = |x| − S0 and the solution is computed until tfinal = 1.5. The Crank-Nicholson scheme in time is used
with a time step restriction of 4t ≈ 4x3/2 to emulate a third-order accurate scheme in time5. Also, a cubic
extrapolation is used to define the ghost values. Howevever, this method produces results that are only
second-order accurate, as shown in figure 12(a).

This lower accuracy originates from the lack of consistency in the definition of Vn+1
n . For example to

approximate the one-dimensional equation:

dφ

dt
= Vn(φ)|∇φ|,

with the Crank-Nicholson scheme, evolving φ from time tn to time tn+1, the following three steps are
performed:

1. Use Vn
n(φn) to evolve φn to φn+1

temp with an Euler step.

2. Use Vn+1
n (φn+1

temp) to evolve φn+1
temp to φn+2 with an Euler step.

3. Define φn+1 = (φn + φn+2)/2.
5In practice a third-order accurate scheme in time should be chosen.
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In the case of the Stefan problem, the normal velocity at time tn+1 needs to satisfy the relation Vn+1
n =

Vn+1
n (φn+1). Therefore the Vn+1

n from step 2 above needs to be consistent with the φn+1 computed in step
3, which may not be the case. To solve this problem steps 2 and 3 are iterated until the normal velocity at
time tn+1 satisfies the relation Vn+1

n = Vn+1
n (φn+1) = Vn

((
φn + φn+2

)
/2
)
to some tolerance. In practice,

the tolerance is taken to be 10−8, and typically 3 or 4 iterations are needed. Figure 12(b) demonstrates that
such a time discretization produces a third-order accurate solution.
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(a) Naive time evolution.
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(b) Corrected time evolution.

Figure 12: Error analysis in the L∞-norm for the one-dimensional Frank sphere solution of section 4.3. The
symbols represent the errors of the numerical solution on a log-log scale, and the solid lines depict the least
square fit with slope -2.18 (a) and -3.02 (b).

4.4 Level-Set Evolution and Reinitialization
The level-set advection equation (6) and the reinitialization equation (7) are discretized with a HJ-WENO
scheme in space [59, 60, 79] and a TVD-RK3 in time [130]. Gibou and Fedkiw noted in [45] that the solution
of the reinitialization equation is only second-order accurate in the L∞-norm, despite the fact that the
numerical approximations used are fifth-order accurate in space. Russo and Smereka also pointed out that
the original interface location is not preserved during the course of solving the reinitialization equation. They
then corrected this anomaly by imposing explicitly in the numerical method the correct initial location of the
rarefaction wave solution [118]. Later, Du Chene et al. extended this method to fourth-order accuracy in the
L∞-norm and showed that curvature computations are second-order accurate in the L∞-norm [30]. Figure
13 illustrates the difference in the computation of the interface’s mean curvature between the traditional
HJ-WENO scheme of [59] and the modified HJ-WENO scheme of [30]. Min and Gibou also used the idea
of Russo and Smereka with slight modifications in the context of adaptive mesh refinement [90], and Min
pointed out that it is advantageous in terms of speed and memory to replace the traditional Runge-Kutta
scheme in time with a Gauss-Seidel iteration of the forward Euler scheme [88]. Finally, we mention that
other techniques can be used to reinitialize φ as a distance function [125, 124, 149, 166, 148, 31, 147, 53],
each with their pros and cons. We refer the interested readers to the book by Osher and Fedkiw [101] as
well to the book by Sethian [127] for more details on the level-set method.

4.5 Accuracy of the Stefan Problem
Consider the Stefan problem in a domain [−1, 1]× [−1, 1] with Dirichlet boundary conditions at the domain’s
boundary. In two spatial dimensions, the Frank sphere solution describes a disk of radius R(t) = S0

√
t

parameterized by S0. The exact solution takes the form:

T =

{
0 s ≤ S0,

T∞
(

1− F (s)
F (S0)

)
s > S0,
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(a) Standard HJ-WENO in 2D [59]. (b) Modified HJ-WENO in 2D [30].

(c) Standard HJ-WENO in 3D [59]. (d) Modified HJ-WENO in 3D [30].

Figure 13: Comparison of the isocontour of the mean curvature for circular (2D) and spherical (3D) interfaces
using the HJ-WENO scheme from Jiang and Peng [59] and the modified HJ-WENO scheme of Du Chéné et
al. [30]. (Color online).

where s = |x|/
√
t, and with T∞ and S0 related by the jump condition Vn = −D [∇T ]|Γ · n. In two spatial

dimensions F (s) = E1(s2/4), with E1(z) =
∫∞
z

(e−t/t) dt. We choose the initial time to be tinitial = 1 and
the initial radius to be S0 = .5, hence defining T∞ ≈ −.15. Figure 14(a) depicts snapshots of the interface
evolution and figure 14 (b) presents the accuracy results for the first-order accurate and the third-order
accurate schemes of [47] and [45], respectively.

Qualitative Behavior: In [46], Gibou et al. described the effects of surface tension, anisotropy, diffusion
parameters and compared non-trivial crystal growth to solvability theory. For the sake of presenting similar
results once only, we will show the typical results in the case of adaptive grids in section 8, noting that the
results on adaptive grids are identical to those on uniform grids, with an obvious gain in efficiency.

