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Abstra
tWe present a level set based numeri
al algorithm for simulating amodel of epitaxial growth. The island dynami
s model is a 
ontinuummodel for the growth of thin �lms (see also [4, 12, 21, 22, 31℄). Inthis paper, we emphasize the details of the numeri
al method used tosimulate the island dynami
s model.1 Introdu
tionModeling epitaxial growth presents an enormous 
hallenge to theoreti
alphysi
ists and materials s
ientists. The range of length and time s
ales rep-resented by problems of pra
ti
al interest (e.g., the growth of devi
e layers)spans many orders of magnitude [13℄. Atomisti
 pro
esses 
an signi�
antlya�e
t quantities su
h as surfa
e morphology at the largest length and times
ales [3℄. A model for epitaxial growth with great potential for use in engi-neering appli
ations would des
ribe lateral s
ales of several mi
rons or more,be appropriate for a variety of homoepitaxial and heteroepitaxial systems,and be 
apable of des
ribing di�erent growth te
hniques.Continuum equations of motion that take the form of partial di�erentialequations [41℄ for the surfa
e height pro�le do yield information on morphol-ogy at large length s
ales. As they are typi
ally formulated [41, 42℄, however,
ontinuum equations are appropriate only in a regime where the surfa
e isalready assumed to be ma
ros
opi
ally rough. These 
ontinuum methodsare therefore unsuitable for des
ribing atomi
 s
ale roughness whi
h is a 
on-
ern in many devi
e appli
ations. Kineti
 Monte Carlo (KMC) simulations[9, 19, 23, 44℄ o�er an alternative to 
ontinuum equations. They allow easyimplementation of a wide range of atomisti
 kineti
 pro
esses, whi
h 
an,in prin
iple, be identi�ed and their rates determined from �rst prin
iples
al
ulations [32℄. However, simulations are usually based on the length andtime s
ales of single atoms and adatom hopping rates, so modeling systemsof pra
ti
al interest is not always feasible.Despite the pra
ti
al limitations of the methods des
ribed above, theyhave been used with great e�e
t to provide a 
omprehensive 
on
eptual and
omputational framework for des
ribing homoepitaxial growth [39℄, espe-
ially by mole
ular-beam epitaxy. More fundamental problems arise, how-ever, when attempts are made to extend these te
hniques to heteroepitaxialsystems, where the e�e
ts of latti
e mismat
h must be in
orporated, or to2



other growth methods, su
h as vapor-phase epitaxy (VPE), whi
h requires
oupling the atomisti
 kineti
s on the substrate to the hydrodynami
 deliv-ery of new material. Some aspe
ts of these issues have been addressed forparti
ular systems, but no general methodology has emerged to provide aunifying framework in the spirit of the work des
ribed above.In this paper, a new model and 
losely related numeri
al te
hnique arepresented that address these issues. In this model, growth is des
ribed by the
reation and subsequent motion of island boundaries; hen
e, this model isreferred to as \island dynami
s" [4, 12℄. The model is dis
rete in the growthdire
tion, but 
ontinuous in the lateral dire
tions and therefore, in prin
i-ple, 
an des
ribe growth on arbitrarily large lateral length s
ales. Moreover,sin
e the lateral dire
tions are treated 
ontinuously, 
ontinuum equationsrepresenting any �eld variable 
an be 
oupled to the growth by solving theappropriate boundary value problem for the �eld and using lo
al values ofthis �eld to determine the lo
al velo
ity of the island boundaries. For ex-ample, the strain �elds that o

ur in the presen
e of latti
e mismat
h or thehydrodynami
 �elds in a VPE rea
tor 
an be readily a

ommodated by thismethod.Although island dynami
s is a natural way of des
ribing many aspe
tsof epitaxial growth, its implementation requires tra
king a large number ofindividual interfa
es that 
oales
e or are 
reated by nu
leation. The devel-opment of the level set method for simulating the motion of free boundaries[7, 25℄, now makes numeri
al implementation of su
h a model pra
ti
al. Theisland dynami
s model and some preliminary results from it have been in-trodu
ed in previous work [4, 12, 21, 31℄; the emphasis in this work is on thenumeri
al issues asso
iated with using the level set method in the 
ontext ofa model for irreversible growth.This paper proposes a new numeri
al te
hnique leading to an improvedtreatment of the internal � = 0 boundary 
ondition over the smeared outdelta fun
tion method proposed in [21℄ whi
h uses a \slushy" interfa
e for-mulation that does not a
hieve the � = 0 internal boundary 
ondition unlessthe penalty term K is in�nite whi
h is, of 
ourse, not numeri
ally possible.This \slushy" interfa
e formulation was proposed (in [21℄) as an alternativeto the higher order a

urate method in [7℄, sin
e the method in [7℄ is mu
htoo slow (numeri
ally) for the types of problems 
onsidered in this paper(and e.g. [4, 12, 21, 31℄). Our new numeri
al te
hnique gives an a

uraterepresentation of the � = 0 internal boundary 
ondition (unlike [21℄). Fur-thermore when this te
hnique is implemented in 
onjun
tion with impli
it3



time stepping, one obtains a symmetri
 matrix whi
h is faster to invert thanthe nonsymmetri
 matrix produ
ed in [7℄ making this new te
hnique fastenough for the problems 
onsidered herein. We remark that our new formu-lation has been 0 implemented in previous work, see e.g. [22℄.2 Island Dynami
s and the Level Set For-malismIn this se
tion, a brief introdu
tion to the level set method is given, followedby a des
ription of the island dynami
s model for irreversible growth. Inthe island dynami
s methodology, the physi
s is almost entirely 
ontained inthe spe
i�
ation of the normal velo
ity of island boundaries. The evolutionof the boundaries 
an, in prin
iple, be done by any numeri
al method. Inpra
ti
e, however, the level set method is the preferred approa
h sin
e thismethod handles topologi
al 
hanges su
h as mergers in a 
ompletely naturalway. Sin
e simulating epitaxial growth in the so-
alled layer-by-layer growthregime may require handling the nu
leation and subsequent merger of hun-dreds or even thousands of islands, this advantage has 
onsiderable pra
ti
alsigni�
an
e.Sin
e the level set method was �rst introdu
ed by Osher and Sethian[25℄, level set algorithms have been su

