
Smoke Simulation For Large Scale Phenomena

Nick Rasmussen
Industrial Light + Magic

nick@ilm.com

Duc Quang Nguyen
Stanford University

Industrial Light + Magic
dqnguyen@stanford.edu

Willi Geiger
Industrial Light + Magic

wgeiger@ilm.com

Ronald Fedkiw
Stanford University

Industrial Light + Magic
fedkiw@cs.stanford.edu

Abstract

In this paper, we present an efficient method for simulating highly
detailed large scale participating media such as the nuclear explo-
sions shown in figure 1. We capture this phenomena by simulating
the motion of particles in a fluid dynamics generated velocity field.
A novel aspect of this paper is the creation of highly detailed three-
dimensional turbulent velocity fields at interactive rates using a low
to moderate amount of memory. The key idea is the combination of
two-dimensional high resolution physically based flow fields with a
moderate sized three-dimensional Kolmogorov velocity field tiled
periodically in space.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: smoke, incompressible Navier-Stokes equations, Kol-
mogorov spectrum, wind fields

1 Introduction

Although numerical simulations of natural phenomena such as
smoke, fire and water are now routinely used in the special effects
industry, some of the larger scale phenomena remain challenging.
For example, it is difficult to simulate the nuclear destruction of
an entire city with the level of detail necessary for a feature film.
Moreover, reference video footage tends to be of low quality and
resolution, so computer simulations of these phenomena are prefer-
able.

Previous method such as [Foster and Metaxas 1997; Stam 1999;
Fedkiw et al. 2001] can produce near real time results on small grids
and interactive results on moderate sized grids. However, on very
large grids, e.g.2000×2000×2000, these methods are impractical.
In fact, a grid of this size requires about 120GB of memory just to
store the density and velocity field as floats, which is well beyond
the capability of a high end work station. And while large parallel
computers may be available to some users, the algorithms tend to
scale rather poorly anyway.

Instead of using voxel grids defined throughout space, a more ef-
ficient use of memory can be obtained via particle methods. We are
not referring to the particles methods such as [Foster and Metaxas
1996; Foster and Fedkiw 2001; Enright et al. 2002] that still re-
quire a three-dimensional grid to store the velocity fields, but in-
stead methods that are grid independent such as Smoothed Parti-
cle Hydrodynamics (SPH), see e.g. [Gingold and Monaghan 1977;

Figure 1:CG generated nuclear explosion.

Desbrun and Cani 1996; Hadap and Magnenat-Thalmann 2001].
Unfortunately, the standard SPH approach can be rather expensive
when using a large number of particles, since one has to keep track
of the nearest neighbors and solve fluid equations for velocity and
pressure. As an alternative, we advocate the integration of nonin-
teracting particles forward in time using a wind field that does not
require a large three-dimensional grid for its representation. Tra-
ditionally (e.g. [Sims 1990; Wejchert and Haumann 1991; Rudolf
and Raczkowski 2000]) wind fields were created using the superpo-
sition principle inherent to solutions of a simplified Laplace equa-
tion model, and then either particles or a grid based density was
advected through these fields. We instead propose deriving a ve-
locity field richer in structure from a number of two-dimensional
fluid dynamics simulations, which can be carried out rather effi-
ciently even for a high level of detail. Thus to obtain results on
the scale of2000× 2000× 2000, we only need to simulate a few
2000×2000grids saving about a factor of2000in both simulation
time and memory. This reduces the amount of memory to around
60 megabytes without sacrificing detail. Of course, we still need to
store the position of the particles but only those that participate in
the scene, i.e. since the particles don’t interact, we don’t need the
ones deep inside (or behind) a plume. This is similar to the opti-
mization of storing the particles only near a water surface proposed
in [Foster and Fedkiw 2001].

We also use a periodic spatial tiling of a moderate sized three-
dimensional Kolmogorov spectrum, see e.g. [Stam and Fiume
1993; Lamorlette and Foster 2002], and this requires another 24
megabytes of memory. The main role of the Kolmogorov spectrum
is to break up any two-dimensional artifacts and transition the parti-
cle motion into a three-dimensional turbulent structure,not simply
to add more detail to the simulation. Both the two-dimensional
computational fluid dynamics (CFD) solution and the Kolmogorov

velocity field can be precomputed rather quickly (just a few seconds
per frame).