5 Adaptive Mesh Refinement - Node-Based Approach on Quadtrees/Octrees

5.1 Introduction
The problems considered so far were discretized on uniform grids. Elliptic and parabolic problems produce
solutions that are smooth except near boundaries, where a combination of Dirichlet boundary conditions and
diffusion coefficients may introduce jumps in the solution gradients (and sometimes the solution itself). We
also showed in section 3.1.3 that the accuracy of the numerical solution may deteriorates near the irregular
domain’s boundary. In addition, in the case where the solution varies rapidly in narrow regions, it is very
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(a) Evolving front from t = 1s to t = 2.89s.
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(b) Accuracy in the L∞-norm.

Figure 14: Two-dimensional Frank sphere solution of section 4.5. (a) Interface evolution at different times
and (b) accuracy in the L∞-norm for the method of [47] and [45] versus the number of grid points in a
log-log scale. The open symbols are the numerical errors and the solid lines are the least-square fits with
slope -0.80 for the method of [47] and -3.07 for the method of [45], respectively.

desirable to refine the grid in that region only while keeping a coarser grid structure in the parts of the domain
where the solution is known to be smooth. Finally, in the large majority of applications modeling diffusion
dominated phenomena, the region where the solution varies rapidly is only located near the boundary of the
irregular domain. For these reasons, it is desirable to design adaptive meshing strategies that enable the
ability to refine the grid near the interface while coarsening the grid away from it.

Several strategies for solving partial differential equations on adaptive meshes have been introduced in
the past several decades. Unstructured meshes used in the finite element method are extremely successful
in structural mechanics where deformations are small. However, in the case of free boundary problems, the
high cost of regularly reconstructing a boundary fitted mesh is computationally inefficient. Nevertheless,
authors have successfully analyzed Stefan-type problems for simulating dendritic growth; see e.g [52, 167]
and the references therein.

In the case of Cartesian grids, the first work to consider adaptive mesh refinement was that of Berger and
Oliger [15]. In this work, a coarse uniform grid discretizes the computational domain and blocks of uniform
grids are then recursively added as needed. Numerical methods for a large class of partial differential
equations have been introduced using this framework; see e.g. [14, 138, 85] and the references therein.
More recently, quadtree and octree data structures have been preferred [3], since they allow the grid to
be continuously refined without being bound by blocks of uniform grids. In the case where the equations
considered are those of fluid dynamics, for which finite volume approaches are the state-of-the-art, a cell-
centered approach is preferred. This is due mainly to the fact that the numerical approximations of the
gradient and the divergence operators conserve their analytical ‘minus transpose’ property, which in turn
guarantees stability properties. Several works have used this cell-centered approach for the simulation of
fluids; see e.g. [110, 81, 80] and the references therein. We note that block structured AMR solvers, aided
by efficient multigrid solvers (see [32] and the references therein), have advantages in that the entire grid
structure may be stored efficiently, which may speed up the execution time. However, they do not have
the flexibility of Octrees and require more grid points and therefore computational time. We also refer the
interesting work of [22] that discusses high performance computing using octrees and the work of [144] on
an efficient multigrid method on Octree grids.
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Level=0

Level=1

Level=2

Level=3

Level=4

Figure 15: Discretization of a two-dimensional domain (left) and its quadtree representation (right). The
entire domain corresponds to the root of the tree (level 0). Each cell can then be recursively subdivided
further into four children. In this example, the tree is non-graded, since the difference of level between some
adjacent cells exceeds one. (Color online).

Finite difference approaches do not have the ‘minus transpose’ properties on adaptive meshes, and special
projection schemes must be used to ensure numerical stability [89]. However, in the case of elliptic and
parabolic problems, finite difference schemes can be highly efficient. In particular, Min, Gibou and co-
workers introduced a simple framework for discretizing standard operators on quadtree/octree [91, 89, 27].
In this framework, the data is sampled at the cells’ vertices, and finite difference schemes can be developed
to obtain second-order accurate solution in the L∞-norm while considering arbitrary quadtree/octree grids.
In addition, this approach has the advantage of producing second-order accurate gradients in the L∞-norm.
This property is especially beneficial in the case of diffusion-dominated phenomena like the Stefan problem,
since the solution’s gradients eventually determine the accuracy of the method (through the definition of the
interface velocity (5)).

5.2 Spatial Discretization and Refinement Criterion
Quadtrees used in two spatial dimensions and octrees used in three spatial dimensions are standard data
structures described in detail in Samet [121, 122]; herein, we present only the basics. Referring to figure
15, a single quadtree cell covers the entire two-dimensional domain and is associated to the root of the
tree. Subsequently, cells are recursively split into four children until the desired size of the smallest cells is
achieved. The process is identical in three spatial dimensions, except that cells are split into eight children.
By definition, the level of the root cell is zero and is incremented by one for each new generation of children.
Finally, a tree is said to be non-graded if the size difference between adjacent cells is not constrained; this
impacts the ease of mesh generation and, to some extent, the computational efficiency [93, 155].