essfully applied to a wide variety ofproblems [6, 7, 10, 14, 20, 38, 45℄. One 
an �nd an extensive review of levelset terminology and a

omplishments in [21℄. In brief, the basis behind thelevel set method is that any given 
urve or interfa
e � in Rn, bounding anopen region 
, 
an be represented as the zero level set of a fun
tion � (~x; t),i.e. � = f~x : � (~x; t) = 0g (1)Given a velo
ity �eld ~v, one 
an analyze the motion of the 
urve � by relatingit to the motion of the zero level set of �. The partial di�erential equationthat will move the level sets of � by ~v is:���t + ~v � r� = 0 (2)The normal ve
tor ~n 
an be written in terms of � as ~n = r�jr�j , and sin
e~v = vn ~n, equation (2) is equivalent to���t + vn jr�j = 0 (3)4



whi
h 
an be referred to as the level set equation.One of the many advantages of using a level set approa
h is that the re-sulting numeri
al s
heme is Eulerian, i.e. only a �xed number of gridpointsare needed. In 
ontrast, when using a front-tra
king method [16℄, one hasto a

ount for a potentially large number of gridpoints, depending upon thenumber of islands. Su
h methods are 
omputationally expensive and topolog-i
al 
hanges su
h as merging may be diÆ
ult to handle. Phase �eld methods[5, 17, 18, 43℄ are 
urrently popular in modeling solidi�
ation problems be-
ause boundaries are not expli
itly tra
ked. But phase �eld methods dependupon a small parameter for interfa
e thi
kness. Without proper numeri
alresolution of this parameter, there is no guarantee that the 
omputational re-sults from phase �eld methods will be a

urate or fully 
onverged. A furtherdis
ussion of this is 
ontained in [20℄.The earliest level set approa
h for solidi�
ation type problems 
oupledlevel set ideas to boundary integral methods [33℄. Later, the boundary inte-gral dependen
ies were removed, produ
ing a simpler algorithm [7℄. For theisland dynami
s model, the level set method is the best approa
h due in partto its 
exibility and relatively low 
omputational 
ost. In addition to beingable to resolve sharp interfa
es (island boundaries in this 
ase), the level setmethod 
an handle su
h topologi
al 
hanges as mergers and breakups, asalready mentioned above. When there are several monolayers, the level setfun
tion is useful for determining whi
h monolayer a given gridpoint is on.A more detailed dis
ussion of how � is used to 
ompute su
h statisti
s asthe number of islands, island sizes and island boundary lengths is in
ludedin Se
tion 3.7. These statisti
s are important when 
omparing the islanddynami
s model to KMC methods, as well as to experimental data. Goodagreement with these statisti
s provides signi�
ant validation of the islanddynami
s model and the level set based numeri
al algorithm.For a 
ontinuous adatom density �(x; y; t), the di�usion equation is���t = r � (D r�) + F � 2D�1�2 (4)where D stands for the di�usion 
oeÆ
ient and F for the 
ux of atoms tothe surfa
e. Realisti
 parameter values for D are of the order O(105) �O(108) and F is O(1), making D=F O(105)� O(108). Note that the 
ux F
an be spatially varying but is usually 
onstant on the spatial s
ale under
onsideration here. The length s
ale is of the order of the latti
e spa
ing andthe time s
ale is of the order of 
overage of the substrate. The last term in5



(4), �2D�1�2, a

ounts for the loss of adatoms due to nu
leation. The fa
tor2 
omes from the assumption that an island of size 2 is stable, i.e. the 
riti
alisland size is 1. The numeri
al boundary 
ondition for � on a square grid isperiodi
. For ea
h of the islands, the 
hoi
e of boundary 
ondition for � willdepend upon the physi
s of the model. Irreversible aggregation or growthis a term for the pro
ess wherein any adatom hitting an island boundarywill atta
h irreversibly to that island. The results presented in Se
tion 4 arebased upon an irreversible aggregation model, so the 
orresponding 
hoi
efor the boundary 
ondition imposed on the island boundaries is:� = 0 (5)The term �2D�1�2 in (4) is an approximation to the loss of adatoms dueto nu
leation, in that it spreads the loss over the surfa
e. Sin
e N(t) is thetotal number of islands nu
leated up to a time t, this term 
omes from theassumption that nu
leation o

urs at a 
ontinuous rate given bydNdt = D�1 < �2 > (6)where < � > denotes the spatial integral. The 
oeÆ
ient �1 is the so-
alled
apture number [2℄ for nu
leation. Note that the spatially varying �2 termin (4) is the same term used to determine < �2 > in (6).Island boundaries move with a normal velo
ity vn. This velo
ity is de-termined by the physi
s of adatoms atta
hing to the island boundaries andis proportional to the net parti
le 
ux to the boundary. In the 
ase of irre-versible aggregation, this 
ux is simply the surfa
e di�usive 
ux of adatoms,given by �Dr�. Let a denote the latti
e 
onstant, and a2 the area per atom.The outward normal velo
ity is given byvn = a2 [�D r� � ~n℄ = �a2 D "���~n# (7)where [ � ℄ denotes the jump a
ross island boundaries in the normal dire
tion(i.e., [f ℄ = f+ � f� in whi
h the subs
ripts � denote the two sides of theinterfa
e with the normal ~n pointing from \-" to \+") and it is assumedthat [D℄ = 0. This is a valid assumption sin
e the interfa
e is not a phaseboundary, only a terra
e boundary, and energeti
ally the di�erent heights arethe same. In other 
ases, there might be a 
hange in D, e.g. if the boundarywas a phase transition in the re
onstru
tion. Note that the method in [7℄,(upon whi
h this work is based), allows for jumps in the di�usion 
oeÆ
ientfor Stefan type problems. 6



