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Abstract

We propose a virtual node algorithm that allows material to separate
along arbitrary (possibly branched) piecewise linear paths through
a mesh. The material within an element is fragmented by creat-
ing several replicas of the element and assigning a portion of real
material to each replica. This results in elements that contain both
real material and empty regions. The missing material is contained
in another copy (or copies) of this element. Our new virtual node
algorithm automatically determines the number of replicas and the
assignment of material to each. Moreover, it provides the degrees
of freedom required to simulate the partially or fully fragmented
material in a fashion consistent with the embedded geometry. This
approach enables efficient simulation of complex geometry with a
simple mesh, i.e. the geometry need not align itself with element
boundaries. It also alleviates many shortcomings of traditional La-
grangian simulation techniques for meshes with changing topology.
For example, slivers do not require small CFL time step restrictions
since they are embedded in well shaped larger elements. To enable
robust simulation of embedded geometry, we propose new algo-
rithms for handling rigid body and self collisions. In addition, we
present several mechanisms for influencing and controlling fracture
with grain boundaries, prescoring, etc. We illustrate our method for
both volumetric and thin-shell simulations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation;

Keywords: changing mesh topology, finite elements, fracture, vir-
tual surgery, sculpting

1 Introduction
Meshes with changing topology are indispensable in numerous ap-
plications, e.g. cutting in virtual surgery or haptics, sculpting and
modeling in computer aided design, tearing of textiles, fracture,
etc. Simulation can complement or obviate the need for difficult-
to-perform laboratory experiments. This is particularly necessary if
the object is rare, expensive, irreplaceable, or if the material is haz-
ardous. Many problems include fracture as a critical component,
e.g. medical applications such as the break-up of kidney stones
using lithotripsy, the structural and safety analysis of bridges and
buildings, etc. Ships, aircraft, and other metallic structures in harsh
environments are particularly susceptible to corrosive cracks and
material failure. Moreover, physically based animation of destruc-
tive phenomena (i.e. explosions and fracture) enables special effects
studios to create content for feature films.
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Figure 1: Tearing a plastically deforming high resolution volumet-
ric mesh (380K tetrahedra).

There is an intimate connection between the Lagrangian simu-
lation of a deformable solid and its discretization. Research in La-
grangian simulation can be loosely classified into three categories:
mesh generation, simulation, and mesh alteration during simula-
tion. A high-quality mesh is a prerequisite for effective simulation,
and poor quality elements adversely affect accuracy, efficiency and
stability. Mesh alteration during simulation falls roughly into two
categories. Various works have focused on maintaining mesh qual-
ity in the face of large deformation, such as the pioneering work
of [Hirt et al. 1974] on arbitrary Lagrangian-Eulerian (ALE) meth-
ods. Other work has addressed topological changes such as frac-
ture. According to [Tabiei and Wu 2003], there are three main ap-
proaches for treating separating material with a Lagrangian mesh:
elements can be weakened along cracks so that they stretch arbi-
trarily while preserving connectivity, the mesh can be split along
element boundaries, or continuous remeshing can be performed.
Unfortunately, the first two options produce visual artifacts on the
scale of the coarse tetrahedral mesh.

Although continuous remeshing was once considered promising,
see e.g. [Camacho and Ortiz 1997], many authors no longer advo-
cate it when they move to three spatial dimensions, see e.g. [Ortiz
and Pandolfi 1999]. Continuously remeshing the arbitrary situa-
tions that arise during fracture can be daunting. And even when
remeshing is successful, the result can often be ill-conditioned re-
ducing both accuracy and stability, e.g. producing sliver tetrahedra



Figure 2: The subelements resulting from a triangle cut: a subtetra-
hedron (left) and a triangular prism (right). Slivers of material are
still simulated with nicely shaped elements.

that severely limit the time step or cause the mesh to invert. [Bes-
sette et al. 2003] points out that many authors address this difficulty
by deleting problem elements altogether. However, disappearing
tetrahedra destroy the visual accuracy. A nice compromise between
fully remeshing and only fracturing between elements was struck
by [O’Brien and Hodgins 1999; O’Brien et al. 2002] where cuts are
constrained to go through existing nodes. It was further necessary
to impose limitations upon the directions of these cracks to avoid
backcracking and low quality elements that compromised the sta-
bility of their explicit time integration scheme. Even so, their small
elements generated time step restrictions that made their calcula-
tions quite computationally expensive.