The particles are rendered using a view-dependent voxel-based
method that is efficient enough to allow sequences of several hun-
dred frames to be rendered overnight at resolutions of over 2000
pixels across while still including all the effects necessary for visual
realism. Details in the variation of density and illumination as small
as a single pixel are visible. The volume is motion blurred accord-
ing to both its motion and the camera motion. Direct illumination
of the volume by external light sources with correct shadowing is
supported, as is incandescence. Diffuse scattering of light within a
participating medium is simulated as well.

2 Previous Work

Early approaches focused on the smoke’s density (mostly ignor-
ing velocity) [Gardner 1985; Perlin 1985; Ebert and Parent 1990;
Sakas 1990], and detail was added using time animated solid tex-
tures. [Stam and Fiume 1993] modeled random velocity fields
using a Kolmogorov spectrum, and [Stam and Fiume 1995] pro-
posed an advection-diffusion approach for densities composed of
“warped blobs” to model gaseous distortions by wind fields. In
[Sakas 1990], the spectral systhesis approach was used to generate
a three dimensional random density field for gaseous phenomena.

[Kajiya and von Herzen 1984] were the first to simulate the equa-
tions of fluid dynamics directly, and some two-dimensional models
were considered in [Yaeger and Upson 1986; Gamito 1995], but one
of the more significant works in three-dimensional simulations was
[Foster and Metaxas 1996; Foster and Metaxas 1997]. Since their
explicit time integration scheme limits the time step increasing the
computational cost, [Stam 1999] proposed an unconditionally sta-
ble method that uses a semi-Lagrangian advection scheme. [Fedkiw
et al. 2001] introduced the notion of a vorticity confinement [Stein-
hoff and Underhill 1994] to add more small scale rolling motions
to these simulations.

The compressible version of the Navier-Stokes equations can be
used to model explosions, see e.g. [Neff and Fiume 1999; Yn-
gve et al. 2000]. Since solving the compressible equations requires
a very small time step, others have modeled fire (without shock
waves) using the incompressible version of the equations. For ex-
ample, [Nguyen et al. 2002] simulated fire using two phase incom-
pressible flow, and [Lamorlette and Foster 2002] proposed a very
practical procedural approach.

Another large scale problem (but one that we do not pursue in
this paper) is the simulation of clouds. See for example, [Dobashi
et al. 2000] who used lattice gas solvers based on cellular automata,
and [Miyazaki et al. 2002] who used an approach similar to [Fedkiw
et al. 2001] including vorticity confinement.

There are several approaches to the problem of high-quality vol-
ume rendering, see e.g. [Brodlie and Wood 2001]. Early work
[Blinn 1982; Kajiya and von Herzen 1984] traced rays directly
through a set of spherical particles, however, it is difficult to sup-
port the high albedo scattering that occurs in an optically dense
medium with this method. Other work used a three-dimensional
grid with density and/or lighting information stored in each voxel,
see e.g. [Levoy 1988; Stam 1999; Fedkiw et al. 2001]. Isotropic
scattering can be calculated by exchange of light between the vox-
els. The problem with this method is that a large number of vox-
els are required to represent fine details in the volume particularly
if features at varying distances to the camera are visible in a per-
spective projection. A related approach used ”splatting” [Westover
1990], where instead of solving the volume rendering integral in
three dimensions, the voxels are projected onto the image plane
and composited in two dimensions. This technique offers potential
advantages in speed and memory requirements, but also poses sev-
eral difficulties, particularly in achieving high quality results with
an animated perspective view. Some recent work [Mueller et al.

1999] has ameliorated these problems, but the technique is still best
suited to visualization of scientific data.

Recent work used photon mapping [Jensen and Christensen
1998; Fedkiw et al. 2001] to simulate light transport in a partici-
pating medium. This uses bidirectional ray tracing with a structure
of spatially sorted particles (photons) to store indirect illumination.
The method is general enough to handle both isotropic and non-
isotropic scattering and volume caustics. However, as the resolu-
tion of the rendered image and the detail present in the density of
the volume and the lighting increases, the method becomes exces-
sively memory and processor intensive. There is also no explicit
mechanism to store density, direct illumination or self-illumination,
although the method could be extended to do so.