3 Numeri
al MethodIn this work, the model equations (4, 5, 7) are similar to the model equationsfor the Stefan problem. In [7℄, a level set method was presented for solvingthe Stefan problem and for simulating dendriti
 solidi�
ation. The numeri
alalgorithm presented here is based upon the work done in [7℄; however, thereare important di�eren
es between the two problems whi
h have ne
essitatedthe development of a numeri
al method that is 
exible and fast enough to beof pra
ti
al interest. In the following subse
tions, the numeri
al algorithmis �rst outlined. Details are then presented of how this algorithm has beenimproved and modi�ed (over the method in [7℄) in order to solve the islanddynami
s problem.3.1 Outline of the MethodAfter initialization of �, � and N , the general outline of the numeri
al methodis as follows:1. Compute an approximation to the normal velo
ity �eld.2. Update � by solving equation (3).3. Solve the di�usion equation for �, with the internal boundary 
onditionof � equal to a 
onstant (e.g. 0) in
orporated into the numeri
al s
heme.4. Update N(t) from equation (6). If N(t) has in
reased to the nextinteger value, then a new island is seeded. This event is re
e
ted bythe appropriate modi�
ation of � at gridpoints near the nu
leation site.Return to step 1.3.2 Normal Velo
ityThe �rst step of the numeri
al algorithm is to 
ompute an approximationto the velo
ity �eld vn. Equation (7) is valid only at the island boundaries,but numeri
ally, it is best to extend vn o� the interfa
e to every gridpoint inorder to obtain a smooth velo
ity �eld. This minimizes the development ofkinks in �.At the start of the velo
ity 
omputation, a �rst order approximation ofvn is 
omputed only at gridpoints bordering or on the fronts that represent7



the island boundaries on ea
h level. This approximation is obtained by �rst
omputing approximations to ���x and ���y at every gridpoint (xi; yj). The �rstorder s
heme used is either ba
kward or forward di�eren
ing. Spe
ial 
are istaken so that ���x and ���y are not di�eren
ed a
ross island boundaries.In addition to ���x and ���y , it is also ne
essary to 
ompute values of theoutward normal ve
tor ~n at every gridpoint. The formulas for this are~n = � ~r�j~r�j ; or (nx; ny) = � (���x ; ���y )r���x 2 + ���y 2In the formulas above, the expressions ���x and ���y are 
omputed by �rst orderapproximations, that are either forward or ba
kward di�eren
es in spa
e.The 
hoi
e of whi
h formula to use depends upon the interfa
e. The formulathat involves nodes that are 
losest to the interfa
e is the one that is 
hosen.On
e ���x ; ���y ; nx and ny have been 
omputed at all gridpoints, vn 
an beapproximated. At every gridpoint, (xi; yj), a 
he
k is done of its 9 neighborsto determine whether an interfa
e is separating them. If there is at leastone neighboring gridpoint, e.g. (x�; y�), that is separated from (xi; yj) byan island boundary, then vn is 
omputed from the jump 
ondition given inequation (7). In other words,vn = � a2 D "���xnx + ���yny#(xi;yj)(x�;y�) (8)The sign value above is adjusted to the appropriate value, depending onwhether (xi; yj) is within or outside an island.Right before islands have merged, their boundaries are 
lose, but not
onne
ted to one another. The velo
ity 
omputation is robust enough tohandle the 
ase of gridpoints that are 
aught in between these islands. Thisis illustrated in Figure 1, where 3 gridpoints (A,B,C) are separated by 2island boundaries. At gridpoints A and C, ���x is 
omputed by ba
kward andforward di�eren
e s
hemes, respe
tively. At B, ���x is set to 0, sin
e thereare no other neighboring points on its same level. Sin
e vn is 
omputedfrom jumps in ���x , the value of vn at B will be 
omputed either as a jumpbetween A and B or a jump between B and C. Either way, vn at B will benonzero. Furthermore, numeri
al 
omputations have shown that vn behavesin a relatively smooth manner as islands merge.8
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Figure 1: Merger between 2 islandsGrid bias e�e
ts may o

ur sin
e the jump 
ondition in (8) is 
omputedusing the �rst gridpoint found, (x�; y�), that is not on the same monolayeras (xi; yj). To uniformize the values of vn in the normal dire
tion, the initialapproximation to vn is re�ned by solving the equation�vn�� + sgn(�)(~n � rvn) = 0 (9)for a few iterations in a �
titious time � , again only at gridpoints borderingthe front. When 
omputing rvn, the spatial di�eren
es are 
omputed usingonly values of vn that have been previously de�ned (i.e. adja
ent to theinterfa
e). In the 
ase where the spatial derivative depends on a grid nodewhere vn is not de�ned, the derivative is set identi
ally to 0.On
e vn has been de�ned adja
ent to the interfa
e, those values mustbe extended to a narrow band (of about 5 grid
ells) in order to updateequation (3). One 
ould use (9) to extend vn o� the interfa
e to all thegridpoints, as was �rst suggested in [45℄ and 
arefully implemented in [28℄.This extension pro
ess 
an be 
omputationally expensive, so instead a simpleextension routine for vn is applied. First, all gridpoints are 
ategorized asbeing either marked (
lose to or on the interfa
e) or unmarked (away fromthe interfa
e). At every marked node, a sear
h is done of its neighborsfor unmarked nodes. When an unmarked node is found, the value of vnat this gridpoint is set equal to an average of vn values from its markedneighbors, and this unmarked node is 
hanged to a marked node. Thispro
ess 
ontinues until all the nodes have been marked. There are bettermethods than des
ribed above but that they do not 
hange the results here.See also [1℄ for a related fast method for extending quantities o� an interfa
ewhi
h depends more dire
tly on the 
hara
teristi
 nature of equation (9) thanthe method des
ribed above. 9



In Se
tion 4.1, it is shown that for the 
ase of irreversible aggregation, theproblem is unstable. Under grid re�nement, this physi
al instability 
an beseen numeri
ally through a �ngering e�e
t on the boundary. Sin
e pra
ti
alinterest lies in simulating the growth and development of many islands, thee�e
t of this instability is minimal; for the 
oarser grid sizes used in ournumeri
al experiments, islands tend to merge (
oales
e) before any sort of�ngering takes pla
e. However, when the number of islands is restri
ted, thise�e
t 
an be seen as shown in Figure 2(a). One way of preventing dendriti
growth from o

