
A Level Set Method for Thin FilmEpitaxial Growth �Susan Chen y,Barry Merriman z,Myungjoo Kang x,Russel E. Caish {,Christian Ratsh k,Li-Tien Cheng ��,Mark Gyure, yy,Ronald P. Fedkiw zz,Stanley Osher �November 3, 2000
�Researh supported in part by NSF and DARPA through grant NSF-DMS9615854 aspart of the Virtual Integrated Prototyping (VIP) InitiativeyMathematis Department, UCLA. Email: suhen�math.ula.edu.zMathematis Department, UCLA. Email: barry�math.ula.edu.xMathematis Department, UCLA. Email: mkang�math.ula.edu.{Mathematis Department, UCLA. Email: aish�math.ula.edu.kHRL Labs and Mathematis Dept., UCLA. Email: ratsh�math.ula.edu.��Mathematis Department, UCLA. Email: lheng�math.ula.edu.yyHRL Laboratories. Email: gyure�hrl.omzzResearh supported in part by ONR N00014-97-1-0027. Mathematis Department,UCLA. Email: rfedkiw�math.ula.edu.�Mathematis Department, UCLA. Email: sjo�math.ula.edu.1



AbstratWe present a level set based numerial algorithm for simulating amodel of epitaxial growth. The island dynamis model is a ontinuummodel for the growth of thin �lms (see also [4, 12, 21, 22, 31℄). Inthis paper, we emphasize the details of the numerial method used tosimulate the island dynamis model.1 IntrodutionModeling epitaxial growth presents an enormous hallenge to theoretialphysiists and materials sientists. The range of length and time sales rep-resented by problems of pratial interest (e.g., the growth of devie layers)spans many orders of magnitude [13℄. Atomisti proesses an signi�antlya�et quantities suh as surfae morphology at the largest length and timesales [3℄. A model for epitaxial growth with great potential for use in engi-neering appliations would desribe lateral sales of several mirons or more,be appropriate for a variety of homoepitaxial and heteroepitaxial systems,and be apable of desribing di�erent growth tehniques.Continuum equations of motion that take the form of partial di�erentialequations [41℄ for the surfae height pro�le do yield information on morphol-ogy at large length sales. As they are typially formulated [41, 42℄, however,ontinuum equations are appropriate only in a regime where the surfae isalready assumed to be marosopially rough. These ontinuum methodsare therefore unsuitable for desribing atomi sale roughness whih is a on-ern in many devie appliations. Kineti Monte Carlo (KMC) simulations[9, 19, 23, 44℄ o�er an alternative to ontinuum equations. They allow easyimplementation of a wide range of atomisti kineti proesses, whih an,in priniple, be identi�ed and their rates determined from �rst priniplesalulations [32℄. However, simulations are usually based on the length andtime sales of single atoms and adatom hopping rates, so modeling systemsof pratial interest is not always feasible.Despite the pratial limitations of the methods desribed above, theyhave been used with great e�et to provide a omprehensive oneptual andomputational framework for desribing homoepitaxial growth [39℄, espe-ially by moleular-beam epitaxy. More fundamental problems arise, how-ever, when attempts are made to extend these tehniques to heteroepitaxialsystems, where the e�ets of lattie mismath must be inorporated, or to2



other growth methods, suh as vapor-phase epitaxy (VPE), whih requiresoupling the atomisti kinetis on the substrate to the hydrodynami deliv-ery of new material. Some aspets of these issues have been addressed forpartiular systems, but no general methodology has emerged to provide aunifying framework in the spirit of the work desribed above.In this paper, a new model and losely related numerial tehnique arepresented that address these issues. In this model, growth is desribed by thereation and subsequent motion of island boundaries; hene, this model isreferred to as \island dynamis" [4, 12℄. The model is disrete in the growthdiretion, but ontinuous in the lateral diretions and therefore, in prini-ple, an desribe growth on arbitrarily large lateral length sales. Moreover,sine the lateral diretions are treated ontinuously, ontinuum equationsrepresenting any �eld variable an be oupled to the growth by solving theappropriate boundary value problem for the �eld and using loal values ofthis �eld to determine the loal veloity of the island boundaries. For ex-ample, the strain �elds that our in the presene of lattie mismath or thehydrodynami �elds in a VPE reator an be readily aommodated by thismethod.Although island dynamis is a natural way of desribing many aspetsof epitaxial growth, its implementation requires traking a large number ofindividual interfaes that oalese or are reated by nuleation. The devel-opment of the level set method for simulating the motion of free boundaries[7, 25℄, now makes numerial implementation of suh a model pratial. Theisland dynamis model and some preliminary results from it have been in-trodued in previous work [4, 12, 21, 31℄; the emphasis in this work is on thenumerial issues assoiated with using the level set method in the ontext ofa model for irreversible growth.This paper proposes a new numerial tehnique leading to an improvedtreatment of the internal � = 0 boundary ondition over the smeared outdelta funtion method proposed in [21℄ whih uses a \slushy" interfae for-mulation that does not ahieve the � = 0 internal boundary ondition unlessthe penalty term K is in�nite whih is, of ourse, not numerially possible.This \slushy" interfae formulation was proposed (in [21℄) as an alternativeto the higher order aurate method in [7℄, sine the method in [7℄ is muhtoo slow (numerially) for the types of problems onsidered in this paper(and e.g. [4, 12, 21, 31℄). Our new numerial tehnique gives an auraterepresentation of the � = 0 internal boundary ondition (unlike [21℄). Fur-thermore when this tehnique is implemented in onjuntion with impliit3