A meshing procedure that seeks to place the smallest cells near the boundary of the irregular domain and
to coarsen the grid away from it is straightforward in cases where the domain is described implicitly. In [135],
Strain proposed a criteria based on the Whitney decomposition. For a general function φ : Rn → R with
Lipschitz constant Lip(φ), the Whitney decomposition was later extended by Min in [87] to the following.
Starting from the root cell, split any cell C for which:

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C), (11)

where diag-size(C) refers to the length of the diagonal of the current cell C and v refers to a vertex (node)
of the current cell. In the case of a free boundary problem, the grid Gn at time tn for which the smallest
cells are on the interface Γn, must be adapted to a new grid Gn+1 at time tn+1 to follow the evolution
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of the interface, i.e. one must impose that the smallest cells are on Γn+1. Algorithm 2 gives the details
of how adaptive grids are generated. In this algorithm, φ̃n+1 : Rn → R represents the level-set function
φn+1 that has been reinitialized as a signed distance function. This process is simple and extremely efficient
computationally since grid cells far away from the interface are few, resembling a local level-set approach.
Note also that the solution of the reinitialization equation does not require that the pseudo time step τ used
in equation (7) be taken uniformly for all cells, since only the steady-state solution matters. In turn, the time
step taken for cells far away from the interface is large and compensate for the larger distance the rarefaction
solution to the Eikonal equation needs to propagate to. In fact, [21] showed that the level-set method on
Quadtree grids of [90] is on a par with a truly local level-set approach using hash-table structures.
Remarks:

• In the case where the refinement is performed near the interface in a quadtree/octree framework, the
number of grid points is proportional to the surface of the irregular domain rather than its volume.
Since, for elliptic problems, the main factor determining the execution time and memory consumption
is the size of the resulting linear system, these discretizations are highly efficient.

• In the case where φ is a signed distance function, Lip(φ) = 1. In practice, Lip(φ) in equation (11) plays
the role of a parameter controlling the degree of “gradedness” of the grid. We have taken Lip(φ) ≈ 1.1
to generate grids that are close to being graded and Lip(φ) ≈ 1/2 to generate highly non-graded grids.

Algorithm 2 : Grid Generation

Input : Gn and φ̃n+1 : Rd → R
1. Gn+1 = Gn

2. C = the root cell of Gn+1

3. if the Lipschitz condition for φ̃n+1 is satisfied at C
4. if C is a leaf cell
5. split C
6. end if
7. for each child cell C ′ of C
8. go to 3 with C = C ′

9. end for
10. else
11. merge C
12. end if
Output : Gn+1

5.3 Finite Difference Discretizations
In the case of nonregular Cartesian grids, the main difficulty is to derive discretizations at T-junction nodes,
i.e. nodes for which there is a missing neighboring node in one of the Cartesian directions. For example,
figure 16(b) depicts a T-junction node, v0, with three neighboring nodes v1, v2 and v3 aligned in three
Cartesian directions and one ghost neighboring node, vg, replacing the missing grid node in the remaining
Cartesian direction. The value of the node-sampled function u : {vi} → R at the ghost node vg could, for
example, be defined by linear interpolation:

uGg =
u3s4 + u4s3

s3 + s4
. (12)

However, instead of using this second-order accurate interpolation, one can instead use the following third-
order accurate interpolation. First, note that a simple Taylor expansion demonstrates that the interpolation
error in equation (12) is given by:

uGg =
u3s4 + u4s3

s3 + s4
= u(vg) +

s3s4

2
uyy(v0) +O(4xs)3, (13)
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where 4xs is the size of the smallest grid cell with vertex v0. The term uyy(v0) can be approximated using
the standard central differencing discretization:

2

s1 + s2

(
u1 − u0

s1
+
u2 − u0

s2

)
,

and used in equation (13) to define a third-order interpolation for uGg :

uGg =
u3s4 + u4s3

s3 + s4
− s3s4

s1 + s2

(
u1 − u0

s1
+
u2 − u0

s2

)
. (14)

Similar techniques can be used to define third-order accurate ghost values in three spatial dimensions; we
refer the interested reader to [90] for the formulas. We also point out that such definitions of ghost values
only use the node values of the cells adjacent to v0, which is beneficial since, accessing cells not immediately
adjacent to the current cell is more difficult and could increase CPU and/or memory requirements.

(b) T-junction.(a) Locally uniform grid near �.

�

�

Figure 16: Local grid configuration near a node v0. The schematic on the right describes a T-junction where
a node is missing in the x-direction. In contrast, the grid near the interface Γ is locally uniform (left).

The third-order interpolations defined above allow us to treat T-junction nodes in a same fashion as
a regular node, up to third-order accuracy. Here, we refer to a regular node as a node for which all the
neighboring nodes in the Cartesian directions exist. Therefore, we can define finite difference formulas for
the first- and second-order derivatives at every node using standard formulas in a dimension-by-dimension
framework. For example, referring to figure 17, we use the central difference formulas for ux and uxx:

D0
xu0 =

u2 − u0

s2
· s1

s1 + s2
+
u0 − u1

s1
· s2

s1 + s2
, (15)

D0
xxu0 =

u2 − u0

s2
· 2

s1 + s2
− u0 − u1

s1
· 2

s1 + s2
, (16)

the forward and backward first-order accurate approximations of the first-order derivatives:

D+
x u0 =

u2 − u0

s2
,

D−x u0 =
u0 − u1

s1
,

(17)

and the second-order accurate approximations of the first-order derivatives:

D+
x u0 =

u2 − u0

s2
− s2

2
minmod

(
D0
xxu0, D

0
xxu2

)
,

D−x u0 =
u0 − u1

s1
+
s1

2
minmod

(
D0
xxu0, D

0
xxu1

)
,

(18)
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Figure 17: A one-dimensional adaptive grid.

where the minmod slope limiter [130, 79], defined as:

minmod(x, y) =

{
x if |x| > |y|,
y otherwise,

is used to avoid differencing across regions where gradients are large (i.e. near kinks). Similarly, approxima-
tions for first-order and second-order derivatives are obtained in the y- and z- directions.