urring is to 
ompute an average normal velo
ity for ea
hisland, using the formula: �vn = H�i vndsH�i ds ; i = 1; :::N (10)where �i denote the island boundaries. The original expression for vn inequation (7) 
orresponds physi
ally to the 
ase of di�usion limited aggre-gation, whereas equation (10) does not. By using (10), islands are for
edto grow isotropi
ally before merging. This is 
omparable to (but not thesame as) adding edge di�usion in KMC methods; both approa
hes have thee�e
t of produ
ing 
ompa
t island shapes. The main bene�t of using �vn isthat unstable growth modes are damped out and the �ngering e�e
t seenin Figure 2(a) vanishes, as seen in Figure 2(b). �vn is 
omputed from vn bysolving (10) before vn has been extended. For ea
h island, an approximationto the line integral of vn is 
omputed and divided by the island boundarylength. A dis
ussion of how island boundary lengths are 
omputed followsin Se
tion 3.7. After �vn is 
omputed at gridpoints on or near the interfa
e,it is extended in a manner similar to vn.Another feature that is desirable at times is to restri
t the shape of theislands before merger to the same anisotropi
 shape, e.g. squares. This 
anbe done by making the velo
ity dependent upon the angle, �, made betweenthe x�axis and the normal ve
tor ~n. For example, square shaped islands 
anbe obtained using the velo
ity ~vn given by~vn = �vn(j
os(�)j+ jsin(�)j)The idea of using the velo
ity to obtain kineti
 
rystal shapes is dis
ussedin more detail in [29℄ and is based on a result obtained in [24℄ and [36℄.Results using either vn, �vn or ~vn are shown in Figure 3. In Figure 3(a),the island shapes 
orrespond to the 
ase of di�usion limited aggregation.10



Figure 2: E�e
t of velo
ity on instability: (a) vn from eq. 7 (top) (b) �vn fromeq. 10 (bottom).
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Though the equations for this 
ase are weakly ill-posed, there is no noti
eabledendriti
 �ngering in Figure 3(a) due to numeri
al dissipation on the 
oarsegrid. Figure 3(b) is generated using �vn; here the growth 
an be des
ribedas isotropi
 with non-
urvature dependent in
orporation of adatoms. In thelast panel, Figure 3(
), using ~vn, the island shapes are anisotropi
 and theabsorption of adatoms is dependent upon ~n. Note that equations (3) and (9)are formulated using the expression vn. If, however, a de
ision is made touse either ~vn or �vn, then (3) and (9) are solved with vn repla
ed by either ~vnor �vn.3.3 Level Set Computational IssuesThe level set equation, (3), is solved using a method of lines approa
h, thatemploys a 3rd order Runge-Kutta method along with a 3rd order Hamilton-Ja
obi ENO s
heme. This approa
h is fairly standard, and the interestedreader is referred to [26, 35℄ for more details. There are some unique aspe
tsof this level set approa
h that are worth dis
ussing in more detail be
ausethey show how useful the level set approa
h is for problems su
h as the islanddynami
s equations. The issues addressed in this se
tion are how � is used totra
k islands on di�erent monolayers and the issue of reinitialization. Se
tion3.5 will show how nu
leation events are represented using � and Se
tion 3.7will 
over how � 
an be used to 
ompute various island statisti
s.A unique aspe
t of this numeri
al method is that only one level set fun
-tion is needed to keep tra
k of islands on di�erent layers. By using just onelevel set fun
tion rather than one fun
tion per layer, the algorithm is keptsimple and memory 
osts are kept down. From one fun
tion, one 
an deter-mine where the island boundaries are, as well as what layer an island is on.This is a useful feature sin
e there is observable roughening and 
oarseningof thin �lm surfa
es in experimental and KMC data.The manner in whi
h � is used is in the identi�
ation of 
ontour levels � =m, m being a non-negative integer, with island boundaries on the (m + 1)stlayer. Thus at gridpoints near nu
leation sites, � must be raised to at leastthe next highest integer value in order to properly represent islands on a newlayer. Figure 4 represents a typi
al pro�le of � illustrating how � 
an be usedto represent island growth on 3 di�erent layers.In 
ontrast to other level set appli
ations [28, 38℄, � is not reinitialized asa distan
e fun
tion after equation (3) has been solved. The reason for this isthat other level set appli
ations are only 
on
erned with the � = 0 
ontour12



A

B

CFigure 3: E�e
t of velo
ity on island shapes: (A) vn, (B) �vn , (C) ~vn
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e, 
onstant reinitialization to a distan
e fun
tion is desirable inorder to obtain a very well-behaved fun
tion �. However, in the island dy-nami
s model, one has to keep tra
k of many 
ontour levels. Reinitializationof � to an exa
t distan
e fun
tion from any one spe
i�
 
ontour level 
ouldintrodu
e spurious peaks in �, thereby 
reating erroneous islands.Although reinitialization to a distan
e fun
tion is not possible, due tonu
leation, there is still a need to 
he
k that � stays well-behaved. Nu
leationintrodu
es lo
al regions where � is nonsmooth and may 
ause os
illations. Inorder to minimize the impa
t from new extrema of � formed from nu
leation,a sear
h is done for any spurious os
illations in �. At a nu
leation site, �is raised to the next highest integer value plus a 
onstant peak height (seeequation (21)). Sin
e equation (3) should not introdu
e any new extrema,any extrema in � should be equal to an integer plus this 
onstant peak height.Thus a 
riteria is set for determining whether lo
al extrema in � are spurious.First, a sear
h is done for any lo
al maximum values of �. If the fra
tionalparts of these values do not fall within a 
ertain range of the peak height,these values of � are 
onsidered spurious os
illations and are reset so thattheir fra
tional parts are equal to the peak height.3.4 Computation of the Adatom DensityThe di�usion equation for �, (4), is solved using a �nite di�eren
e s
heme.In general, the stability 
ondition for expli
it �nite di�eren
e s
hemes forparaboli
 equations leads to a timestep restri
tion. In parti
ular, for largevalues of the di�usion 
oeÆ
ient D, this timestep restri
tion is severe and of14



the form �t � C�x2D (C = 
onstant)Sin
e realisti
 values of D are of the order O(105) � O(108), this timesteprestri
tion makes expli
it �nite di�eren
e s
hemes impra
ti
al. In 
ontrast,an impli
it �nite di�eren
e s
heme is un
onditionally stable. By swit
hing toan impli
it method, there is the added bene�t of being able to 
ompute ona mu
h longer times
ale than is possible for KMC methods. (Of 
ourse, thefa
t that this method is stable using relatively large timesteps is no guaranteethat the results are more a