Our goal is to allow element splitting without suffering from the
small time step restrictions imposed by sliver elements. We do this
by simulating partially void elements (only partially filled with ma-
terial), e.g. see figure 2. A major advantage of simulating embedded
geometry is that it decouples the resolution required for the geome-
try from the resolution required for the physics, e.g. it is difficult for
a boundary conforming mesh to match sharp corners exactly. Also,
we can simulate slivers of material without having sliver elements
in the simulation mesh.

The key to allowing arbitrary separation of the material repre-
sented by a mesh is our virtual node algorithm. Using it, we circum-
vent many of the difficulties in traditional techniques for fracture
calculations whereby the crack geometry is limited to the bound-
aries of existing elements or the entire region surrounding a crack
must be remeshed. By simulating multiple copies of an element,
each representing some potion of the material from the original,
the simulation mesh remains well-conditioned. There is no need
for sliver elements to resolve crack geometry. Therefore, this tech-
nique avoids the pitfalls associated with low quality elements forced
by remeshing.

2 Related Work
[Terzopoulos et al. 1987] pioneered deformable models in graph-
ics including early work on plasticity and fracture in [Terzopoulos
and Fleischer 1988b; Terzopoulos and Fleischer 1988a] where cloth
was torn. Other early work on finite element modeling includes
[Gourret et al. 1989; Chen and Zeltzer 1992]. Some of the more
recent work includes the adaptive framework of [Debunne et al.
2001], the rotation based approach in [Muller et al. 2002], and the
finite volume muscle models of [Teran et al. 2003]. Other inter-
esting approaches to the simulation of deformable objects include
[James and Pai 2002; James and Fatahalian 2003].

Most graphics researchers simply break connections or springs
between elements when the force is high, see e.g. [Norton et al.
1991; Hirota et al. 1998; Mazarak et al. 1999; Smith et al. 2001].
Interesting two dimensional results were obtained in [Neff and Fi-
ume 1999] in the context of blast waves. [Muller et al. 2001] treated
objects as rigid bodies between collisions, and used static finite el-
ement analysis techniques during collisions. They used the princi-
pal stress components to separate tetrahedra occasionally refining
large tetrahedra before splitting along element boundaries. Simi-
larly, [Muller and Gross 2004; Muller et al. 2004] fracture between
element boundaries in a FFD framework and maintain a watertight

Figure 3: Edge edge collision of a fractured spherical shell (1K
triangles).

embedded surface mesh, however their fracture surfaces are quite
limited by the coarse simulation mesh. The state of the art in frac-
ture for computer graphics is the work of [O’Brien and Hodgins
1999; Yngve et al. 2000; O’Brien et al. 2002] which used a pseudo
principal stress and continuous remeshing.

Although virtual surgery researchers often recommend split-
ting tetrahedra via subdivision, the resulting tetrahedra can be ill-
conditioned and difficult to simulate, see e.g. [Mor and Kanade
2000]. [Bielser and Gross 2000] use semi-implicit time stepping
and asynchronous time integration to partially alleviate these diffi-
culties. Moreover, they use masses and springs (as opposed to finite
elements) so inverting tetrahedra, although visually displeasing, do
not cause the simulation to fail. For more on tetrahedral subdivi-
sion, see e.g. [Bielser et al. 2003]. Similarly, for element deletion
alternatives, see e.g. [Forest et al. 2002].

Our method also works for cloth and shells. We use a diagonal-
ized finite element model similar to [Etzmuss et al. 2003] for the in
plane deformations and the bending model of [Bridson et al. 2003]
(see also [Grinspun et al. 2003]), but other bending models such as
[Choi and Ko 2002] could be used. For self-collisions, we treat the
material surface in the same manner as [Bridson et al. 2002], and
propose new methods to modify the parent elements and to keep
these two meshes in sync. We note that an untying method for col-
lision handling as in [Baraff et al. 2003] is inappropriate since we
often have edge edge collisions that their method does not handle,
e.g. see figure 3. We use mixed explicit implicit time integration,
although for stiffer shells a fully implicit method as in [Baraff and
Witkin 1998] or [Grinspun et al. 2003] might be preferable. Other
interesting work on shells includes the adaptive mesh simulation of
[Grinspun et al. 2002].