3 Simulation Method

3.1 Two-dimensional Incompressible Flow

We model the smoke’s velocity,u = (u,v), with the two-
dimensional incompressible Euler equations [Landau and Lifshitz
1998]

∇ ·u = 0 (1)

ut = −(u ·∇)u−∇p+ f (2)

wherep is the pressure of the gas, andf accounts for the external
forces. Note that we have arbitrarily set the constant density of the
fluid to one. Equation 2 is solved by first computing an interme-
diate velocityu∗ ignoring the pressure term, and then adding the
pressure correction term usingu = u∗−∆t∇p where the pressure
is found by solving∇2p = ∇ · u∗/∆t. We use a semi-Lagrangian
stable fluids approach to find the intermediate velocityu∗ and solve
the linear system of equations for the pressure using a precondi-
tioned conjugate gradient method. See [Stam 1999; Fedkiw et al.
2001] for the details.

The smoke’s temperature and density are passively convected
by the velocity field,Tt = −(u ·∇)T and ρt = −(u ·∇)ρ , and
thus both can be solved for using the semi-Lagrangian stable flu-
ids method. Heavy smoke tends to fall downwards due to gravity
while hot gases tend to rise due to buoyancy. Although we don’t
account for the temperature in the simulation (only using it for ren-
dering), the external buoyancy force is directly proportional to the
density,fbuoy=−αρz wherez = (0,1) points in the upward verti-
cal direction andα is positive constant with appropriate units.

Nonphysical numerical dissipation damps out interesting flow
features, and we use vorticity confinement (see [Steinhoff and Un-
derhill 1994; Fedkiw et al. 2001; Nguyen et al. 2002]) to generate
the swirling effects. First the vorticityω = ∇× u is identified as
the (“paddle-wheel”) source of this small scale structure, and then
normalized vorticity location vectors,N = ∇|ω|/|∇|ω || that point
from lower to higher concentrations of vorticity are constructed.
The magnitude and direction of the vorticity confinement force is
computed asfcon f = εh(N×ω) whereε > 0 and is used to control
the amount of small scale detail added back into the flow, and the
dependence on the grid sizeh guarantees that the physically correct
solution is obtained as the mesh is refined.

Figure 2:Density contours from a two-dimensional simulation.

3.2 Interpolation

After generating a few two-dimensional velocity fields (with den-
sity and temperature), we define a three-dimensional velocity field
via interpolation. Traditional methods created wind fields using the
superposition principle inherent to solutions of a simplified Laplace
equation model, and then advected either particles or a grid based
density through these fields. More recently there has been a surge
of CFD algorithms, e.g. [Foster and Metaxas 1997; Stam 1999;
Fedkiw et al. 2001; Nguyen et al. 2002] arising as competing meth-
ods. While wind fields are much faster than their CFD counter-
parts, the CFD algorithms produce highly detailed and realistic flow
fields. Thus, we propose using the two-dimensional versions of
these CFD algorithms as two-dimensional cross-sections of flow
fields in three-dimensional space, and define interpolation meth-
ods to fill in the empty regions between these two-dimensional
cross-sections. That is, we piece together velocity fields in three-
dimensional physical space with the aid of interpolation, as opposed
to piecing together analytic flow fields in solution space as is typi-
cal for wind field methods. Many of the benefits of both approaches
are retained. For example, there is no need to solve the Navier-
Stokes equations in three spatial dimensions. Only very efficient
two-dimensional simulations are needed, and thus the bottle neck
is the particle advection for both our method and the traditional
wind field approach. Moreover, we obtain highly detailed physi-
cally based velocity fields from full, but two-dimensional, Navier-
Stokes simulations removing the need for guessing how to piece
together analytic flow fields to obtain the desired look.

For simplicity, suppose that we begin with two separate (but sim-
ilar) two-dimensional computations and place them side by side in
three-dimensional space as shown on the left hand side of figure
3. Then the velocity field (and temperature and density) at a point
P can be defined using linear interpolation between the two clos-
est points as shown in the figure. In general, these closest points
will not lie exactly on two-dimensional grid points, so interpolation
is again used to find an appropriate value at the closest point. In-
terpolation is carried out in time as well, i.e. the two-dimensional
solutions are cached once per frame, and subframe values are de-
fined at the closest points using interpolation in time. Although one
cannot readily define flow fields throughout all of space using this
method, the participating media phenomena we are concerned with
usually lie in a finite region.

P O1

O = 0

O0
P

Figure 3: Parallel interpolation (side view) and cylindrical in-
terpolation (top view), respectively.