urate than KMC methods, whi
h use smallertimesteps.)The impli
it s
heme that is applied to (4) assumes that���t � �k+1 � �k�tand that the spatial derivatives of � are approximated using values of �k+1,where k is the index for time. One may want to use the Strang splittingmethod be
ause of the nonlinear term �2 in the last term of (4). In fa
t,sin
e the nonlinear ordinary di�erential equation 
an be solved analyti
ally,the stability 
on
erns introdu
ed by this fa
tor are non-existent. Moreover,the Strang splitting method is not as a

urate with large timesteps; i.e.,when we use large timesteps to generate a qualitative solution, the resultsfrom Strang splitting are worse than the method we now use. The expression�2 in (4) is linearized, so that(�2)k+1 � (�2)k + 2�k(�k+1 � �k)� 2�k�k+1 � (�2)k:Therefore, the impli
it s
heme produ
es a time dependent linear system ofthe form A�k+1 = b (11)A and b are dependent upon surfa
e morphology (e.g. �k+1 whi
h is updated�rst), and their stru
ture is determined by the spatial dis
retizations of thederivatives �2��x2 and �2��y2 in (4). These dis
retizations are des
ribed in somedetail below.It is suÆ
ient to explain how the spatial derivatives are derived withrespe
t to one variable, sin
e there are no mixed partial derivative terms in15



(4). The extension of the following dis
retization formulas to two dimensionsis straightforward and simple. In one dimension, let the spatial gridpoints bedenoted by xi, and let �i � �(xi; �) and �i � �(xi; �). The standard 
entral�nite di�eren
e s
heme for �xx = �2��x2 (at some �xed time) is(�xx)i � ��i+1��i�x �� ��i��i�1�x �12(�x +�x) = �i+1 � 2�i + �i�1�x2 (12)where �x is the spatial grid spa
ing.For gridpoints near the island boundaries, (12) 
annot be used be
ause the�rst derivatives of � are dis
ontinuous a
ross the interfa
e. Furthermore, theinternal boundary 
ondition needs to be in
orporated into the �nite di�eren
esten
il. One way of doing this is to use one-sided sub
ell dis
retizations.Suppose the boundary point, xf , falls in between two gridpoints xi and xi+1.From �, the distan
es between xi; xi+1 and xf 
an be estimated byxf � xi � �(�i � int(�i)) �x(�i+1 � �i) = �1�x (13)xi+1 � xf � (�i+1 � int(�i+1)) �x(�i+1 � �i) = �2�x (14)Note that �1; �2 2 [0; 1℄ , �1 + �2 = 1 and int(�i) is an integer part of �i. Toavoid numeri
al errors 
aused by division by 0, �1 or �2 are not used if eitheris less than �x2. If �1 < �x2, then xf is assumed equal to xi. If �2 < �x2,then xf is assumed equal to xi+1. Either assumption is e�e
tively a se
ondorder perturbation of the interfa
e lo
ation. As will be shown later in thedis
ussion of the Ghost Fluid Method, a se
ond order perturbation of theinterfa
e lo
ation will not a�e
t the overall �rst order a

ura
y of the spatialdis
retization.Using the formulas above, one 
an 
onstru
t numeri
al sten
ils for �xxthat avoid di�eren
ing a
ross the front. By formal trun
ation analysis, theseformulas are only �rst order a

urate (O(�x)) and are given by:(�xx)i � ��f��i�1�x �� ��i��i�1�x �12(�1�x +�x) (15)(�xx)i+1 � ��i+2��i+1�x �� ��i+1��f�2�x �12(�x + �2�x) (16)16



where �f denotes the value of � at xf and is determined from the boundary
ondition. Thus, the boundary 
ondition is in
orporated into the sten
ilthrough the spe
i�
ation of �f . In the 
ase of irreversible aggregation, �f = 0.When equations (12), (15) and (16) are generalized to two dimensions and
oupled to a standard impli
it s
heme for (4), they form a nonsymmetri
linear system. In [7℄, a similar system was solved using the Gauss-Seidelmethod. The s
ope of the island dynami
s problem is di�erent from the onein [7℄ in that typi
al simulations involve mu
h larger system sizes and longer
omputational times. Also, given that values of D are mu
h larger thanin [7℄, the Gauss-Seidel method would be too slow for all pra
ti
al purposes.In terms of speed, it is preferable to solve a symmetri
 linear system be
ausea fast iterative method su
h as the pre
onditioned 
onjugate gradient (PCG)method 
an be applied. Consequently, what is needed is a dis
retization ofthe spatial derivatives that will lead to a symmetri
 system of equations, yetstill in
lude information about the internal boundary 
ondition.In [21℄, an alternative strategy for dis
retizing the internal boundary 
on-dition was proposed. This strategy was based on the delta fun
tion formu-lation of [30℄ whi
h was adapted for level set methods by [38℄ and [6℄. Themethod proposed in [21℄ used a penalty method to keep � near zero in thehope of approximating the � = 0 internal boundary 
ondition in equation(5). This is done with a strong spatial sink term that is added to the righthand side of equation (4) in the form �K�Æ where Æ is a smoothed out deltafun
tion that a
ts in a band near the interfa
e, 
ausing the sink term to havean e�e
t on � in a �nite band of 
ells. Usually, this delta fun
tion formula-tion works be
ause the thi
kness of the band exposed to the delta fun
tionshrinks to zero as �x goes to zero produ
ing a vanishing 
ontribution tothe true physi
s of the problem. Unfortunately, sin
e equation (7) is alwaysdis
retized using the grid points immediately adja
ent to the interfa
e, the
ontribution of the delta fun
tion sour
e term is not diminished as �x goesto zero. On the 
ontrary, this band of 
ells where the delta fun
tion is appliedalways makes a large 
ontribution to the velo
ity of the front. Furthermore,the � = 0 boundary 
ondition is only obtained as K goes to in�nity andK� approa
hes a �nite limit (notably K� approa
hes vn). Neither of these
onditions 
an be obtained numeri
ally and results using this method wereunsatisfa
tory.In order to alleviate the diÆ
ulties asso
iated with the implementationof the internal boundary 
ondition in [7℄ and [21℄, equations (15) and (16)are repla
ed with the following dis
retizations for �xx at gridpoints near the17