For volumetric collisions, we treat the embedded boundary sur-
face as a triangulated manifold and again use the method of [Brid-
son et al. 2002], providing new algorithms to make the virtual nodes
respond and to keep the two meshes in sync. When we fracture a
volumetric object, we cannot ensure collision-freeness (as we can
with shells). Thus we have slightly modified [Bridson et al. 2002]
to ignore triangles that are interfering. We then use an untangling
strategy similar to that in [Baraff et al. 2003], which is best coupled
with penalty forces pushing nodes out of tetrahedra as in [O’Brien
and Hodgins 1999].

Our method of simulating a parent element with enslaved em-
bedded geometry is essentially a free form deformation (FFD) as
proposed in [Sederberg and Parry 1986]. Dynamic FFD’s were de-
veloped by [Faloutsos et al. 1997]. Later, [Capell et al. 2002b] ex-
tended these dynamic FFD’s to finite element simulation. A related
strategy was also carried out in [Capell et al. 2002a].

3 Virtual Node Algorithm
The virtual node algorithm solves the problem of how to represent
and simulate severed or separated material within a mesh. In certain
situations, determining how to duplicate elements and create vir-
tual nodes is straightforward, e.g. as in figure 2. However, in other
scenarios, making these determinations can be rather complex and



Figure 4: Slicing a volumetric brick with a surgical scalpel (not
pictured).

moreover requires nonmanifold geometry. Even in the simple case
of two triangles shown in figure 5, obtaining the desired degrees of
freedom requires three triangles on a single edge. This occurs quite
often when cutting partially into a mesh as in figure 4, or as a crack
slowly propagates through material as in figure 6. Our virtual node
algorithm automatically handles all of these cases. The essence of
the virtual node algorithm is simple to describe. For each distinct
scoop cut out of a node’s one ring, a virtual copy of the central
node is created and donated to the nodes within the given scoop to
give the mesh the degrees of freedom needed to break apart. This
works for both two and three spatial dimensions, for volumes and
shells, for arbitrary branching, etc. The algorithm is quite simple
and surprisingly general.

A fundamental assumption we make when separating an exist-
ing mesh is that each node represents a point sample of the material
around it, and as such cannot be separated from a core material con-
tained in its one ring. That is, if the mesh is completely fragmented
into its smallest possible units, each one will consist of a real node
from the original mesh surrounded by all the elements from its one
ring with every (edge connected) neighbor replaced by a new vir-
tual node. See figure 7 (far right). It is obvious how to duplicate
elements and construct virtual nodes in the complete fragmentation
case, but any viable algorithm needs to treat partial fragmentation
as well. The fundamental goal is to determine which parts of an
element’s one ring are fragmented and which parts are not. This
will be necessary in order to treat more complicated scenarios such
as that depicted on the left and center of figure 7.

A natural way to determine which portions of a one ring have
been fragmented away, and which have not, is to consider scoops
out of one rings. If the segmentation boundary completely separates
a node from some subset of its neighbors, then the material cores
of the neighbors can be thought of as separated from the material
core of the central node in question. In particular, the central node
donates one virtual node to each independent scoop out of its one
ring. See figure 8. The algorithm is carried out in two passes. First,
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Figure 5: The crack (drawn in red) allows the material to partially
open. Nodee is a virtual copy of nodeb and provides the degrees
of freedom that enable the material to separate.

Figure 6: A single fracture initiation propagating through a spheri-
cal shell (1K triangles).

for each node, we determine how many disjoint scoops have been
taken out of its one ring and assign a virtual copy of the central
node to each scoop. Then in a second pass, we visit every node and
look to its neighbors to see if any of them assigned a virtual copy
of itself to the node in question. In this second pass, we build the
new mesh topology by constructing all the elements in the one ring
of this central node using either the real neighbor or the assigned
virtual copy when it exists.

In figure 5, only nodeb has a scoop out of its one ring, and thus
it makes a copy of itself (nodee) and assigns this node to nodea in
the first sweep. In the second sweep, nodeb constructs its triangle
as usual (attaching to nodesa andc), but nodea uses nodee in place
of nodeb when it constructs the triangle to the right. This provides
the degrees of freedom necessary for the crack to open. In figure
7 only node f has a scoop out of its one ring, and thus it makes
a virtual copy of itself (nodeg) and assigns it to nodev. Then all
nodes construct their triangles as usual, except nodev which uses
virtual nodeg when constructing two of its triangles. Again, this
provides the degrees of freedom necessary to open the crack.