There are many variants on this method, e.g. one could place
the two-dimensional solutions in more creative ways, use differ-
ent methods for interpolation, etc. The right hand side of figure 3
shows a top view of two planes tiled in a cylindrical fashion, and
here the interpolation is carried out by finding the closest points
along an arc of constant radius from the vertical axis. This vari-
ant is especially useful for the many phenomena that have approxi-
mate axial symmetry. For example, to generate a three-dimensional
smoke plume, we calculate a number of similar (but slightly differ-
ent) two-dimensional plumes, cut each one in half, and tile them in
a circle at varyingθ locations. Then the interpolation illustrated in
figure 3 is carried out using the two slices that a point lies between.
Note that one could use the axisymmetric Navier-Stokes equations
here as well, but we have found this unnecessary especially since a
number of lower dimensional calculations are required either way

to provide a degree of variance from one tile to the next.

3.3 Kolmogorov Spectrum

Since we build a three-dimensional velocity field from two-
dimensional solutions of Navier-Stokes equations, it is desirable
to add a fully three-dimensional component to the velocity field.
This is accomplished using a Kolmogorov spectrum which was de-
scribed in detail in [Stam and Fiume 1993] and used in many ap-
plication, e.g. to model fire in [Lamorlette and Foster 2002]. (Note
that the Kolmogorov technique is similar to the Phillips spectrum
techniques used by [Tessendorf 2002] to simulate water waves on
oceans.) The main role of the Kolmogorov spectrum isnot simply
to add more detail to the simulation, but instead to break up any
two-dimensional artifacts and transition the particle motion into a
three-dimensional turbulent structure.

The main idea is to use random numbers to construct an energy
spectrum in Fourier space that subsequently determines the struc-
ture of the velocity field. There are a wide variety of different mod-
els in the turbulence literature, but the most popular is probably the
Kolmogorov energy spectrum

Ph(k) =
{

0 i f k < kinertial

1.5ε
2
3 k−

5
3 otherwise

where energy introduced at frequencykinertial is propagated to
higher frequencies at a constant rateε. After constructing an en-
ergy spectrum in Fourier space, one enforces the divergence free
condition and uses an inverse FFT to obtain a velocity field full of
small scale eddies. See [Stam and Fiume 1993] for more details.

Since the velocity field is periodic, a single grid can be used as a
tiling of all of space. Moreover, one can use two grids of different
sizes to increase the period of repetition to the least common mul-
tiple of their lengths alleviating visually troublesome spatial rep-
etition (although this is a minor point for us since we blend the
Kolmogorov velocity field with our non-periodic CFD/interpolation
generated velocity field). We also fill the time domain by construct-
ing a few Kolmogorov velocity fields, assigning each one to a dif-
ferent point in time, and interpolating between them at intermediate
times. In practice, two spectrums are usually enough and we alter-
nate between them every 24 frames. Finally, at any point in space
and time, we define the total velocity field as a linear combina-
tion of the Kolmogorov field and the CFD/interpolation generated
wind field. Again, we stress that we do not use this to construct a
three-dimensional velocity field, but instead compute the velocity
at a point in space and time on the fly using the Kolmogorov veloc-
ity field, the two dimensional CFD generated velocity fields, and
appropriate interpolation rules.

3.4 Particle Advection

Once we have implicitly defined our flow field at every point of in-
terest in space and time, we can passively advect particles through
the flow usingxt = u wherex is the particle position. If desired,
copies of two-dimensional flow fields and the three-dimensional
Kolmogorov velocity field can be distributed to multiple processors
where particles can be passively evolved with no intercommunica-
tion requirements. This allows one to generate an incredibly large
numbers of particles, although we have found that even one proces-
sor can readily generate enough particles to move the bottleneck to
the rendering stage.

There are many advantages to using particles to represent the
flow field. For example, one can rapidly visualize the results of
a calculation by simply drawing points at every particle location,
density and temperature fields can be interpolated from the two-
dimensional grids to the particle locations and stored there for sub-
sequent rendering, and both an orientation and an angular velocity
can be evolved with each particle to provide additional information

(such as an evolving coordinate system, see e.g. [Szeliski and Ton-
nesen 1992]) for the rendering stage.