time stepping, one obtains a symmetri matrix whih is faster to invert thanthe nonsymmetri matrix produed in [7℄ making this new tehnique fastenough for the problems onsidered herein. We remark that our new formu-lation has been 0 implemented in previous work, see e.g. [22℄.2 Island Dynamis and the Level Set For-malismIn this setion, a brief introdution to the level set method is given, followedby a desription of the island dynamis model for irreversible growth. Inthe island dynamis methodology, the physis is almost entirely ontained inthe spei�ation of the normal veloity of island boundaries. The evolutionof the boundaries an, in priniple, be done by any numerial method. Inpratie, however, the level set method is the preferred approah sine thismethod handles topologial hanges suh as mergers in a ompletely naturalway. Sine simulating epitaxial growth in the so-alled layer-by-layer growthregime may require handling the nuleation and subsequent merger of hun-dreds or even thousands of islands, this advantage has onsiderable pratialsigni�ane.Sine the level set method was �rst introdued by Osher and Sethian[25℄, level set algorithms have been suessfully applied to a wide variety ofproblems [6, 7, 10, 14, 20, 38, 45℄. One an �nd an extensive review of levelset terminology and aomplishments in [21℄. In brief, the basis behind thelevel set method is that any given urve or interfae � in Rn, bounding anopen region 
, an be represented as the zero level set of a funtion � (~x; t),i.e. � = f~x : � (~x; t) = 0g (1)Given a veloity �eld ~v, one an analyze the motion of the urve � by relatingit to the motion of the zero level set of �. The partial di�erential equationthat will move the level sets of � by ~v is:���t + ~v � r� = 0 (2)The normal vetor ~n an be written in terms of � as ~n = r�jr�j , and sine~v = vn ~n, equation (2) is equivalent to���t + vn jr�j = 0 (3)4



whih an be referred to as the level set equation.One of the many advantages of using a level set approah is that the re-sulting numerial sheme is Eulerian, i.e. only a �xed number of gridpointsare needed. In ontrast, when using a front-traking method [16℄, one hasto aount for a potentially large number of gridpoints, depending upon thenumber of islands. Suh methods are omputationally expensive and topolog-ial hanges suh as merging may be diÆult to handle. Phase �eld methods[5, 17, 18, 43℄ are urrently popular in modeling solidi�ation problems be-ause boundaries are not expliitly traked. But phase �eld methods dependupon a small parameter for interfae thikness. Without proper numerialresolution of this parameter, there is no guarantee that the omputational re-sults from phase �eld methods will be aurate or fully onverged. A furtherdisussion of this is ontained in [20℄.The earliest level set approah for solidi�ation type problems oupledlevel set ideas to boundary integral methods [33℄. Later, the boundary inte-gral dependenies were removed, produing a simpler algorithm [7℄. For theisland dynamis model, the level set method is the best approah due in partto its exibility and relatively low omputational ost. In addition to beingable to resolve sharp interfaes (island boundaries in this ase), the level setmethod an handle suh topologial hanges as mergers and breakups, asalready mentioned above. When there are several monolayers, the level setfuntion is useful for determining whih monolayer a given gridpoint is on.A more detailed disussion of how � is used to ompute suh statistis asthe number of islands, island sizes and island boundary lengths is inludedin Setion 3.7. These statistis are important when omparing the islanddynamis model to KMC methods, as well as to experimental data. Goodagreement with these statistis provides signi�ant validation of the islanddynamis model and the level set based numerial algorithm.For a ontinuous adatom density �(x; y; t), the di�usion equation is���t = r � (D r�) + F � 2D�1�2 (4)where D stands for the di�usion oeÆient and F for the ux of atoms tothe surfae. Realisti parameter values for D are of the order O(105) �O(108) and F is O(1), making D=F O(105)� O(108). Note that the ux Fan be spatially varying but is usually onstant on the spatial sale underonsideration here. The length sale is of the order of the lattie spaing andthe time sale is of the order of overage of the substrate. The last term in5



(4), �2D�1�2, aounts for the loss of adatoms due to nuleation. The fator2 omes from the assumption that an island of size 2 is stable, i.e. the ritialisland size is 1. The numerial boundary ondition for � on a square grid isperiodi. For eah of the islands, the hoie of boundary ondition for � willdepend upon the physis of the model. Irreversible aggregation or growthis a term for the proess wherein any adatom hitting an island boundarywill attah irreversibly to that island. The results presented in Setion 4 arebased upon an irreversible aggregation model, so the orresponding hoiefor the boundary ondition imposed on the island boundaries is:� = 0 (5)The term �2D�1�2 in (4) is an approximation to the loss of adatoms dueto nuleation, in that it spreads the loss over the surfae. Sine N(t) is thetotal number of islands nuleated up to a time t, this term omes from theassumption that nuleation ours at a ontinuous rate given bydNdt = D�1 < �2 > (6)where < � > denotes the spatial integral. The oeÆient �1 is the so-alledapture number [2℄ for nuleation. Note that the spatially varying �2 termin (4) is the same term used to determine < �2 > in (6).Island boundaries move with a normal veloity vn. This veloity is de-termined by the physis of adatoms attahing to the island boundaries andis proportional to the net partile ux to the boundary. In the ase of irre-versible aggregation, this ux is simply the surfae di�usive ux of adatoms,given by �Dr�. Let a denote the lattie onstant, and a2 the area per atom.The outward normal veloity is given byvn = a2 [�D r� � ~n℄ = �a2 D "���~n# (7)where [ � ℄ denotes the jump aross island boundaries in the normal diretion(i.e., [f ℄ = f+ � f� in whih the subsripts � denote the two sides of theinterfae with the normal ~n pointing from \-" to \+") and it is assumedthat [D℄ = 0. This is a valid assumption sine the interfae is not a phaseboundary, only a terrae boundary, and energetially the di�erent heights arethe same. In other ases, there might be a hange in D, e.g. if the boundarywas a phase transition in the reonstrution. Note that the method in [7℄,(upon whih this work is based), allows for jumps in the di�usion oeÆientfor Stefan type problems. 6