boundary. (�xx)i � ��f��i�1�x �� ��i��i�1�x ��x (17)(�xx)i+1 � ��i+2��i+1�x �� ��i+1��f�2�x ��x (18)These equations were derived using ideas generated by the Ghost FluidMethod [10℄. That is, equation (17) is derived using linear extrapolationof � from one side of the interfa
e to the other, obtaining�G = �f + (1� �1)��f � �i�1 � (19)as a ghost 
ell value for � at xi+1. The standard se
ond order dis
retizationof �2��x2 at xi using �G at xi+1 is(�xx)i � ��G��i�x �� ��i��i�1�x ��x (20)and the substitution of equation (19) into equation (20) leads dire
tly to (17).Equation (18) is derived similarly. Note that similar ideas were used in [15℄,but their �nal matrix was nonsymmetri
, making their method more similarto [7℄ and to related work in [40℄. It is interesting to note that a formulasimilar to (17) appears in [27℄ for a di�erent problem where the formula wasused to alleviate CFL restri
tions by assuming that the interfa
e undergoesan O(�x) perturbation in lo
ation.As formulas for the se
ond derivatives, (17) and (18) have O(1) errors. As0 for the boundary values �f , however, these formulas have O(�x2) errors.By the maximum prin
iple for paraboli
 systems, the resulting 
onsisten
yerror is then O(�x2) everywhere. Computational experiments 
on�rm thisfa
t and show that the resulting s
heme is stable.Assuming that jr�j 6= 0 and that r� is not parallel to the boundary(whi
h is true for the �f = 0 problem 
onsidered here), a 
hange in bound-ary value with �xed domain is equivalent to a 
hange in domain boundarywith �xed boundary value. This shows that an alternative explanation forthe boundary 
ondition is that it 
orresponds to an O(�x2) 
hange in theinterfa
e lo
ation with no 
hange in the boundary value �f . This 
hange inthe domain also results in an O(�x2) 
onsisten
y error. An advantage of thisformulation is that it preserves the property that � > 0 inside the domain.18



While the above argument holds for the one-dimensional 
ase, it is notobvious that it applies or 
an be extended to multiple spatial dimensions.However, extensive numeri
al testing of this method was 
arried out in [8℄ inone, two and three spatial dimensions for the Poisson equation r�(kr�) = fwith Diri
hlet boundary 
onditions on irregular domains 
onsidering bothspatially varying and spatially 
onstant k. In [8℄, the algorithm showednumeri
al eviden
e of se
ond order a

ura
y in both the L1 and L1 normsas 
ompared to exa
t solutions for a wide variety of problems. Furthermore,[8℄ tested this method on an impli
it time stepping dis
retization of the heatequation �t = �� with Diri
hlet boundary 
onditions on an irregular domain.For the heat equation, similar se
ond order a

ura
y in both the L1 and L1norms was observed in the numeri
al 
al
ulations for one, two and threedimensional numeri
al examples.The largest advantage of using (17) and (18) is that they lead to a sym-metri
 linear system. This is best illustrated by 
onsidering the lo
al matrixstru
ture 
orresponding to the two dis
retizations of �xx. Suppose xf fallsbetween gridpoints xi and xi+1. Also, assume that �f = 0 and �1 and �2 arede�ned as in formulas (13) and (14). If one uses the standard dis
retization(12) for �xx at gridpoints xi�1 and xi+2, and formulas (15), (16) for �xx atxi and xi+1, then the 
orresponding lo
al matrix stru
ture for the numeri
aldis
retization of �xx would look like:1�x2 0BBBB� �2 1 0 02�1+1 �2�1 0 00 0 �2�2 2�2+10 0 1 �2 1CCCCA0BBB� �i�1�i�i+1�i+2 1CCCAwhi
h is 
learly nonsymmetri
.Now if (15) and (16) are repla
ed by formulas (17) and (18), the analogouslo
al matrix stru
ture is1�x2 0BBBB� �2 1 0 01 �(1 + 1�1 ) 0 00 0 �(1 + 1�2 ) 10 0 1 �2 1CCCCA0BBB� �i�1�i�i+1�i+2 1CCCAThus, (17) and (18) produ
e the desired symmetri
 matrix stru
ture. Byusing these formulas, a tradeo� is made in the a

ura
y of the interfa
elo
ation in order to produ
e a symmetri
 linear system.19
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Figure 5: Iteration 
ounts for di�erent pre
onditionersThe resulting symmetri
 matrix system, (11), is solved using PCG. Eventhough PCG is a standard fast iterative solver (see [11℄ for a survey of itera-tive solvers), 70� 80% of CPU time for typi
al runs is still spent solving thedi�usion equation. Presently, the Cholesky pre
onditioner is used at everytimestep. This pre
onditioner performs well in 
omparison to other pre
on-ditioners (see Figure 5), but the hope in future work is to improve 
ode speedby applying di�erent optimal pre
onditioners at di�erent 
overages.3.5 Nu
leationAn important feature of this numeri
al algorithm is the ability to modelnu
leation events, i.e. the seeding of new islands. The time to nu
leate a newisland is determined by N(t), whi
h in
reases by the nu
leation rate given byequation (6). Whenever N(t) has in
reased to the next integer value, thatsignals the time for a nu
leation event. Numeri
ally, every nu
leation eventwill a�e
t values of � and � near nu
leation sites, whi
h are simply gridpointsat whi
h a new island is 
entered. These sites are 
hosen probabilisti
ally,whi
h means that the lo
ation of a new island is 
hosen with a probabilitythat is weighted by the lo
al value of �2. A justi�
ation for this 
hoi
e isdis
ussed in [31℄.New islands are represented on the grid as square-shaped. Their idealarea, 2a2, is predetermined by the number of atoms in a new island, 2, and20