4 Rendering
In order to alleviate the memory difficulties associated with map-
ping all the particles to a large three-dimensional voxel grid, we
use a truncated pyramid shaped grid aligned with the view frustum,
i.e. each voxel is a small truncated pyramid. This offers several ad-
vantages: as the grid is aligned with the pixels of the image, aliasing
artifacts are greatly reduced; features near the camera are automat-
ically resolved with the appropriate higher level of detail; and the
resolution of the grid can be relatively low in the axis perpendicular
to the view plane resulting in a smaller grid with a corresponding
reduction in memory use and render time. In addition to the par-
ticle densities, the voxel grid also stores the total radiance (sum of
direct illumination, incandescence and scattered light). The direct
illumination and incandescence are calculated first, and then diffuse
scattering of light within the volume is simulated.

4.1 Ray Marching

The volume is rendered by tracing rays from the camera through
the voxel grid. As the voxel grid is aligned with the view frustum,
ray traversal is extremely efficient (just incrementing an index). We
accumulate color and opacity, where opacities of 0 and 1 corre-
spond to zero and complete attenuation respectively. The opacity of
a voxel centered at pointx is calculated asa = 1−exp(−τD(x)dz)
whereD(x) is the density of the voxel,dz is the depth of the voxel
in the direction of the ray andτ is a constant that controls the con-
version from density to opacity. We accumulate opacity along the
ray byAn+1 = An +a(1−An). An advantage of ray tracing in this
direction is that the trace can be terminated as soon as full opacity
(> .999) is reached, and this happens relatively early for many of
the phenomena that we are interested in. At each point we also ac-
cumulate the illuminated color of the volume weighted by the opac-
ity calculated as above. This isCn+1 = Cn + a(1−An)I(x) where
I(x) is the stored illumination at the voxel. This gives us a correctly
premultiplied image which can be directly composited over other
elements in the scene.

4.2 Particle Sampling

The particle density is sampled onto the frustrum shaped voxel grid
by treating each particle as one or more ellipsoids. Each ellipsoid
is assigned a radius on each axis of its particles local coordinate
system, and has a density at a pointx in the local coordinate system
given byD(x) = 1− f (1−s,1, |x|/r) where0≤ s≤ 1 is a softness
factor,r is the particle radius, andf is defined as

f (a,b, t) =

0 i f t ≤ a
1 i f t ≥ b

−2
(t−a

b−a

)3 +3
(t−a

b−a

)2
i f a < t < b

.

A turbulence function is used to modulate the density function to
add extra detail [Perlin 1985]. We also use motion blur to sample
the ellipsoids onto the voxel grid according to the relative motion
between the corresponding particle and the camera.

4.3 Lighting Model

Direct illumination of the volume is calculated at each voxel that
has a non-zero density by tracing rays to each light source in the
scene to calculate attenuation of the incoming light. The light from
the source is attenuated as the ray is traced through the voxel grid
using the method described in section 4.1. The volume can also
be incandescent, and this is simulated by treating each particle as
a small blackbody radiator that illuminates the surrounding voxels.
The radius and shape of the illumination function is based on the

Figure 4:The left and middle explosion plumes were generated
with our new 2D technique, while the plume on the right (shown
for comparison) was generated with a fully 3D simulation.
density function of the particle and we allow the user explicit con-
trol over the mapping from blackbody temperature to color values.
The self-illumination is then accumulated with the direct external
illumination stored in the voxels.

A final important effect is that of light scattering within the vol-
ume. The transfer of light in a participating medium is described
by [Chandrasekhar 1960]. In general, the scattering function is
anisotropic. However, in the case of a high albedo medium, it can be
shown that that the scattering becomes effectively isotropic and can
be modeled as a diffusion process [Stam and Fiume 1995; Jensen
et al. 2002]. Having stored illumination values at each voxel, we
then simulate isotropic light scattering as diffusion. We use a sim-
ple but efficient method that assumes that light is scattered from
each voxel uniformly in all directions and attenuated exponentially
with optical distance. Since a high albedo medium can scatter light
over large distances, we accelerate this using a hierarchical method
[Jensen and Buhler 2002].