3 Numerial MethodIn this work, the model equations (4, 5, 7) are similar to the model equationsfor the Stefan problem. In [7℄, a level set method was presented for solvingthe Stefan problem and for simulating dendriti solidi�ation. The numerialalgorithm presented here is based upon the work done in [7℄; however, thereare important di�erenes between the two problems whih have neessitatedthe development of a numerial method that is exible and fast enough to beof pratial interest. In the following subsetions, the numerial algorithmis �rst outlined. Details are then presented of how this algorithm has beenimproved and modi�ed (over the method in [7℄) in order to solve the islanddynamis problem.3.1 Outline of the MethodAfter initialization of �, � and N , the general outline of the numerial methodis as follows:1. Compute an approximation to the normal veloity �eld.2. Update � by solving equation (3).3. Solve the di�usion equation for �, with the internal boundary onditionof � equal to a onstant (e.g. 0) inorporated into the numerial sheme.4. Update N(t) from equation (6). If N(t) has inreased to the nextinteger value, then a new island is seeded. This event is reeted bythe appropriate modi�ation of � at gridpoints near the nuleation site.Return to step 1.3.2 Normal VeloityThe �rst step of the numerial algorithm is to ompute an approximationto the veloity �eld vn. Equation (7) is valid only at the island boundaries,but numerially, it is best to extend vn o� the interfae to every gridpoint inorder to obtain a smooth veloity �eld. This minimizes the development ofkinks in �.At the start of the veloity omputation, a �rst order approximation ofvn is omputed only at gridpoints bordering or on the fronts that represent7



the island boundaries on eah level. This approximation is obtained by �rstomputing approximations to ���x and ���y at every gridpoint (xi; yj). The �rstorder sheme used is either bakward or forward di�erening. Speial are istaken so that ���x and ���y are not di�erened aross island boundaries.In addition to ���x and ���y , it is also neessary to ompute values of theoutward normal vetor ~n at every gridpoint. The formulas for this are~n = � ~r�j~r�j ; or (nx; ny) = � (���x ; ���y )r���x 2 + ���y 2In the formulas above, the expressions ���x and ���y are omputed by �rst orderapproximations, that are either forward or bakward di�erenes in spae.The hoie of whih formula to use depends upon the interfae. The formulathat involves nodes that are losest to the interfae is the one that is hosen.One ���x ; ���y ; nx and ny have been omputed at all gridpoints, vn an beapproximated. At every gridpoint, (xi; yj), a hek is done of its 9 neighborsto determine whether an interfae is separating them. If there is at leastone neighboring gridpoint, e.g. (x�; y�), that is separated from (xi; yj) byan island boundary, then vn is omputed from the jump ondition given inequation (7). In other words,vn = � a2 D "���xnx + ���yny#(xi;yj)(x�;y�) (8)The sign value above is adjusted to the appropriate value, depending onwhether (xi; yj) is within or outside an island.Right before islands have merged, their boundaries are lose, but notonneted to one another. The veloity omputation is robust enough tohandle the ase of gridpoints that are aught in between these islands. Thisis illustrated in Figure 1, where 3 gridpoints (A,B,C) are separated by 2island boundaries. At gridpoints A and C, ���x is omputed by bakward andforward di�erene shemes, respetively. At B, ���x is set to 0, sine thereare no other neighboring points on its same level. Sine vn is omputedfrom jumps in ���x , the value of vn at B will be omputed either as a jumpbetween A and B or a jump between B and C. Either way, vn at B will benonzero. Furthermore, numerial omputations have shown that vn behavesin a relatively smooth manner as islands merge.8
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Figure 1: Merger between 2 islandsGrid bias e�ets may our sine the jump ondition in (8) is omputedusing the �rst gridpoint found, (x�; y�), that is not on the same monolayeras (xi; yj). To uniformize the values of vn in the normal diretion, the initialapproximation to vn is re�ned by solving the equation�vn�� + sgn(�)(~n � rvn) = 0 (9)for a few iterations in a �titious time � , again only at gridpoints borderingthe front. When omputing rvn, the spatial di�erenes are omputed usingonly values of vn that have been previously de�ned (i.e. adjaent to theinterfae). In the ase where the spatial derivative depends on a grid nodewhere vn is not de�ned, the derivative is set identially to 0.One vn has been de�ned adjaent to the interfae, those values mustbe extended to a narrow band (of about 5 gridells) in order to updateequation (3). One ould use (9) to extend vn o� the interfae to all thegridpoints, as was �rst suggested in [45℄ and arefully implemented in [28℄.This extension proess an be omputationally expensive, so instead a simpleextension routine for vn is applied. First, all gridpoints are ategorized asbeing either marked (lose to or on the interfae) or unmarked (away fromthe interfae). At every marked node, a searh is done of its neighborsfor unmarked nodes. When an unmarked node is found, the value of vnat this gridpoint is set equal to an average of vn values from its markedneighbors, and this unmarked node is hanged to a marked node. Thisproess ontinues until all the nodes have been marked. There are bettermethods than desribed above but that they do not hange the results here.See also [1℄ for a related fast method for extending quantities o� an interfaewhih depends more diretly on the harateristi nature of equation (9) thanthe method desribed above. 9



In Setion 4.1, it is shown that for the ase of irreversible aggregation, theproblem is unstable. Under grid re�nement, this physial instability an beseen numerially through a �ngering e�et on the boundary. Sine pratialinterest lies in simulating the growth and development of many islands, thee�et of this instability is minimal; for the oarser grid sizes used in ournumerial experiments, islands tend to merge (oalese) before any sort of�ngering takes plae. However, when the number of islands is restrited, thise�et an be seen as shown in Figure 2(a). One way of preventing dendritigrowth from ourring is to ompute an average normal veloity for eahisland, using the formula: �vn = H�i vndsH�i ds ; i = 1; :::N (10)where �i denote the island boundaries. The original expression for vn inequation (7) orresponds physially to the ase of di�usion limited aggre-gation, whereas equation (10) does not. By using (10), islands are foredto grow isotropially before merging. This is omparable to (but not thesame as) adding edge di�usion in KMC methods; both approahes have thee�et of produing ompat island shapes. The main bene�t of using �vn isthat unstable growth modes are damped out and the �ngering e�et seenin Figure 2(a) vanishes, as seen in Figure 2(b). �vn is omputed from vn bysolving (10) before vn has been extended. For eah island, an approximationto the line integral of vn is omputed and divided by the island boundarylength. A disussion of how island boundary lengths are omputed followsin Setion 3.7. After �vn is omputed at gridpoints on or near the interfae,it is extended in a manner similar to vn.Another feature that is desirable at times is to restrit the shape of theislands before merger to the same anisotropi shape, e.g. squares. This anbe done by making the veloity dependent upon the angle, �, made betweenthe x�axis and the normal vetor ~n. For example, square shaped islands anbe obtained using the veloity ~vn given by~vn = �vn(jos(�)j+ jsin(�)j)The idea of using the veloity to obtain kineti rystal shapes is disussedin more detail in [29℄ and is based on a result obtained in [24℄ and [36℄.Results using either vn, �vn or ~vn are shown in Figure 3. In Figure 3(a),the island shapes orrespond to the ase of di�usion limited aggregation.10