Although we used triangles to illustrate this method, it carries
over identically to tetrahedra. The one ring neighbor nodes are
still edge connected, cores of material are subsets of tetrahedral ele-
ments, watertight one ring scoops are surfaces as opposed to curves,
etc. The algorithm seems to readily extend to other types of meshes
as well, e.g. quads, hexahedra, mixed quads and triangles, etc. For
brevity, we skipped a few obvious but important details above, e.g.
one should not create the same element (i.e. same exact nodes) more
than once, new virtual nodes are assigned the positions of real par-
ents except when they are splitting off from already existing and
evolved virtual nodes, etc. Also, some choices can be made in the
algorithm. For example, we allow all real nodes to maintain their
original mass throughout the duration of the simulation, and assign
the mass of virtual nodes to be identical to that of their correspond-
ing real node. While more physical mass redistribution techniques
exist, this one is highly stable (allowing larger time steps) since
all elements keep their original mass distribution regardless of the
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Figure 7: A one ring with a cut that opens (left, center), and acore
of material(right).



Figure 8: A one ring with one scoop removed (left) and with two
scoops removed (right). Each complete scoop receives a distinct
virtual node (depicted by the arrows).

presence of slivers, etc. Thus, we have made a conscious choice of
stability over accuracy for our graphics applications. That said, we
note that it is not unusual for computational physics algorithms to
relax mass conservation near lower dimensional interfaces, see e.g.
[Fedkiw et al. 1999; Aivazis et al. 2000].

4 Fracturing of Elements
In order to replicate elements and split material between them, one
needs to chose a representation for the curves (or surfaces) that par-
tition the material creating new boundaries. Although the virtual
node algorithm does not depend on this choice, our data structures,
collision algorithms, etc. do, and thus we take a simplified approach
using piecewise linear cuts. This choice does not unreasonably re-
strict the types of cuts we can make through the mesh, as it allows
second order accurate representations of the newly formed material
boundaries (fracturing along element boundaries is first order accu-
rate). In fact, using only our piecewise planar cuts allows us to both
cut along straight paths as shown in figure 4 or sculpt interesting
and detailed high resolution geometry as shown in figure 10.

While there are a number of ways to decompose elements with
linear cuts, see e.g. [Bielser et al. 2003], we place a few restrictions
on this so that the resulting subelements are more readily simulated
in regards to both free form deformations and contact and colli-
sion algorithms. That is, we restrict all decompositions such that
all newly created enslaved orembeddednodes appear on an edge
of a parent element in the simulation mesh. Moreover, we only
allow one embedded node per edge, and find it convenient to con-
struct a data structure that correlates this node with the twoparent
particles on this edge. When a new embedded node is created, its
position relative to its parents is defined via a single barycentric co-
ordinate, orinterpolation fraction, λ . The position and velocity of
this enslaved embedded particle is calculated by linearly interpolat-
ing these values from the parents.

Triangles may contain up to three embedded nodes. And since
we want all material to be associated with a one-ring around a node,
we allow a maximum of two cuts in each triangle as shown on the
left in figure 9. Thus, we have two types of embedded nodes in any
given triangle, those involved with one cut and those involved with
two. All possible pairings of these types of nodes across triangle
boundaries is shown on the right in figure 9, and one can readily
see both the potential for branching as well as the sanctity of the
material cores.

A tetrahedron may contain up to six embedded nodes on its
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Figure 9: A maximally severed triangle element (left). A frag-
mented triangle mesh illustrating the different types of junctions
of cuts that occur at embedded nodes (right).

Figure 10: Sculpting a hybrid level set/embedded tetrahedron mesh
(500K tetrahedra).

edges. A full decomposition consists of either shaving off three
subtetrahedra or splitting the parent element with a quadrilateral
and shaving a subtetrahedron off of each piece as is shown in figure
11. In either case, this amounts to three cuts per tetrahedron. When
considering all possible pairings of cut tetrahedra across boundaries
(i.e. triangle faces), a new case arises that was not present in figure
9. In a triangle, the embedded node splits its edge into two pieces
each of which belong to the core of material of one of its parents.
The common triangle between two tetrahedra is not as easily parti-
tioned as the boundary edge between two triangles. This common
triangle face can be split into a maximum of four subtriangles, and
all but the center subtriangle obviously belong to one of the tetra-
hedron node’s material cores. The center subtriangle is not intrin-
sically part of the core of any of those three tetrahedron nodes, and
thus we do not allow it to represent material connections with ad-
jacent tetrahedra. That is, material in the center octahedron (which
has this center triangle as a boundary) is connected to the octahe-
dron material in an adjacent element if and only if it is connected
via the core of one on the three parent nodes. Otherwise, the center
subtriangle is split. See figure 12.