5.4 Interpolation Procedures
Interpolation procedures are necessary to define data anywhere in a cell, for example, in order to use semi-
Lagrangian methods (see section 7.1) or to interpolate a velocity field defined on uniform grids onto an
adaptive level-set. In [136], Strain pointed out that piecewise bilinear (resp. trilinear) interpolations are
natural choices in quadtree (resp. octree) data structures, since they involve data sampled at the cell’s
vertices only. However, these interpolations lead to low-order accurate schemes and induce a large amount
of numerical dissipation, which in turn leads to a loss of mass in the level-set evolution.

In [90], Min and Gibou proposed the following quadratic interpolation scheme that automatically avoids
nearby discontinuities in their constructions. Considering a cell C with dimensions [0, 1]2, the interpolated
value of a scalar function u at (x, y) is:

u(x, y) = u(0, 0)(1− x)(1− y)

+ u(0, 1)(1− x)( y)

+ u(1, 0)( x)(1− y)

+ u(1, 1)( x)( y) − uxx
x(1− x)

2
− uyy

y(1− y)

2
,

(19)

where the second-order derivatives uxx and uyy are defined as:

uxx = minmodv∈vertices(C)(D
0
xxu(v)) and uyy = minmodv∈vertices(C)(D

0
yyu(v)).

5.5 Computing Second-Order Accurate Gradients
Calculating gradients with accuracy can be of significant importance for applications in which the flux at
the interface defines the interface’s velocity, for example, in the case of the Stefan problem. When this is the
case, it is a strong advantage for a numerical method to produce second-order accurate gradients, which is
a distinguishing feature of the method of Chen et al. [27]. In two spatial dimension, the components of the
gradient are computed as:

ux =
ug − u0

sg
· s5

sg + s5
+
u0 − u5

s5
· sg
sg + s5

− s3s4s5

2sg(s5 + sg)

(
u1 − u0

s1
+
u2 − u0

s2

)
· 2

s2 + s1
, (20)

uy =
u1 − u0

s1
· s2

s2 + s1
+
u0 − u2

s2
· s1

s2 + s1
. (21)

For nodes next to the interface, interface nodes (vx and vy in figure 16(a)) are used in equations (20)
and (21) instead of neighboring nodes that are outside the domain. Similar equations are derived in the
three-dimensional case, and we refer the interested reader to [26] for the exact formulas.
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5.6 Treatment of Dirichlet Boundary Conditions on Irregular Domains
In the case of adaptive grids, it is not straightforward to obtain supra-convergence if the interface cuts the
grid in a T-junction cell. Fortunately, as mentioned in section 5.1, a great many problems require that the
finest mesh be located around the domain’s boundary. As a consequence, one can require that the smallest
cells be located near the interface and, at an insignificant computational cost, that a narrow band of uniform
cells be located near the irregular domain’s boundary. This refinement strategy allows one to readily apply
the techniques presented in section 3 to impose Dirichlet boundary conditions at irregular domains, because
the grid is locally uniform, as illustrated in figure 16(a).

6 Solving the Poisson and the Diffusion Equations on Adaptive
Grids

The discretization of the Poisson and the diffusion equations on adaptive grids follows the strategy outlined
in the case of uniform grids. A Crank-Nicholson scheme is used to discretize the time derivative in the case of
the diffusion equation, and central difference formulas (16) are used to approximate the spatial derivatives.
This leads to a linear system that can be inverted to obtained the desired solution. At nodes neighboring
the interface, Dirichlet boundary conditions are imposed as described in section 5.6. As noted in [27], the
linear system is non-symmetric, but still leads to an M -matrix, so there exists a unique solution that can
be computed with fast iterative solvers [119]. We also note that multigrid methods have been developed
that are significantly more efficient developed on quadtree/octree grids, see e.g. [123, 144]. In sections 6.1
and 6.2, we give an example of the typical results for the Poisson and the heat equations that are obtained
with this approach. The grid is represented by its minimum and maximum resolution, which we refer to as
(MinRes, MaxRes).

6.1 Typical Results for the Poisson Equation
Consider the Poisson equation ∇·(β∇u) = f on Ω = [−1, 1]×[−1, 1] with an exact solution of u = exy, where
β = x2 + y2. The interface is star-shaped, given by the set of points where φ = r− 0.5− y5+5x4y−10x2y3

3r5 = 0,
and r =

√
x2 + y2. A non-graded Cartesian grid with (MinRes, MaxRes) = (8, 128), as well as the interface,

is illustrated in figure 18(a). The numerical solution on this grid is plotted in figure 18(b). The numerical
accuracy for the solution and its gradients are given in table 8 and table 9, respectively, demonstrating
second-order accuracy in the L∞-norm for both the solution and its gradients.

(MinRes, MaxRes) L∞ error order L1 error order
(8, 128) 5.897× 10−4 — 6.999× 10−5 —
(16, 256) 1.466× 10−4 2.008 1.600× 10−5 2.129
(32, 512) 3.468× 10−5 2.080 3.837× 10−6 2.060
(64, 1024) 8.278× 10−6 2.067 9.393× 10−7 2.030

Table 8: Accuracy results for the solution, u, in example 6.1.

(MinRes, MaxRes) L∞ error order L1 error order
(8, 128) 1.683× 10−2 — 2.500× 10−3 —
(16, 256) 4.237× 10−3 1.990 6.394× 10−4 1.967
(32, 512) 1.029× 10−3 2.041 1.613× 10−4 1.987
(64, 1024) 3.356× 10−4 1.617 4.054× 10−5 1.992

Table 9: Accuracy results for the solution’s gradients, ∇u, in example 6.1.
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(a) Quadtree Adaptive Mesh.
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(b) Numerical (dots) and Exact Solutions (mesh plot).