the atomi
 length a. In order to ensure that new islands will not disappeardue to inadequate numeri
al representation, the smallest numeri
al islandsize is 4�x2, i.e. the area of the square formed by 4 grid 
ells. If �x � ap2 ,then the grid size is �ne enough to represent the ideal area for a new island.On 
oarser grids (�x > ap2), new island areas are set equal to a value, 4�x2,larger than the ideal value, sin
e �x is the smallest length representable onthe grid.The algorithm for representing a new island is as follows:1. Choose the nu
leation site (xi; yj).2. Set I = lowest integer value > �(xi; yj).3. Reset � values at gridpoints near (xi; yj) so that lo
ally � is pyramidshaped.In step 3, lo
al values of � are reset to new values �new. At the nu
leationsite (xi; yj), �new is a maximum value, based on a predetermined peak height.This peak height is between 0 and 1 and is typi
ally set to 0.5, so that�new(xi; yj) = I + 0:5 (21)The area of the base of the pyramid formed by �new is either 2a2 or 4�x2,based upon the grid size. Values of � are reset to �new at gridpoints withinand neighboring this base area, 
entered at (xi; yj). These lo
al values aredetermined su
h that (21) is satis�ed and �new = I at the base of the pyra-mid. Within the base area, values of �new range between I and I + 0:5. Atneighboring gridpoints outside of the base area, �new is extended smoothlyto values below I. See Figure 6 for a pro�le of �new near a nu
leation site.Numeri
ally, nu
leation 
auses lo
al values of � to 
hange. No 
orre-sponding 
hanges are made expli
itly in �. Instead, after a nu
leation eventhas taken pla
e, the normal velo
ity is 
omputed at all gridpoints. Care istaken so that the velo
ity is kept equal to 0 at gridpoints where � has beenreset to �new. This is ne
essary so that new islands will not move until � hasbeen updated. Impli
itly stored in �, the new island will be \felt" by � on
eequation (4) has been solved.3.6 Timestep Restri
tionsIn essen
e, three di�erential equations are solved at ea
h timestep: (3),(4) and (6). Though the equations are updated by di�erent timestepping21
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Figure 6: Lo
al pro�le of �new for y held �xed near a nu
leation site xi.w = ap2s
hemes, e.g. Runge-Kutta for (3) and impli
it Euler for (4), the a
tualvalue of �t must be the same for all 3 updates in order to avoid syn
hro-nization errors. Instead of a 
onstant timestep, �t is determined adaptivelyby a number of fa
tors. From the 
ux term F in equation (4), a restri
tionis pla
ed on �t su
h that F�t < 0:01:This is to guarantee that there is suÆ
ient a

ura
y in integrating the Fterm, and that there is no more than 1% 
overage per timestep. In order toensure the stability of the expli
it timestepping s
heme for (3), the requiredCFL 
ondition is given by �t < �xmax(vn) :Furthermore, sin
e � represents a density, it should have nonnegative valuesat all gridpoints. If, after solving (4) using a timestep �t, a negative value of� is dete
ted, the 
al
ulation of the three equations is redone using a redu
edtimestep (e.g. in our 
ode, we use �t=4).In addition to the timestep restri
tions generated by equations (3) and(4), another fa
tor 
ontributing to the adaptive timestep is nu
leation. Newislands are seeded one at ea
h timestep in order to avoid islands being seededtoo 
losely to one another. Whenever N(t) has in
reased by more than 1within a single timestep, �t is redu
ed (on
e again using �t=4). This has thee�e
t of slowing down the 
ode during stages of heavy nu
leation. In terms22



of speed, nu
leation adds a time s
ale fa
tor of O(L2) where L2 representsthe physi
al system size. The O(L2) term is due to the fa
t that the largerL is, the more nu
leation events 
an o

ur. Future work will involve theimplementation of a multiple seeding algorithm that will redu
e the O(L2)fa
tor in the 
ode s
aling.There are 
ontinued redu
tions in �t until either all the timestep restri
-tions are met or a minimum value of �t = 10�16 is rea
hed. (So far, wehave never hit the minimum in any of our large number of 
omputations.Con
eivably, this 
ould o

ur and the 
ode would have to be terminated. Inthat 
ase, we would need to propose an alternate strategy for 
hoosing �t.)3.7 Computation of Island Dynami
s Statisti
sLastly, � is used for 
omputing a variety of island statisti
s. These statisti
sare useful as a barometer of how well the level set method is working and ofhow a

urate the island dynami
s model is at des
ribing features of thin �lmgrowth. In Se
tion 4, results garnered from these statisti
s will be presented.How these statisti
s are obtained using the level set fun
tion is des
ribedbelow.The numeri
al quantities that are most needed for obtaining quantitativeresults are the number, areas and perimeters of islands. As dis
ussed in[21℄, these statisti
s 
an be 
omputed by treating islands as the 
onne
ted
omponents of the 
ontour levels of �. An algorithm has been developed forlabeling every 
onne
ted 
omponent, hen
e every island, and for asso
iatingevery gridpoint as being within or outside an island. In this algorithm,nodes are 
ategorized as labeled or unlabeled. From an arbitrary startingnode, neighbors of labeled nodes are 
he
ked to see if they are unlabeled andif there is no boundary (
ontour level) separating them from their labeledneighbor. If both 
riteria are met, unlabeled nodes re
eive the same label astheir labeled neighbor. This pro
ess 
ontinues until either all the nodes orislands have been labeled. Afterwards, the number of islands is 
omputed asthe number of labels used.It is relatively easy to 
ompute island areas and boundary lengths. Theapproa
h used here is to triangulate the grid and use � to interpolate thepla
es where the interfa
e 
uts through the triangles. From these interpo-lated values, one 
an easily 
ompute sub
ell areas and perimeters. This isillustrated in Figure 7. Within the triangle formed by the gridpoints (xi; yj),(xi+1; yj) and (xi; yj+1), the front interse
ts at two interpolated points, IA =23
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Figure 7: Interpolated values within triangle formed from gridpoints(xA; yA) and IB = (xB; yB). Assuming that (xi+1; yj) is within an island and(xi; yj) and (xi; yj+1) are outside an island, the 
ontribution to the islandboundary length from within the island isq(xA � xB)2 + (yA � yB)2and the 
ontribution to the island area is approximated by12(yA � yB)(xi+1 � xB)using a linear interpolant between IA and IB.4 Computational ResultsIn this se
tion, some of the results obtained from this numeri
al method arepresented. All of these results pertain to the model of irreversible aggrega-tion.4.1 Step TrainsGrowth might either o

ur by nu
leation and growth on a singular, or per-fe
tly 
at surfa
e, or via step-
ow on a vi
inal, or stepped surfa
e. These24