When constructing elements in the virtual node algorithm, one
needs to faithfully model all subelement geometry. We do this by
giving all replicas the same embedded nodes and cut geometry. This
can be seen, for example, in figure 5 where each of the two copies
of the triangle to the right contains two embedded nodes and a seg-
ment connecting them. Moreover, this segment represents the new
material boundary so obviously two are needed. Similarly, see fig-
ure 7. We further stress that the concern above about whether or not
a center subtriangle connects octahedron material is automatically
handled by the virtual node algorithm. When creating new elements
and giving all replicas the same embedded nodes and geometry, the
octahedrons automatically split apart when the center subtriangles
are created twice.

For both rendering and collision handling, it is necessary to iden-
tify the boundary of the (non-virtual) material. For triangulated sur-
faces, this is trivial, except that we add the caveat that all quads (see

Figure 11: The two different maximally-split configurations for a
tetrahedron.



Figure 12: The central subtriangle of the face shared by two tetra-
hedra is connected if and only if the two central octahedra are as-
sociated with the same simulation node. On the right, both central
octahedra are associated with the top node. On the left, they are
associated with different nodes (and thus split apart).

figure 9, left) are cut into two triangles. The boundary surface of a
tetrahedralized volume is constructed via surface cancelation. For
every element in the simulation mesh, we determine which portion
of it is material and add a triangulation of the subelement’s bound-
ary to the list of boundary triangles. If the same triangle is ever
added with the opposite orientations, we permanently remove this
triangle from the boundary list. Of course, one must be consistent
with the triangulation of subelement boundaries for this algorithm
to work.

5 Dynamics
There are three kinds of nodes in the mesh: real nodes, virtual
nodes and embedded nodes. The elements are comprised of real
and virtual nodes, and in principle any deformable model (masses
and springs, finite elements, etc.) may be used to simulate them. We
use the diagonalized finite element method of [Irving et al. 2004],
which is equivalent to the standard finite element method for tetra-
hedra with non-negligible positive volume. However, this method
also works well for both degenerate and inverted elements, which
is particularly useful for large deformations, plasticity and fracture.
Given both the rest shape and current shape of an element (a tri-
angle or tetrahedron), the constitutive model produces a first Piola-
Kirchoff stressP. As shown in [Teran et al. 2003], the force can
be accumulated at the nodes by multiplyingP by the area weighted
face normals of the element in material coordinates. For triangles,
out-of-plane forces are computed with the bending model of [Brid-
son et al. 2003]. In addition, a multiplicative plasticity component
(as opposed to the additive plasticity in [O’Brien et al. 2002]) is in-
cluded to model ductile fracture, see e.g. [Armero and Love 2003].

We use a slight variant of the Newmark time integration scheme
presented in [Bridson et al. 2003].

• ṽn+1/2 = vn + ∆t
2 a(tn,xn, ṽn+1/2)

• x̃n+1 = xn +∆tṽn+1/2

• Process rigid body collisions using̃xn+1 and vn, producing
final positionsxn+1 and modified velocities̃vn.

Figure 13: Volumetric simulation of the Buddha sculpted from the
block in figure 10. The belly is soft and drops under its own weight
(500K tetrahedra).

Figure 14: Ductile fracture of a spherical shell (1K triangles).

• vn+1 = ṽn +∆t(a(tn,xn, ṽn)+a(tn+1,xn+1,vn+1))/2

After each position or velocity update, the embedded nodes are
updated using linear interpolation from their parent particles.

6 Collisions
Whether working with shells or volumetric objects, section 4 out-
lines how to construct the boundary mesh of the material. This
mesh consists of triangles made up of real nodes and embedded
nodes, but no virtual nodes. Moreover, virtual nodes should not
collide, since they do not represent material. Also, for efficiency,
we do not collide interior nodes of volumetric objects.