Figure 18: Results for example 6.1.

6.2 Typical Results for the Diffusion Equation

Consider ut = ∇·(β∇u) on Ω = [−2, 2]× [−2, 2] with an exact solution of u = e−2π2βt cos(πx) sin(πy), where
β = 0.2. The interface is described by the level-set function φ = 16y4 − x4 − 32y2 + 9x2. The numerical
solution at t = 0.25 on a grid with (MinRes, MaxRes) = (8, 64) is plotted in figure 19(b), while figure 19(a)
depicts the grid used. The numerical accuracy for the solution and its gradients are given in table 10 and
table 11, respectively. As it is the case for the Poisson equation, both the solution and its gradients are
second-order accurate in the L∞-norm.

(MinRes, MaxRes) L∞ error order L1 error order
(8, 64) 1.741× 10−2 — 3.872× 10−3 —

(16, 128) 4.111× 10−3 2.083 8.922× 10−4 2.118
(32, 256) 1.011× 10−3 2.024 2.158× 10−4 2.048
(64, 512) 2.519× 10−4 2.005 5.304× 10−5 2.024

Table 10: Accuracy results for the solution u in example 6.2.

(MinRes, MaxRes) L∞ error order L1 error order
(8, 64) 1.155× 10−1 — 4.272× 10−2 —

(16, 128) 3.102× 10−2 1.896 1.073× 10−2 1.994
(32, 256) 8.436× 10−3 1.878 2.671× 10−3 2.006
(64, 512) 2.283× 10−3 1.886 6.670× 10−4 2.002

Table 11: Accuracy results for the solution’s gradients ∇u in example 6.2.

7 The Level-Set Technology on Adaptive Grids
In the case of the Stefan problem, as in any free boundary problems, it is necessary to capture the interface
motion. To do so, we use the level-set method. On quadtree/octree grids, it is straightforward to discretize
the equations related to the level-set method using the discretizations of the first- and second-order derivatives
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(a) Quadtree Adaptive Mesh.
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Figure 19: Results for example 6.2.

presented in section 5.3. For example, the geometrical quantities, namely the normals to the interface and
the interface curvatures, can be easily discretized using the central differencing formulas, equations (15) and
(16). The discretizations of the main level-set equations, i.e. equations (6) and (7), are given next.

7.1 Discretization of the Level-Set Equation
If the velocity field is externally generated6, as for the Stefan problem, the level-set equation (6) is linear
and semi-Lagrangian schemes can be used. The advantage of these schemes is that they are unconditionally
stable and thus avoid the standard CFL condition of ∆t ≈ ∆xs, where ∆xs is the size of the smallest cell in
the computational domain.

In [90], Min and Gibou solved the level-set equation using a second-order accurate semi-Lagrangian
scheme. Semi-Lagrangian methods are based on the fact that solutions to hyperbolic problems are constant
along characteristic curves; therefore, for any grid point xn+1, φn+1(xn+1) = φn(xd), where xd is the
departure point from which the characteristic curve carries the information to xn+1. Min and Gibou used
the second-order accurate mid-point method for locating this departure point, as in [159]:

x̂ = xn+1 − ∆t

2
·Vn(xn+1),

xd = xn+1 −∆t ·Vn+ 1
2 (x̂).

The velocity field Vn+ 1
2 at the mid-time step, tn+ 1

2 , is defined linearly from the previous velocity fields
as Vn+ 1

2 = 3
2V

n − 1
2V

n−1. Finally, quantities at the locations xd and x̂ are approximated using the
non-oscillatory interpolation procedure given in equation (19).

7.2 Discretization of the Reinitialization Equation
In the case of the reinitialization equation (7), the Hamiltonian is a function of φ rendering the equation
nonlinear in φ. In this case, equation (7) cannot be solved with semi-Lagrangian schemes; rather, we use
a Godunov scheme to capture nonlinear phenomena. Specifically, the semi-discrete discretization is written
as:

dφ

d τ
+ sgn(φ0)[HG(D+

x φ,D
−
x φ,D

+
y φ,D

−
y φ)− 1] = 0, (22)

6The definition of the velocity does not depend on φ.
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where HG is the Godunov Hamiltonian, defined as:

HG(a, b, c, d) =

{√
max(|a+|2, |b−|2) + max(|c+|2, |d−|2) if sgn(φ0) ≤ 0,√
max(|a−|2, |b+|2) + max(|c−|2, |d+|2) if sgn(φ0) > 0,

with a+ = max(a, 0) and a− = min(a, 0). It is therefore sufficient to approximate the one-sided derivatives
D±x φ and D±y φ. On the node-based quadtree/octree framework, these are approximated using second-order
accurate, one-sided finite difference formulas of equation (18). The semi-discrete equation (22) is discretized
in time with the Total Variation Diminishing second-order Runge-Kutta (TVD-RK2) scheme of Shu and
Osher [130]. I.e. define φ̃n+1 and φ̃n+2 with two consecutive Euler’s steps:

φ̃n+1 − φn
∆τ

+ sgn(φ0)[HG(D+
x φ

n, D−x φ
n, D+

y φ
n, D−y φ

n)− 1] = 0,

φ̃n+2 − φ̃n+1

∆τ
+ sgn(φ0)[HG(D+

x φ̃
n+1, D−x φ̃

n+1, D+
y φ̃

n+1, D−y φ̃
n+1)− 1] = 0,

and then define φn+1 by averaging: φn+1 = (φn + φ̃n+2)/2.
Remark: As mentioned in section 4.4, the reinitialization must transform an arbitrary level-set function
into a signed distance function while preserving the original interface’s location. In the case of adaptive
grids, this is enforced following the idea of Russo and Smereka [118] and its modifications from Min and
Gibou [90].