Figure 2: E�et of veloity on instability: (a) vn from eq. 7 (top) (b) �vn fromeq. 10 (bottom).
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Though the equations for this ase are weakly ill-posed, there is no notieabledendriti �ngering in Figure 3(a) due to numerial dissipation on the oarsegrid. Figure 3(b) is generated using �vn; here the growth an be desribedas isotropi with non-urvature dependent inorporation of adatoms. In thelast panel, Figure 3(), using ~vn, the island shapes are anisotropi and theabsorption of adatoms is dependent upon ~n. Note that equations (3) and (9)are formulated using the expression vn. If, however, a deision is made touse either ~vn or �vn, then (3) and (9) are solved with vn replaed by either ~vnor �vn.3.3 Level Set Computational IssuesThe level set equation, (3), is solved using a method of lines approah, thatemploys a 3rd order Runge-Kutta method along with a 3rd order Hamilton-Jaobi ENO sheme. This approah is fairly standard, and the interestedreader is referred to [26, 35℄ for more details. There are some unique aspetsof this level set approah that are worth disussing in more detail beausethey show how useful the level set approah is for problems suh as the islanddynamis equations. The issues addressed in this setion are how � is used totrak islands on di�erent monolayers and the issue of reinitialization. Setion3.5 will show how nuleation events are represented using � and Setion 3.7will over how � an be used to ompute various island statistis.A unique aspet of this numerial method is that only one level set fun-tion is needed to keep trak of islands on di�erent layers. By using just onelevel set funtion rather than one funtion per layer, the algorithm is keptsimple and memory osts are kept down. From one funtion, one an deter-mine where the island boundaries are, as well as what layer an island is on.This is a useful feature sine there is observable roughening and oarseningof thin �lm surfaes in experimental and KMC data.The manner in whih � is used is in the identi�ation of ontour levels � =m, m being a non-negative integer, with island boundaries on the (m + 1)stlayer. Thus at gridpoints near nuleation sites, � must be raised to at leastthe next highest integer value in order to properly represent islands on a newlayer. Figure 4 represents a typial pro�le of � illustrating how � an be usedto represent island growth on 3 di�erent layers.In ontrast to other level set appliations [28, 38℄, � is not reinitialized asa distane funtion after equation (3) has been solved. The reason for this isthat other level set appliations are only onerned with the � = 0 ontour12
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the form �t � C�x2D (C = onstant)Sine realisti values of D are of the order O(105) � O(108), this timesteprestrition makes expliit �nite di�erene shemes impratial. In ontrast,an impliit �nite di�erene sheme is unonditionally stable. By swithing toan impliit method, there is the added bene�t of being able to ompute ona muh longer timesale than is possible for KMC methods. (Of ourse, thefat that this method is stable using relatively large timesteps is no guaranteethat the results are more aurate than KMC methods, whih use smallertimesteps.)The impliit sheme that is applied to (4) assumes that���t � �k+1 � �k�tand that the spatial derivatives of � are approximated using values of �k+1,where k is the index for time. One may want to use the Strang splittingmethod beause of the nonlinear term �2 in the last term of (4). In fat,sine the nonlinear ordinary di�erential equation an be solved analytially,the stability onerns introdued by this fator are non-existent. Moreover,the Strang splitting method is not as aurate with large timesteps; i.e.,when we use large timesteps to generate a qualitative solution, the resultsfrom Strang splitting are worse than the method we now use. The expression�2 in (4) is linearized, so that(�2)k+1 � (�2)k + 2�k(�k+1 � �k)� 2�k�k+1 � (�2)k:Therefore, the impliit sheme produes a time dependent linear system ofthe form A�k+1 = b (11)A and b are dependent upon surfae morphology (e.g. �k+1 whih is updated�rst), and their struture is determined by the spatial disretizations of thederivatives �2��x2 and �2��y2 in (4). These disretizations are desribed in somedetail below.It is suÆient to explain how the spatial derivatives are derived withrespet to one variable, sine there are no mixed partial derivative terms in15



(4). The extension of the following disretization formulas to two dimensionsis straightforward and simple. In one dimension, let the spatial gridpoints bedenoted by xi, and let �i � �(xi; �) and �i � �(xi; �). The standard entral�nite di�erene sheme for �xx = �2��x2 (at some �xed time) is(�xx)i � ��i+1��i�x �� ��i��i�1�x �12(�x +�x) = �i+1 � 2�i + �i�1�x2 (12)where �x is the spatial grid spaing.For gridpoints near the island boundaries, (12) annot be used beause the�rst derivatives of � are disontinuous aross the interfae. Furthermore, theinternal boundary ondition needs to be inorporated into the �nite di�erenestenil. One way of doing this is to use one-sided subell disretizations.Suppose the boundary point, xf , falls in between two gridpoints xi and xi+1.From �, the distanes between xi; xi+1 and xf an be estimated byxf � xi � �(�i � int(�i)) �x(�i+1 � �i) = �1�x (13)xi+1 � xf � (�i+1 � int(�i+1)) �x(�i+1 � �i) = �2�x (14)Note that �1; �2 2 [0; 1℄ , �1 + �2 = 1 and int(�i) is an integer part of �i. Toavoid numerial errors aused by division by 0, �1 or �2 are not used if eitheris less than �x2. If �1 < �x2, then xf is assumed equal to xi. If �2 < �x2,then xf is assumed equal to xi+1. Either assumption is e�etively a seondorder perturbation of the interfae loation. As will be shown later in thedisussion of the Ghost Fluid Method, a seond order perturbation of theinterfae loation will not a�et the overall �rst order auray of the spatialdisretization.Using the formulas above, one an onstrut numerial stenils for �xxthat avoid di�erening aross the front. By formal trunation analysis, theseformulas are only �rst order aurate (O(�x)) and are given by:(�xx)i � ��f��i�1�x �� ��i��i�1�x �12(�1�x +�x) (15)(�xx)i+1 � ��i+2��i+1�x �� ��i+1��f�2�x �12(�x + �2�x) (16)16