6.1 Rigid Body Collisions
First, the rigid body collisions of the real nodes on the material
boundary are processed, and then the positions and velocities of
the embedded nodes are linearly interpolated. Next, the rigid body
collisions of the embedded nodes are processed to obtain a∆xemb
and∆vemb for each embedded particle.∆xemb is used to adjust the
positions of the two parent particles via

x1+ =
1−λ

λ 2 +(1−λ )2 ∆xemb

x2+ =
λ

λ 2 +(1−λ )2 ∆xemb,

whereλ is the embedded particle’s interpolation fraction. Adding
1−λ times the first equation toλ times the second equation gives
xemb+ = ∆xembas desired. The change in velocity is handled sim-
ilarly. Although this scheme works well, we have found that im-
proved results can be obtained bynot processing parent particles
that are on the boundary surface unless they collide directly. Of
course, this throws the embedded particles out of sync, so as a final
step we linearly interpolate their new state (position and velocity).

6.2 Self Collisions
We save a collision free material boundary mesh, integrate the com-
putational mesh forward in time for one or more steps, calculate the
new state of the material boundary mesh, and then use the algo-
rithm of [Bridson et al. 2002] to process collisions assuming lin-
ear trajectories between the initial and final state of the material
boundary mesh. The result is a collision free set of positions and
velocities for the material boundary mesh. However, since some



Figure 15: Simple scenario demonstrating the efficacy of our em-
bedded collisions (5 tetrahedra).

of the nodes on the boundary mesh are embedded, reinterpolating
the embedded nodes on the material boundary can introduce self-
interference. Thus, we do not resync these nodes, but instead save
the resulting unsynced mesh as the collision free state. In the next
suite of time steps, the target material boundary meshis automat-
ically synced with the computational mesh. Thus, the unsynced
mesh will try to return to a synced position, and will succeed in the
absence of self collisions, so the drift is temporary. Similar to rigid
body collisions, the effects of∆xemband∆vembneed to be mapped
to the parents. However, we stress thatnot processing real nodes
on the material surface is even more important here as it can create
an interfering state. Thus, for each real or virtual node that is not
on the material surface, we first compute the∆xemb of all the em-
bedded children for which this node is a parent. Then this parent
is simply assigned the average of all the∆xemb’s of its embedded
children (similarly for velocity).

Fracture is handled after self collision and outside of the self-
collision loop. One of the drawbacks of our collision handling strat-
egy is that our fracture algorithm cracks materialin placeand thus
it can be touching (and intersecting due to roundoff errors) immedi-
ately after fracturing. So we do not have a collision free state for the
collision algorithm. This is readily rectified for shells by perturb-
ing the material in-plane by an amount just larger than round-off
error to guarantee a collision freeness. For volumetric objects, no
guarantees can be made. So although we attempt to perturb the
material slightly after fracture, we also implemented a version of
[Bridson et al. 2002] that ignores interfering triangles. Moreover,
we use a combination of untying as in [Baraff et al. 2003] and re-
pulsion forces as in [O’Brien and Hodgins 1999] in order to pursue
a non-interfering state at which point our modified version of [Brid-
son et al. 2002] automatically takes over preventing all subsequent
collisions.

7 Fracture and Control
We use the Rankine condition [Rankine 1872] of maximal princi-
pal stress to decide both whether and how a material fractures. To
remove mesh aliasing, we smooth the Cauchy stressσ with a few
passes of volume weighted averaging as is common in the litera-
ture, see e.g. [Belytschko et al. 2003; Wells and Sluys 2001; Jirasek
and Zimmermann 2001; Bouchard et al. 2003]. Then, if the max-
imum eigenvalue ofσ (potentially modified for control) exceeds
a threshold for tensile fracture, the element is broken. Secondary
and tertiary fractures of the same element are given higher thresh-
olds to help reduce spurious branching. We also use the minimum
eigenvalue to model compressive fracture, but with higher thresh-
olds (e.g. [Smith et al. 2001] points out that bonds can be up to eight
times stronger during compression). We note that the non-element
based “separation tensor” in [O’Brien and Hodgins 1999; O’Brien
et al. 2002] is not typical in the literature, but it has the same fla-
vor as the Rankine condition. For each of the possible cuts (e.g. in a
tetrahedron there are three quadrilateral cuts and four triangle cuts),
we first snap them to be coincident with cuts in adjacent elements
to help promote clean fracture similar to [Jirasek and Zimmermann

Figure 16: Prescored fracture with a level set of a “mouse” (1K
triangles).