7.3 Improvement on Mass Conservation
A well-known criticism of the level-set method is its inherent loss of mass. The source of the loss of mass is the
lack of accuracy and the numerical dissipation of various approximations in solving equation (6). Successful
approaches to combat the loss of mass involved hybridizing the level-set method with other methods that
are known to be more accurate in terms of mass conservation [38, 139]. For example, figure 20(a) depicts
the evolution of the level-set using the fifth-order HJ-WENO of [59], while figure 20(b) depicts the same
evolution using the particle-level-set of [38]. In this example, the so-called Enright’s test, the level-set is
deformed according to the incompressible velocity field introduced in [74], before being rewound back to its
initial position. Specifically, the velocity field U = (u, v, w) is given by:

u = 2 sin2(πx) sin(2πy) sin(2πz),

v = − sin(2πx) sin2(πy) sin(2πz),

w = − sin(2πx) sin(2πy) sin2(πz).

The loss of mass is apparent in the case of the HJ-WENO in figure 20(a), where the shape of the initial
sphere is not recovered at the end of the computation. This is in contrast with the particle-level-set of [38].
However, even in the case of [38], the lack of resolution prevents fine developing features (e.g. thin sheets)
to be captured. A more refined grid will capture those features, but at a computational cost too high for
practical applications. This is a case where adaptivity is a powerful technique since it allows fine resolution
without the high computational footprint. Figure 20(c-d) gives the results of the evolution of the level-set
with the adaptive particle-level-set approach of Losasso et al. [81] and the second-order accurate adaptive
level-set of Min and Gibou [90]. In those cases, the fine octree grids enable the resolution of thin sheets.

Note that the quadtree/octree adaptive framework is efficient at addressing the loss of mass since the
high-resolution is only focused near the interface so that the complexity of the level-set equations scales with
the area of a surface in three spatial dimensions instead of with its volume, which is the case of uniform grids.
It is easier to illustrate this point in two spatial dimensions on a similar example as the one above. Figure
21 illustrates the evolution of the interface location initially (left), at t = 3π (center) and when the interface
is fully rewound (right). It also depicts the quadtree grid being adapted. At the end of the computation,
the mass loss is about 0.3%.

We also note that local level-set methods can also address this problem, although it was shown in [21]
that a local level-set based on hashtables are only on a par with the quadtree/octree node-based approach
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(a) H-J WENO of [59]. (b) Particle level-set of [38].

(c) Adaptive particle level-set of [81]. (d) Adaptive level-set (no particle) of [90].

Figure 20: Comparison of the qualitative evolution of the level-set function for the flow field introduced in
[74]. On uniform grids (here 1003), even the high-order accurate WENO scheme leads to a significant volume
loss (a). Adding particles significantly improves the accuracy but small features (here thin sheets) cannot
be resolved with particles alone (b). In the case of the particle level-set, the number of particles used is
typically 16 per cell in 2D and 32 per cell in 3D. In contrast, the high-resolution capabilities of adaptive grids
enable small features to be preserved at low computational cost [(c) and (d)]. Here the smallest grid size
corresponds to an effective resolution of 5123. The work of [81] uses first-order accurate semi-Lagrangian for
the evolution of the level-set function and a second-order accurate ODE solver for the advection of particles.
The work of [90] uses a second-order accurate scheme for the evolution of the level-set and no particles. The
level-set function is reinitialize at every time step in all cases.

of Min and Gibou [90] in terms of CPU and memory requirement. We also mention that other local level-set
methods have been proposed, see e.g [105, 99, 72] and the references therein. Finally, we note that true
local-level-set methods, i.e. methods that only encode local grids in memory, may not be as practical as
quadtree/octree level-set methods in some applications, since a valid value of the level-set function is not
known throughout the computational domain. For example, one cannot find the distance to the interface at
locations outside the local band.
Remark: Other tracking schemes exist, either using completely different approaches or hybridizing existing
schemes. These methods are highly efficient at conserving mass and tracking interfaces, each with their own
pros and cons. In additions, adaptive framework have been introduced (see e.g. [138, 15, 3, 14, 143, 76, 51,
19, 137, 10, 92, 4, 111, 41, 25, 58, 128, 66] and the references therein).

8 Solving the Stefan Problem on Adaptive Grids
The Stefan problem and similar model equations are obvious choices for the node-based adaptive framework
presented above, since the framework produces second-order accurate solutions in the L∞-norm and second-
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Figure 21: Level-set evolution with an effective resolution of 20482 at t = 0 (left), t = 3π (center) and t = 6π
(right).

order accurate gradients; therefore it gives a second-order definition of the velocity field. It also enables
efficient computations, since a three-dimensional simulation scales with the surface of the interface instead
of its volume. Finally, non-graded grids can be readily considered, which leads to versatile grid generation.
The procedure for solving the Stefan problem is given in algorithm 1. Here we use the technologies described
in sections 5, 6 and 7. In the following sections, we present typical results that can be obtained with this
framework.