where �f denotes the value of � at xf and is determined from the boundaryondition. Thus, the boundary ondition is inorporated into the stenilthrough the spei�ation of �f . In the ase of irreversible aggregation, �f = 0.When equations (12), (15) and (16) are generalized to two dimensions andoupled to a standard impliit sheme for (4), they form a nonsymmetrilinear system. In [7℄, a similar system was solved using the Gauss-Seidelmethod. The sope of the island dynamis problem is di�erent from the onein [7℄ in that typial simulations involve muh larger system sizes and longeromputational times. Also, given that values of D are muh larger thanin [7℄, the Gauss-Seidel method would be too slow for all pratial purposes.In terms of speed, it is preferable to solve a symmetri linear system beausea fast iterative method suh as the preonditioned onjugate gradient (PCG)method an be applied. Consequently, what is needed is a disretization ofthe spatial derivatives that will lead to a symmetri system of equations, yetstill inlude information about the internal boundary ondition.In [21℄, an alternative strategy for disretizing the internal boundary on-dition was proposed. This strategy was based on the delta funtion formu-lation of [30℄ whih was adapted for level set methods by [38℄ and [6℄. Themethod proposed in [21℄ used a penalty method to keep � near zero in thehope of approximating the � = 0 internal boundary ondition in equation(5). This is done with a strong spatial sink term that is added to the righthand side of equation (4) in the form �K�Æ where Æ is a smoothed out deltafuntion that ats in a band near the interfae, ausing the sink term to havean e�et on � in a �nite band of ells. Usually, this delta funtion formula-tion works beause the thikness of the band exposed to the delta funtionshrinks to zero as �x goes to zero produing a vanishing ontribution tothe true physis of the problem. Unfortunately, sine equation (7) is alwaysdisretized using the grid points immediately adjaent to the interfae, theontribution of the delta funtion soure term is not diminished as �x goesto zero. On the ontrary, this band of ells where the delta funtion is appliedalways makes a large ontribution to the veloity of the front. Furthermore,the � = 0 boundary ondition is only obtained as K goes to in�nity andK� approahes a �nite limit (notably K� approahes vn). Neither of theseonditions an be obtained numerially and results using this method wereunsatisfatory.In order to alleviate the diÆulties assoiated with the implementationof the internal boundary ondition in [7℄ and [21℄, equations (15) and (16)are replaed with the following disretizations for �xx at gridpoints near the17



boundary. (�xx)i � ��f��i�1�x �� ��i��i�1�x ��x (17)(�xx)i+1 � ��i+2��i+1�x �� ��i+1��f�2�x ��x (18)These equations were derived using ideas generated by the Ghost FluidMethod [10℄. That is, equation (17) is derived using linear extrapolationof � from one side of the interfae to the other, obtaining�G = �f + (1� �1)��f � �i�1 � (19)as a ghost ell value for � at xi+1. The standard seond order disretizationof �2��x2 at xi using �G at xi+1 is(�xx)i � ��G��i�x �� ��i��i�1�x ��x (20)and the substitution of equation (19) into equation (20) leads diretly to (17).Equation (18) is derived similarly. Note that similar ideas were used in [15℄,but their �nal matrix was nonsymmetri, making their method more similarto [7℄ and to related work in [40℄. It is interesting to note that a formulasimilar to (17) appears in [27℄ for a di�erent problem where the formula wasused to alleviate CFL restritions by assuming that the interfae undergoesan O(�x) perturbation in loation.As formulas for the seond derivatives, (17) and (18) have O(1) errors. As0 for the boundary values �f , however, these formulas have O(�x2) errors.By the maximum priniple for paraboli systems, the resulting onsistenyerror is then O(�x2) everywhere. Computational experiments on�rm thisfat and show that the resulting sheme is stable.Assuming that jr�j 6= 0 and that r� is not parallel to the boundary(whih is true for the �f = 0 problem onsidered here), a hange in bound-ary value with �xed domain is equivalent to a hange in domain boundarywith �xed boundary value. This shows that an alternative explanation forthe boundary ondition is that it orresponds to an O(�x2) hange in theinterfae loation with no hange in the boundary value �f . This hange inthe domain also results in an O(�x2) onsisteny error. An advantage of thisformulation is that it preserves the property that � > 0 inside the domain.18