5 Results
All of our simulations used a Pentium4 2.2GHz or comparable
machine. Figure 4 (left and middle) shows a large explosion ob-
tained by advecting a half million particles through a flow field con-
structed from two-dimensional250×250grid cell simulations and
a 128×128×128Kolmogorov grid. The simulation times were a
few seconds per frame each for the two-dimensional simulations,
the Kolmogorov spectrum, and the particle advection. For compar-
ison, figure 4 (right) shows the results obtained from a fully three-
dimensional simulation (including a Kolmogorov spectrum) of an
explosion with similar scale. Using a140× 140× 220 grid, the
simulation used about 1.5 gigabytes of RAM and took about 1-2
minutes per frame. Figure 1 is characteristic of an even larger scale
nuclear explosion, and we increased the resolution of the two di-
mensional simulations to500×500grid cells which still simulated
in less than 10 seconds per frame. (We tried two-dimensional simu-
lations as large as2000×2000grid cells and the computational cost
was only about two minutes per frame.) While the Kolmogorov grid
was the same size as in figure 4, we used as many as 6 million parti-
cles increasing the simulation times for particle advection to about
two minutes per frame. Note that this example uses one radially in-
terpolated set of velocity fields for the large plume and another for
the ground elements. Unlike the smaller scale simulations in figure
4, we were unable to carry out a comparable simulation with a fully
three-dimensional algorithm due to RAM limitations. Rendering
times for all simulations ranged from 5-10 minutes per frame.

6 Conclusions and Future Work
In this paper, we modeled large scale phenomena using the combi-
nation of a few highly detailed two-dimensional flow fields and a

moderate sized three-dimensional Kolmogorov velocity field. This
technique is a few orders of magnitude more efficient than fully
three-dimensional fluid dynamics calculations, and thus can obtain
a level of detail unattainable using those methods.

It is easy to sculpt and control flow fields in two spatial dimen-
sions, since the results can often be obtained in real or interactive
time. Moreover, one can create a library of two-dimensional sim-
ulations complete with the parameters used to generate them, and
then an animator can more easily choose a starting point for con-
structing future simulations.

7 Acknowledgements
Research supported in part by an ONR YIP and PECASE award
(ONR N00014-01-1-0620), a Packard Foundation Fellowship, a
Sloan Research Fellowship, ONR N00014-03-1-0071, NSF ITR-
0121288 and NSF DMS-0106694. We would like to thank Cliff
Plumer, Steve Sullivan, Samir Hoon, Sebastian Marino and Indus-
trial Light + Magic for for their support and enthusiasm.

References
BLINN , J. F. 1982. Light Reflection Functions for Simulation of Clouds

and Dusty Surfaces.Comput. Graph. 16, 3, 21–29.

BRODLIE, K., AND WOOD, J. 2001. Recent Advances in Volume Visual-
ization. Comput. Graph. Forum 20, 1, 125–148.

CHANDRASEKHAR, S. 1960.Radiative Transfer. Dover, New York.

DESBRUN, M., AND CANI , M.-P. 1996. Smoothed particles: A new
paradigm for animating highly deformable bodies. InComput. Anim. and
Sim. ’96 (Proc. of EG Workshop on Anim. and Sim.), Springer-Verlag,
R. Boulic and G. Hegron, Eds., 61–76.

DOBASHI, Y., KANEDA , K., OKITA , T., AND NISHITA , T. 2000. A Sim-
ple, Efficient Method for Realistic Animation of Clouds. InSIGGRAPH
2000 Conf. Proc., Annual Conf. Series, 19–28.

EBERT, D. S., AND PARENT, R. E. 1990. Rendering and Animation of
Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer
Techniques. InProc. of SIGGRAPH 1990, 357–366.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Animation and
Rendering of Complex Water Surfaces. InProc. of SIGGRAPH 2001,
736–744.

FEDKIW, R., STAM , J., AND JENSEN, H. W. 2001. Visual Simulation of
Smoke. InProc. of SIGGRAPH 2001, 15–22.

FOSTER, N., AND FEDKIW, R. 2001. Practical Animation of Liquids. In
Proc. of SIGGRAPH 2001, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic Animation of Liquids.
Graph. Models and Image Processing 58, 471–483.

FOSTER, N., AND METAXAS, D. 1997. Modeling the Motion of a Hot,
Turbulent Gas. InProc. of SIGGRAPH 1997, 181–188.

GAMITO , M. N. 1995. Two dimensional Simulation of Gaseous Phenom-
ena Using Vortex Particles. InProc. of the 6th Eurographics Workshop
on Comput. Anim. and Sim., Springer-Verlag, 3–15.

GARDNER, G. Y. 1985. Visual Simulation of Clouds. InProc. of SIG-
GRAPH 1985, 297–384.

GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed Particle
Hydrodynamics-Theory and application to nonspherical stars.Mon. Not.
R. Astron. Soc. 181, 375.