8.1 Accuracy and Efficiency
We discuss the efficiency and accuracy on the known Frank-sphere exact solution of section 4.5. Figure 22
illustrates the evolution of the interface, as well as that of the adaptive grid, at different times using the
method of Chen et al. [28]. The final time is t = 10, which demonstrates the robustness of the algorithm for
large time computations. The computational domain is Ω = [−2, 2]× [−2, 2] and the other parameters used
in the computation are: S0 = 0.25, T∞ = −0.05709187113307 and (MinRes, MaxRes)=(8,64). The time step
is 4t = 4xs where 4xs is the size of the finest cell.

Tables 12–19 give the errors for the interface’s location and the errors for the temperature field T in both
the L1- and the L∞-norms for different combinations of (MinRes, MaxRes). The accuracy results given in these
tables highlight the fact that the accuracy is largely driven by the resolution near the interface. In particular,
a comparison of the errors in tables 12-13 with the errors in tables 18-19, indicates that the accuracy obtained
on a uniform 256× 256 grid is on a par with that obtained on a (MinRes, MaxRes) = (32, 256) adaptive grid.
This confirms the fact that the quadtree/octree adaptive mesh refinement approach is highly efficient for
elliptic and parabolic problems in the case where the refinement criteria imposes the smallest cells on the
interface Γ, while coarser and coarser cells are placed as the distance to the interface increases.

To demonstrate the saving of computational efforts through the use of adaptive grids, [28] computed the
computational time on a 1.6 GHz laptop as a function of the maximum error in φ and T (see figure 23). In
these plots, the degree of adaptivity is defined as MaxRes/MinRes. One can see that, for the same accuracy,
the computational time on adaptive grids can be several orders of magnitude less than that on uniform grids.
Remark: Although all the computations are carried out to second-order accuracy in the L∞-norm, the
resulting overall solution has a lower convergence rate (≈ 1.6). Chen et al. [28] attribute this loss of
accuracy to the diverse approximations such as extrapolation and reinitialization procedures that are not
iterated to steady-state. We also refer the reader to section 4.3 for a discussion on the time evolution.

8.2 Typical Numerical Results for Unstable Solidification
Unstable solidification from a seed in an undercooled liquid is typical of crystal growth. In what follows,
we consider a temperature field initialized uniformly as the Stefan number St < 0 in the liquid phase, and
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(a) t=1. (b) t=3.

(c) t=6. (d) t=10.

Figure 22: Evolution of the interface and corresponding adaptive grid for example 8.1.

Grid L∞ error order L1 error order
32× 32 5.197× 10−2 — 3.253× 10−2 —
64× 64 1.489× 10−2 1.804 1.100× 10−2 1.564

128× 128 5.395× 10−3 1.464 3.535× 10−3 1.638
256× 256 1.737× 10−3 1.635 1.100× 10−3 1.684

Table 12: Accuracy results on uniform grids for φ in example 8.1.
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Grid L∞ error order L1 error order
32× 32 3.016× 10−3 — 5.395× 10−4 —
64× 64 1.094× 10−3 1.463 1.739× 10−4 1.633

128× 128 4.476× 10−4 1.290 5.523× 10−5 1.655
256× 256 1.498× 10−4 1.579 1.442× 10−5 1.938

Table 13: Accuracy results on uniform grids for T in example 8.1.

(MinRes, MaxRes) L∞ error order L1 error order
(16, 32) 5.503× 10−2 — 3.504× 10−2 —
(32, 64) 1.492× 10−2 1.883 1.102× 10−2 1.669
(64, 128) 5.410× 10−3 1.463 3.541× 10−3 1.638
(128, 256) 1.750× 10−3 1.629 1.112× 10−3 1.672

Table 14: Accuracy results on adaptive grids for φ in example 8.1 with MaxRes/MinRes=2.

(MinRes, MaxRes) L∞ error order L1 error order
(16, 32) 3.223× 10−3 — 8.818× 10−4 —
(32, 64) 1.100× 10−3 1.552 2.314× 10−4 1.930
(64, 128) 4.490× 10−4 1.292 7.122× 10−5 1.700
(128, 256) 1.509× 10−4 1.573 1.860× 10−5 1.937

Table 15: Accuracy results on adaptive grids for T in example 8.1 with MaxRes/MinRes=2.

(MinRes, MaxRes) L∞ error order L1 error order
(8, 32) 5.522× 10−2 — 3.519× 10−2 —
(16, 64) 1.494× 10−2 1.886 1.102× 10−2 1.676
(32, 128) 5.501× 10−3 1.441 3.661× 10−3 1.589
(64, 256) 1.801× 10−3 1.611 1.134× 10−3 1.691

Table 16: Accuracy results on adaptive grids for φ in example 8.1 with MaxRes/MinRes=4.

(MinRes, MaxRes) L∞ error order L1 error order
(8, 32) 3.231× 10−3 — 1.397× 10−3 —
(16, 64) 1.093× 10−3 1.564 3.756× 10−4 1.895
(32, 128) 4.567× 10−4 1.259 1.172× 10−4 1.680
(64, 256) 1.552× 10−4 1.557 3.059× 10−5 1.938

Table 17: Accuracy results on adaptive grids for T in example 8.1 with MaxRes/MinRes=4.

(MinRes, MaxRes) L∞ error order L1 error order
(4, 32) 5.521× 10−2 — 3.519× 10−2 —
(8, 64) 1.490× 10−2 1.890 1.098× 10−2 1.680

(16, 128) 5.559× 10−3 1.423 3.656× 10−3 1.586
(32, 256) 1.924× 10−3 1.530 1.209× 10−3 1.597

Table 18: Accuracy results on adaptive grids for φ in example 8.1 with MaxRes/MinRes=8.