While the above argument holds for the one-dimensional ase, it is notobvious that it applies or an be extended to multiple spatial dimensions.However, extensive numerial testing of this method was arried out in [8℄ inone, two and three spatial dimensions for the Poisson equation r�(kr�) = fwith Dirihlet boundary onditions on irregular domains onsidering bothspatially varying and spatially onstant k. In [8℄, the algorithm showednumerial evidene of seond order auray in both the L1 and L1 normsas ompared to exat solutions for a wide variety of problems. Furthermore,[8℄ tested this method on an impliit time stepping disretization of the heatequation �t = �� with Dirihlet boundary onditions on an irregular domain.For the heat equation, similar seond order auray in both the L1 and L1norms was observed in the numerial alulations for one, two and threedimensional numerial examples.The largest advantage of using (17) and (18) is that they lead to a sym-metri linear system. This is best illustrated by onsidering the loal matrixstruture orresponding to the two disretizations of �xx. Suppose xf fallsbetween gridpoints xi and xi+1. Also, assume that �f = 0 and �1 and �2 arede�ned as in formulas (13) and (14). If one uses the standard disretization(12) for �xx at gridpoints xi�1 and xi+2, and formulas (15), (16) for �xx atxi and xi+1, then the orresponding loal matrix struture for the numerialdisretization of �xx would look like:1�x2 0BBBB� �2 1 0 02�1+1 �2�1 0 00 0 �2�2 2�2+10 0 1 �2 1CCCCA0BBB� �i�1�i�i+1�i+2 1CCCAwhih is learly nonsymmetri.Now if (15) and (16) are replaed by formulas (17) and (18), the analogousloal matrix struture is1�x2 0BBBB� �2 1 0 01 �(1 + 1�1 ) 0 00 0 �(1 + 1�2 ) 10 0 1 �2 1CCCCA0BBB� �i�1�i�i+1�i+2 1CCCAThus, (17) and (18) produe the desired symmetri matrix struture. Byusing these formulas, a tradeo� is made in the auray of the interfaeloation in order to produe a symmetri linear system.19
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Figure 5: Iteration ounts for di�erent preonditionersThe resulting symmetri matrix system, (11), is solved using PCG. Eventhough PCG is a standard fast iterative solver (see [11℄ for a survey of itera-tive solvers), 70� 80% of CPU time for typial runs is still spent solving thedi�usion equation. Presently, the Cholesky preonditioner is used at everytimestep. This preonditioner performs well in omparison to other preon-ditioners (see Figure 5), but the hope in future work is to improve ode speedby applying di�erent optimal preonditioners at di�erent overages.3.5 NuleationAn important feature of this numerial algorithm is the ability to modelnuleation events, i.e. the seeding of new islands. The time to nuleate a newisland is determined by N(t), whih inreases by the nuleation rate given byequation (6). Whenever N(t) has inreased to the next integer value, thatsignals the time for a nuleation event. Numerially, every nuleation eventwill a�et values of � and � near nuleation sites, whih are simply gridpointsat whih a new island is entered. These sites are hosen probabilistially,whih means that the loation of a new island is hosen with a probabilitythat is weighted by the loal value of �2. A justi�ation for this hoie isdisussed in [31℄.New islands are represented on the grid as square-shaped. Their idealarea, 2a2, is predetermined by the number of atoms in a new island, 2, and20



the atomi length a. In order to ensure that new islands will not disappeardue to inadequate numerial representation, the smallest numerial islandsize is 4�x2, i.e. the area of the square formed by 4 grid ells. If �x � ap2 ,then the grid size is �ne enough to represent the ideal area for a new island.On oarser grids (�x > ap2), new island areas are set equal to a value, 4�x2,larger than the ideal value, sine �x is the smallest length representable onthe grid.The algorithm for representing a new island is as follows:1. Choose the nuleation site (xi; yj).2. Set I = lowest integer value > �(xi; yj).3. Reset � values at gridpoints near (xi; yj) so that loally � is pyramidshaped.In step 3, loal values of � are reset to new values �new. At the nuleationsite (xi; yj), �new is a maximum value, based on a predetermined peak height.This peak height is between 0 and 1 and is typially set to 0.5, so that�new(xi; yj) = I + 0:5 (21)The area of the base of the pyramid formed by �new is either 2a2 or 4�x2,based upon the grid size. Values of � are reset to �new at gridpoints withinand neighboring this base area, entered at (xi; yj). These loal values aredetermined suh that (21) is satis�ed and �new = I at the base of the pyra-mid. Within the base area, values of �new range between I and I + 0:5. Atneighboring gridpoints outside of the base area, �new is extended smoothlyto values below I. See Figure 6 for a pro�le of �new near a nuleation site.Numerially, nuleation auses loal values of � to hange. No orre-sponding hanges are made expliitly in �. Instead, after a nuleation eventhas taken plae, the normal veloity is omputed at all gridpoints. Care istaken so that the veloity is kept equal to 0 at gridpoints where � has beenreset to �new. This is neessary so that new islands will not move until � hasbeen updated. Impliitly stored in �, the new island will be \felt" by � oneequation (4) has been solved.3.6 Timestep RestritionsIn essene, three di�erential equations are solved at eah timestep: (3),(4) and (6). Though the equations are updated by di�erent timestepping21
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Figure 6: Loal pro�le of �new for y held �xed near a nuleation site xi.w = ap2shemes, e.g. Runge-Kutta for (3) and impliit Euler for (4), the atualvalue of �t must be the same for all 3 updates in order to avoid synhro-nization errors. Instead of a onstant timestep, �t is determined adaptivelyby a number of fators. From the ux term F in equation (4), a restritionis plaed on �t suh that F�t < 0:01:This is to guarantee that there is suÆient auray in integrating the Fterm, and that there is no more than 1% overage per timestep. In order toensure the stability of the expliit timestepping sheme for (3), the requiredCFL ondition is given by �t < �xmax(vn) :Furthermore, sine � represents a density, it should have nonnegative valuesat all gridpoints. If, after solving (4) using a timestep �t, a negative value of� is deteted, the alulation of the three equations is redone using a reduedtimestep (e.g. in our ode, we use �t=4).In addition to the timestep restritions generated by equations (3) and(4), another fator ontributing to the adaptive timestep is nuleation. Newislands are seeded one at eah timestep in order to avoid islands being seededtoo losely to one another. Whenever N(t) has inreased by more than 1within a single timestep, �t is redued (one again using �t=4). This has thee�et of slowing down the ode during stages of heavy nuleation. In terms22