HADAP, S.,AND MAGNENAT-THALMANN , N. 2001. Modeling Dynamic
Hair as a Continuum.Comput. Graph. Forum 20, 3.

JENSEN, H. W., AND BUHLER, J. 2002. A Rapid Hierarchical Rendering
Technique for Translucent Materials. InProc. of SIGGRAPH 2002, 576–
581.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient Simulation of
Light Transport in Scenes with Participating Media using Photon Maps.
In Proc. of SIGGRAPH 2002, 311–320.

JENSEN, H. W., MARSCHNER, S., LEVOY, M., AND HANRAHAN , P.
2002. A Practical Model for Subsurface Light Transport. InProc. of
SIGGRAPH 2002, 511–518.

KAJIYA , J. T., AND VON HERZEN, B. P. 1984. Ray Tracing Volume
Densities. InProc. of SIGGRAPH 1984, 165–174.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural Modeling of Flames
for a Production Environment. InProc. of SIGGRAPH 2002, 729–735.

LANDAU , L. D., AND L IFSHITZ, E. M. 1998. Fluid Mechanics, 2nd
edition. Butterworth-Heinemann, Oxford.

LEVOY, M. 1988. Display of Surfaces from Volume Data.IEEE Comput.
Graph. and Appl. 8, 3, 29–37.

M IYAZAKI , R., DOBASHI, Y., AND NISHITA , T. 2002. Simulation of
Cumuliform Clounds Based on Computational Fluid Dynamics.Proc.
EUROGRAPHICS 2002 Short Presentation, 405–410.

MUELLER, K., MOLLER, T., AND CRAWFIS, R. 1999. Splatting without
Blur. In Proc. IEEE Vis. 1999, 363–370.

NEFF, M., AND FIUME , E. 1999. A Visual Model for Blast Waves and
Fracture. InProc. of Graph. Interface 1999, 193–202.

NGUYEN, D., FEDKIW, R., AND JENSEN, H. W. 2002. Physically Based
Medeling and Animation of Fire. InProc. of SIGGRAPH 2002, 721–728.

PERLIN, K. 1985. An Image Synthesizer. InProc. of SIGGRAPH 1985,
287–296.

RUDOLF, M. J., AND RACZKOWSKI, J. 2000. Modeling the Motion of
Dense Smoke in the Wind Field.Comput. Graph. Forum 19, 3.

SAKAS , G. 1990. Fast Rendering of Aritrary Distributed Volume Densities.
In Proc. of Eurographics 1990, 519–530.

SIMS, K. 1990. Particle Animation and Rendering Using Data Parallel
Computation.Comput. Graph. 24, 4, 405–413.

STAM , J.,AND FIUME , E. 1993. Turbulent Wind Fields for Gaseous Phe-
nomena. InProc. of SIGGRAPH 1993, 369–376.

STAM , J., AND FIUME , E. 1995. Depicting Fire and Other Gaseous Phe-
nomena Using Diffusion Process. InProc. of SIGGRAPH 1995, 129–
136.

STAM , J. 1999. Stable Fluids. InSIGGRAPH 99 Conf. Proc., Annual Conf.
Series, 121–128.

STEINHOFF, J., AND UNDERHILL , D. 1994. Modification of the Euler
Equations for “Vorticity Confinement”: Application to the Computation
of Interacting Vortex Rings.Phys. of Fluids 6, 8, 2738–2744.

SZELISKI , R., AND TONNESEN, D. 1992. Surface modeling with oriented
particle systems.Comp. Graph. (SIGGRAPH Proc.), 185–194.

TESSENDORF, J. 2002. Simulating Ocean Water. InSimulating Nature:
Realistic and Interactive Techniques, SIGGRAPH 2002, Course Notes
9.

WEJCHERT, J., AND HAUMANN , D. 1991. Animation Aerodynamics.
Comput. Graph. 25, 4, 19–22.

WESTOVER, L. 1990. Footprint Evaluation for Volume Rendering. InProc.
of SIGGRAPH 1990, 367–376.

YAEGER, L., AND UPSON, C. 1986. Combining Physical and Visual Sim-
ulation - Creation of the Planet Jupiter for the Film 2010. InProc. of
SIGGRAPH 1986, 85–93.

YNGVE, G. D., O’BRIEN, J. F.,AND HODGINS, J. K. 2000. Animating
Explosions. InProc. of SIGGRAPH 2000, 29–36.