(MinRes, MaxRes) L∞ error order L1 error order
(4, 32) 3.230× 10−3 — 1.484× 10−3 —
(8, 64) 1.095× 10−3 1.560 5.614× 10−4 1.403

(16, 128) 4.580× 10−4 1.258 1.661× 10−4 1.757
(32, 256) 1.659× 10−4 1.465 5.338× 10−5 1.638

Table 19: Accuracy results on adaptive grids for T in example 8.1 with MaxRes/MinRes=8.
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Figure 23: Log-log plot of the computational time as a function of the maximum error in φ (left) and the
maximum error in T (right).

T = 0 in the solid region. Unless otherwise stated, the diffusion constant is the same in both phases and
Neumann (adiabatic) boundary conditions are imposed on the four sides of the computational domain Ω.

8.2.1 Effect of Varying Isotropic Surface Tension

Surface tension forces are one of the main driving forces in solidification processes and are therefore important
to simulate accurately. In the Stefan problem, surface tension is modeled through the −εcκ term in the Gibbs-
Tompson boundary condition (4). Figure 24 depicts the growth history of a square solid seed. Instabilities
naturally develop from the regions of high curvature (initial corners of the seed) and are (increasingly) damped
by (increasing) surface tension forces (increasing εc). In this example, we consider isotropic surface tension,
i.e we take T = −εcκ and vary the values of εc. The computational domain is Ω = [−1.5, 1.5] × [−1.5, 1.5],
the undercooled liquid has a Stefan number of St = −0.5 and the time step is 4t = 0.004.
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(b) εc = 0.0005.
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(c) εc = 0.001.

Figure 24: Effect of varying the isotropic surface tension coefficient εc. The Gibbs-Thomson relation (4) with
εv = 0 and different εc values is imposed at the interface. The time levels shown are in uniform increments
from t = 0 to t = 0.4.
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8.2.2 Effect of Anisotropic Surface Tension

It is well known that crystals grow along preferred crystalline directions. In the Stefan problem, this is
modeled by anisotropic surface tension forces, i.e. εc in equation (4) is a function of orientation. Figure 25
illustrates the evolution of an initially regular-pentagon-shaped seed placed in an undercooled liquid with
the Stefan number St = −0.5 and a Gibbs-Thomson relation given by T = −0.001(8/3 sin4(2α − π/2))κ,
where α is the angle between the normal to the interface and the x-axis. The boundary condition imposes a
four-fold anisotropy, favoring the growth along the diagonal directions, while limiting it in the main Cartesian
directions. For example, the initial instability triggered by the sharp corner in the positive y-direction is
slowed down by the action of surface tension forces, promoting the subsequent side branching.

Figure 25 also illustrates the evolution of the interface on both a uniform 256 × 256 grid and adaptive
moving grids with (MinRes, MaxRes)=(32,256). The results are almost identical, but the computation on
adaptive grids is significantly more efficient in terms of memory and CPU. In fact, figure 26 depicts the grids
used at the final time. The number of nodes in the case of the adaptive grid is only 23% of the uniform grid.
This translates into a computational time of about 15% of that of a uniform 256× 256 grid.
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Figure 25: Effect of anisotropic surface tension. The Gibbs-Thomson relation T = −0.001(8/3 sin4(2α−π/2))
is imposed on the interface. The black solid lines depict the interface growth history on a uniform 256× 256
grid, and the green dashed lines depict the interface growth history on adaptive moving grids. (Color online).

8.2.3 Comparison with the Microscopic Solvability Predictions

The Stefan problem is difficult to solve analytically. Simple one-dimensional analytical solutions can be easily
derived, but analytical results in two and three spatial dimensions are rare. We considered the Frank-sphere
exact solution in section 8.1. Here, we present another set-up for which solvability theory can predict the
steady-state speed of the dendrite’s tip. Consider a circular seed of radius 0.05 at the center of a Ω = [−6, 6]2

computational domain. The undercooled liquid has a Stefan number of St = −0.45 and the Gibbs-Thomson
relation (4) on the solid-liquid is given by T = −0.001[1+0.4(1−cos 4α)]κ, where α is still the angle between
the normal to the interface and the x-axis. Figure 27(a) depicts the evolution of the interface from t = 0
to t = 2.2 on a (MinRes, MaxRes)=(64, 1024) moving grids, while figure 27(b) plots the tip velocity as a
function of time. The tip non-dimensional velocity reaches a steady-state value of 1.7, in agreement with
solvability theory [86].
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(a) Adaptive grid used in example 8.2.2 at t = 0.4. (b) Uniform grid used in example 8.2.2 at t = 0.4.

Figure 26: Comparison of the grids used in example 8.2.2.
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Figure 27: (a) Growth history of a circular seed growing under standard four-fold anisotropic surface tension.
(b) Tip velocity as a function of time converging to a steady-state value of 1.7.
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9 Conclusion
We have provided the essence of how to solve the Poisson and the diffusion equations on irregular domains
as well as the Stefan problem using a level-set framework to keep track of the interface and the ghost-fluid
method to apply Dirichlet boundary conditions. We have also presented the node-based quadtree/octree
framework of Min and Gibou and its application to the model problems mentioned above. Finally, we have
provided some implementation details for these algorithms and pointed out some common misconceptions
and pitfalls in implementation. Overall, the methods presented provide highly efficient numerical solvers that
are robust, simple to implement and produce second-order accurate solutions in the L∞-norm on non-graded
adaptive grids.
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