of speed, nuleation adds a time sale fator of O(L2) where L2 representsthe physial system size. The O(L2) term is due to the fat that the largerL is, the more nuleation events an our. Future work will involve theimplementation of a multiple seeding algorithm that will redue the O(L2)fator in the ode saling.There are ontinued redutions in �t until either all the timestep restri-tions are met or a minimum value of �t = 10�16 is reahed. (So far, wehave never hit the minimum in any of our large number of omputations.Coneivably, this ould our and the ode would have to be terminated. Inthat ase, we would need to propose an alternate strategy for hoosing �t.)3.7 Computation of Island Dynamis StatistisLastly, � is used for omputing a variety of island statistis. These statistisare useful as a barometer of how well the level set method is working and ofhow aurate the island dynamis model is at desribing features of thin �lmgrowth. In Setion 4, results garnered from these statistis will be presented.How these statistis are obtained using the level set funtion is desribedbelow.The numerial quantities that are most needed for obtaining quantitativeresults are the number, areas and perimeters of islands. As disussed in[21℄, these statistis an be omputed by treating islands as the onnetedomponents of the ontour levels of �. An algorithm has been developed forlabeling every onneted omponent, hene every island, and for assoiatingevery gridpoint as being within or outside an island. In this algorithm,nodes are ategorized as labeled or unlabeled. From an arbitrary startingnode, neighbors of labeled nodes are heked to see if they are unlabeled andif there is no boundary (ontour level) separating them from their labeledneighbor. If both riteria are met, unlabeled nodes reeive the same label astheir labeled neighbor. This proess ontinues until either all the nodes orislands have been labeled. Afterwards, the number of islands is omputed asthe number of labels used.It is relatively easy to ompute island areas and boundary lengths. Theapproah used here is to triangulate the grid and use � to interpolate theplaes where the interfae uts through the triangles. From these interpo-lated values, one an easily ompute subell areas and perimeters. This isillustrated in Figure 7. Within the triangle formed by the gridpoints (xi; yj),(xi+1; yj) and (xi; yj+1), the front intersets at two interpolated points, IA =23



(x
i
 , y

j+1
)

(x
i
 , y

j
) 

(x
i+1

 , y
j
) 

I
B
 = (x

B
 , y

B
) 

I
A
 = (x

A
 , y

A
) 

Figure 7: Interpolated values within triangle formed from gridpoints(xA; yA) and IB = (xB; yB). Assuming that (xi+1; yj) is within an island and(xi; yj) and (xi; yj+1) are outside an island, the ontribution to the islandboundary length from within the island isq(xA � xB)2 + (yA � yB)2and the ontribution to the island area is approximated by12(yA � yB)(xi+1 � xB)using a linear interpolant between IA and IB.4 Computational ResultsIn this setion, some of the results obtained from this numerial method arepresented. All of these results pertain to the model of irreversible aggrega-tion.4.1 Step TrainsGrowth might either our by nuleation and growth on a singular, or per-fetly at surfae, or via step-ow on a viinal, or stepped surfae. These24



steps originate beause a rystal is typially ut at a (small) angle with re-spet to one of the low-index rystal planes. During step ow, all atomsdi�use toward the next step edge before they meet another atom, and nule-ate a dimer. Thus, before onsidering the full island dynamis model withnuleation, it is instrutive to onsider the ase of step trains in the model ofirreversible aggregation. Although the terms steps and islands both desribefeatures of rystal growth, there are di�erenes between the two. Islandsare isolated regions that are one layer higher than their surrounding regions.Steps are boundaries on a surfae substrate, along whih the surfae hangesheight by one or more layers. A step train is a series of steps. It is possible toobtain theoretial solutions for the island dynamis equations in the speialase of step trains without nuleation. One an then ompare these solutionswith omputational results from the level set method.In the ase of a periodi step train, let the step boundary be 0 by thefuntion X(y; t). The evolution of the step an be modeled by the islanddynamis equations: (4), (5), and (7). In the absene of nuleation, theseequations redue to:���t = r � (D r�) + F; X � S < x < X + S (22)� = 0; x = X � S;X + S (23)vn = �a2D  ���~n �����X+S � ���~n �����X�S! (24)where Xt = vn (25)and ~n = (1;�Xy)q1 +X2ydenotes the normal to the step. The period of the step in the x�diretion is2S. Note that the term �jX+S denotes to the limit from right and the term�jX�S denotes to the limit from the left.After performing a shift, x = v0t + x0, to enter the step, the evolutionequations beome���t = r � (D r�) + F + v0 ���x0 ; X 0 � S < x0 < X 0 + S (26)� = 0; x0 = X 0 � S;X 0 + S (27)25



vn = �a2D ���~n �����X0+S � ���~n �����X0�S! (28)X 0t = vn � v0 (29)By perturbation analysis of equations (26), (27), (28) and (29), one anobtain leading order approximations to the analyti solutions of the form�(x0; y; t) = �0(x0) + ��1(x0; y; t) + :::X 0(y; t) = �X 01(y; t) + :::where �0; �1 and X 01 are of the form�0 = b0 + b1x0 + b2e��x0�1 = eiky+!t(�̂+e�+x + �̂�e��x)X 01 = X̂1eiky+!tin whih v0 = 2a2FL� = 2a2D�1FLb0 = (2a2)�1oth(�L)b1 = �(2a2L)�1b2 = �(2a2sinh(�L))�1and for the seond order approximation, one will �nd that in leading order,! = a2D(�00(S) + �00(�S))jkj:Further analysis show that (�00(S) + �00(�S)) > 0, hene ! > 0. Thus thereexists a lass of unstable solutions.Computational results an be obtained by applying the level set methodto the steptrain model, with no nuleation. Consider the ase of initialsteps X(x; t = 0) = � os(kx) with initial density �(x; y; t = 0) = �0(x) +��1(x; y; t = 0). These two equations are ompatible for � small. (If � is toolarge, then the step veloities derived fromX and � will not math up and thetwo solutions will not agree.) In the simple ase of a straight step, (i.e. where� = 0), the theoretial solution mathes up with the omputed solution fromthe level set method. The step travels at the orret veloity v0 and one an26