2001]. Moreover, except for a finite number of initiation points
(globally or per region), we disregard potential cuts that do not ex-
tend an existing crack. With these constraints, we determine which
of the cuts has a normal direction that most closely matches the
eigenvector associated with the maximum (or minimum) principal
stress.

Recently, control of natural phenomena has received a lot of
attention, see e.g. [Treuille et al. 2003]. We control our fracture
simulations by biasingσ ’s eigenstructure and by prescoring with
level sets. In order to promote straight cracking, we add a term
of the formβ1ppT , wherep is a vector normal to existing cracks
in adjacent elements. In order to make the fracture more interest-
ing, heterogeneous material anisotropy is modeled by seeding and
growing a number of regions in which a particular direction is as-
signed. A smoothing postprocess is used to blend these regions
together. Then a term of the formβ2ggT is added as well. With
these control structures in place, we apply the Rankine condition to
β0σ +β1ppT +β2ggT where, likeσ , theβi can be element depen-
dent. Since level sets can be used to model cracks themselves, see
e.g. [Ventura et al. 2003], we designed a level set prescoring con-
trol structure that stores level set values at the nodes of the mesh
and uses these values to determine how a particular element cracks.
Moreover, we can impose conditions such as “no cracking” in a
particular region of the level set. For an example of this, see figure
16.

8 Examples
All of our volumetric and surface meshes were generated with the
meshing algorithm of [Molino et al. 2003]. Figures 18 and 4 illus-
trated the ability to make arbitrary linear cuts through a surface and
volumetric mesh respectively. Visual accuracy is crucial for graph-
ics, and the clean cuts through a complicated mesh as in figure 18
would not be possible by only breaking at element boundaries (the
cut would be jagged). Moreover, there is no reason to limit the
visual representation of the geometry to first order accuracy just
because the stress is first order accurate.

Once the cut in figure 4 extends entirely through the brick, we
use the remaining material for our sculpting application, as demon-
strated in figure 10. The sculpting is modeled with level set values
on the nodes and the resulting embedded geometry is obtained with
a slight variant of marching tetrahedra. This sculpting produces
an embedded mesh with well conditioned elements and, as such,
is readily simulated. In figure 13, we simulate the jiggling of the
sculpted Buddha’s belly. Finally, these sculpted meshes may un-



Figure 17: Sculpted geometry admits further topology change dur-
ing simulation (210K tetrahedra).

dergo further topology change during simulation as shown in figure
17, where the diversity of sub-element geometry provides visual
richness. In such scenarios our technique is under-resolved, but
other standard methods (such as fracturing to the level of individ-
ual elements along element boundaries) is also wildly inaccurate.
That is, for example, real material does not fracture into individual
tetrahedrons.

Level sets or signed distance functions are used in other sculpt-
ing and editing systems as was shown in [Perry and Frisken 2001;
Museth et al. 2002; Cutler et al. 2002]. In [Cutler et al. 2002] level
sets were used to create layered objects, but to provide a tetrahe-
dral mesh for each layer, they needed a conforming discretization.
This creates problematic low-quality tetrahedra which they worked
to remove. Our embedded approach does not suffer from these dif-
ficulties since no new tetrahedra (only copies) are created. Also, by
virtue of having level set values define the geometry, we can make
some material (e.g. the Buddha) indelible by limitingφ on certain
nodes.

All the spherical shells examples (figures 3, 6, 14 and 16) were
run with only 1K triangles without hindering our ability to make
interesting (and straight) cuts. Moreover, they took only minutes
per simulation (about five minutes for soft examples and twenty for
stiffer ones). Our algorithm also scales well. For example, simulat-
ing the 380K tetrahedra in figure 1 takes about twenty minutes per
frame and simulating the 40K triangles in figure 18 runs at roughly
ten minutes per frame.

9 Conclusion

We proposed a new virtual node algorithm that allows material to
fracture along arbitrary (possibly branched) piecewise linear paths.
We illustrated the application of this algorithm to both volumetric
solids and thin shells. In addition, we proposed new algorithms to
treat both rigid body and self collisions for this embedded mesh
structure. Examples of cutting, sculpting and fracture were shown.
Moreover, we provided a control strategy for fracture including a
level set prescoring mechanism.

Figure 18: Cutting of a high resolution shell (40K triangles).
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