Grid Size Max Error Order50 X 50 1:366� 10�2100 X 100 6:506� 10�3 1.070200 X 200 3:206� 10�3 1.021400 X 400 1:591� 10�3 1.011Table 1: Step trains: error measured between the analyti solution withF = 1 and level set results for the ase of a straight step, i.e. � = 0.measure the error between the analyti and omputed solutions. In Table 1,the error is reorded for inreasingly �ner grid sizes. The orresponding orderof auray is one, meaning the numerial method is O(�x).For � small, a more interesting result ours when the level set methodprodues the instability predited from the theoretial solution. This insta-bility an be seen in the development of dendrites over time, as shown inFigures 8 and 9. The solutions obtained using the level set method areaurate up to the time at whih spurious osillations our. In Table 2,the error is measured between the analyti and omputed solutions for thease orresponding to Figure 8 (top), third urve from the left. Similar tothe ase for � = 0, the measured order of auray in Table 2 shows thatthe level set method is �rst order aurate for � > 0 up to small times. Forlater times, the dendriti �ngering from level set results (as seen in Figures8 and 9) shows the inherent instability of the problem. Osillations due tothe physially orret unstable growth have the e�et of amplifying roundo�and disretization errors. These osillations are quikly magni�ed, ausing anumerial instability at later times.4.2 Island Dynamis ComputationsFor the full island dynamis model, one of the earliest heks performed wasrelated to mass onservation. Under a onstant ux term F , the overageon the surfae should be � = Ft, where t is the omputational time. How-ever, it is known that level set methods have a (small) mass loss. In Figure10, we plot the atual overage on the surfae as a funtion of time. Theatual overage is measured by simply adding up the area of all islands onthe surfae (this neglets the adatoms, but for typial values of D=F thenumber of single adatoms is several orders of magnitude smaller than the27
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Figure 8: Step trains: analyti (smooth) and omputed (dendriti) so-lutions. D = 20, F = 1, �X̂1 = �0:01; k = 4; ! = 6:8789; t =0:0; 0:0125; 0:025; 0:05; 0:1; 0:2; 0:4 (bottom). First �ve urves zoomed in(top).
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Figure 9: Step trains: analyti (smooth) and omputed (dendriti) solutions.D = 10; F = 1; �X̂1 = �0:02; k = 4; ! = 11:946; t = 0:0; 0:05; 0:1; 0:2:
Grid Size Max Error Order32 X 32 1:749� 10�264 X 64 1:030� 10�2 0.764128 X 128 4:555� 10�3 1.177256 X 256 2:302� 10�3 0.984512 X 512 1:166� 10�3 0.982Table 2: Step trains: error measured between the analyti solution and levelset results for the ase orresponding to D = 20; F = 1; �X̂1 = �0:01; k =4; ! = 6:8789; t = 0:025.
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Figure 11: Comparison of saled island-size distributions, where ns is thenumber of islands of size s, sav is the average island size, and � is the overage.The experimental data for Fe/Fe(100) omes from [37℄.�. Experimental data is represented on the graph by the large irularsymbols. For larger values of s=sav, the agreement between the experimentaland simulated data is also very good. The disrepany between the two typesof data for smaller values of s=sav may be due to noise. Sine the orretisland size distribution is obtained, this model aptures many of the relevantproesses in the submonolayer aggregation regime.The island dynamis model has no inherent limitations that restrit itsvalidity to submonolayer growth. In fat, one of the advantages of the levelset method is that it an desribe the merger (oalesene) of islands withinits framework, without spei�ation of any extra parameters. For manytehnologial appliations, it is of interest whether a thin �lm grows in alayer-by-layer fashion, or whether it beomes rough (many layers exposedat the same time). A quantity that experimentally determines this is theRHEED (reetive high energy eletron di�ration) signal. During layer-by-layer growth, the RHEED signal osillates with a periodiity that orrespondsto the ompletion time for eah layer. There is evidene that the RHEEDsignal is due to variations in the step edge density [34℄: at layer ompletion,there are very few step (island) edges, while at a partially grown layer, thereare many exposed step (island) edges.In Figure 12 results are shown for the step edge density osillations fordi�erent values of D=F . The step edge density osillates with an amplitude31
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Figure 12: Step-edge density for di�erent values of D=F obtained with thelevel-set method. The data represents the average over 5 independent real-izations, with L=a = 300 and 400 gridpoints (laterally).that is damped. The latter is due to progressive roughening of the surfae.For higher values of D=F , the magnitude is lower, beause there are fewer,bigger islands on the surfae. Thus, this model qualitatively reproduesthe orret physis in the multilayer regime as well. A more quantitativestudy with a omparison to the orresponding KMC data is urrently beingpursued, and will be published elsewhere.5 ConlusionsIn this artile, we have presented further developments and results from alevel set based method that simulates the island dynamis model for thegrowth of epitaxial thin �lms. Many parts of this numerial method wereoriginally proposed in [21℄, although this paper makes some notable improve-ments. In partiular, a new treatment was proposed for the internal boundaryondition that is mush faster than the method in [7℄ and does not needlesslysmear out the interfae as originally proposed in [21℄. Results using our nu-merial formulation have been previously published in [4, 12℄. In this paper,we have foused on explaining the numerial algorithm, as well as the nu-merial hallenges that needed to be overome in order to aurately solveand evolve the equations of motion. We have also detailed how the numerialmethod was used to address some of the unique issues arising from the island32



dynamis model, suh as nuleation and multilayer growth.The omputational results presented here are from the model of irre-versible aggregation. In the ase of step trains, the level set method is �rstorder aurate when ompared to an analyti solution. For the full islanddynamis model with nuleation, good agreement with orresponding resultsobtained from KMC simulations shows that the method is aurate and ap-tures the orret physis. In the future, we plan to extend the model toinorporate a more general boundary ondition, orresponding to reversibleaggregation. We also plan to improve the overall speed and auray of theode through further development of the method. In onlusion, we feelthat the level set method applied to the island dynamis model is a usefuland important addition to omputational methods for simulating thin �lmgrowth.
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