steps originate be
ause a 
rystal is typi
ally 
ut at a (small) angle with re-spe
t to one of the low-index 
rystal planes. During step 
ow, all atomsdi�use toward the next step edge before they meet another atom, and nu
le-ate a dimer. Thus, before 
onsidering the full island dynami
s model withnu
leation, it is instru
tive to 
onsider the 
ase of step trains in the model ofirreversible aggregation. Although the terms steps and islands both des
ribefeatures of 
rystal growth, there are di�eren
es between the two. Islandsare isolated regions that are one layer higher than their surrounding regions.Steps are boundaries on a surfa
e substrate, along whi
h the surfa
e 
hangesheight by one or more layers. A step train is a series of steps. It is possible toobtain theoreti
al solutions for the island dynami
s equations in the spe
ial
ase of step trains without nu
leation. One 
an then 
ompare these solutionswith 
omputational results from the level set method.In the 
ase of a periodi
 step train, let the step boundary be 0 by thefun
tion X(y; t). The evolution of the step 
an be modeled by the islanddynami
s equations: (4), (5), and (7). In the absen
e of nu
leation, theseequations redu
e to:���t = r � (D r�) + F; X � S < x < X + S (22)� = 0; x = X � S;X + S (23)vn = �a2D  ���~n �����X+S � ���~n �����X�S! (24)where Xt = vn (25)and ~n = (1;�Xy)q1 +X2ydenotes the normal to the step. The period of the step in the x�dire
tion is2S. Note that the term �jX+S denotes to the limit from right and the term�jX�S denotes to the limit from the left.After performing a shift, x = v0t + x0, to 
enter the step, the evolutionequations be
ome���t = r � (D r�) + F + v0 ���x0 ; X 0 � S < x0 < X 0 + S (26)� = 0; x0 = X 0 � S;X 0 + S (27)25



vn = �a2D ���~n �����X0+S � ���~n �����X0�S! (28)X 0t = vn � v0 (29)By perturbation analysis of equations (26), (27), (28) and (29), one 
anobtain leading order approximations to the analyti
 solutions of the form�(x0; y; t) = �0(x0) + ��1(x0; y; t) + :::X 0(y; t) = �X 01(y; t) + :::where �0; �1 and X 01 are of the form�0 = b0 + b1x0 + b2e��x0�1 = eiky+!t(�̂+e�+x + �̂�e��x)X 01 = X̂1eiky+!tin whi
h v0 = 2a2FL� = 2a2D�1FLb0 = (2a2)�1
oth(�L)b1 = �(2a2L)�1b2 = �(2a2sinh(�L))�1and for the se
ond order approximation, one will �nd that in leading order,! = a2D(�00(S) + �00(�S))jkj:Further analysis show that (�00(S) + �00(�S)) > 0, hen
e ! > 0. Thus thereexists a 
lass of unstable solutions.Computational results 
an be obtained by applying the level set methodto the steptrain model, with no nu
leation. Consider the 
ase of initialsteps X(x; t = 0) = � 
os(kx) with initial density �(x; y; t = 0) = �0(x) +��1(x; y; t = 0). These two equations are 
ompatible for � small. (If � is toolarge, then the step velo
ities derived fromX and � will not mat
h up and thetwo solutions will not agree.) In the simple 
ase of a straight step, (i.e. where� = 0), the theoreti
al solution mat
hes up with the 
omputed solution fromthe level set method. The step travels at the 
orre
t velo
ity v0 and one 
an26



Grid Size Max Error Order50 X 50 1:366� 10�2100 X 100 6:506� 10�3 1.070200 X 200 3:206� 10�3 1.021400 X 400 1:591� 10�3 1.011Table 1: Step trains: error measured between the analyti
 solution withF = 1 and level set results for the 
ase of a straight step, i.e. � = 0.measure the error between the analyti
 and 
omputed solutions. In Table 1,the error is re
orded for in
reasingly �ner grid sizes. The 
orresponding orderof a

ura
y is one, meaning the numeri
al method is O(�x).For � small, a more interesting result o

urs when the level set methodprodu
es the instability predi
ted from the theoreti
al solution. This insta-bility 
an be seen in the development of dendrites over time, as shown inFigures 8 and 9. The solutions obtained using the level set method area

urate up to the time at whi
h spurious os
illations o

ur. In Table 2,the error is measured between the analyti
 and 
omputed solutions for the
ase 
orresponding to Figure 8 (top), third 
urve from the left. Similar tothe 
ase for � = 0, the measured order of a

ura
y in Table 2 shows thatthe level set method is �rst order a

urate for � > 0 up to small times. Forlater times, the dendriti
 �ngering from level set results (as seen in Figures8 and 9) shows the inherent instability of the problem. Os
illations due tothe physi
ally 
orre
t unstable growth have the e�e
t of amplifying roundo�and dis
retization errors. These os
illations are qui
kly magni�ed, 
ausing anumeri
al instability at later times.4.2 Island Dynami
s ComputationsFor the full island dynami
s model, one of the earliest 
he
ks performed wasrelated to mass 
onservation. Under a 
onstant 
ux term F , the 
overageon the surfa
e should be � = Ft, where t is the 
omputational time. How-ever, it is known that level set methods have a (small) mass loss. In Figure10, we plot the a
tual 
overage on the surfa
e as a fun
tion of time. Thea
tual 
overage is measured by simply adding up the area of all islands onthe surfa
e (this negle
ts the adatoms, but for typi
al values of D=F thenumber of single adatoms is several orders of magnitude smaller than the27
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Figure 8: Step trains: analyti
 (smooth) and 
omputed (dendriti
) so-lutions. D = 20, F = 1, �X̂1 = �0:01; k = 4; ! = 6:8789; t =0:0; 0:0125; 0:025; 0:05; 0:1; 0:2; 0:4 (bottom). First �ve 
urves zoomed in(top).
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Figure 9: Step trains: analyti
 (smooth) and 
omputed (dendriti
) solutions.D = 10; F = 1; �X̂1 = �0:02; k = 4; ! = 11:946; t = 0:0; 0:05; 0:1; 0:2:
Grid Size Max Error Order32 X 32 1:749� 10�264 X 64 1:030� 10�2 0.764128 X 128 4:555� 10�3 1.177256 X 256 2:302� 10�3 0.984512 X 512 1:166� 10�3 0.982Table 2: Step trains: error measured between the analyti
 solution and levelset results for the 
ase 
orresponding to D = 20; F = 1; �X̂1 = �0:01; k =4; ! = 6:8789; t = 0:025.

29



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

C
O

V
E

R
A

G
E

D/F = 106, L = 90, F = 1

n = 64 
n = 128
n = 256
n = 512
exact  

Figure 10: Conservation of mass under grid re�nementnumber of adatoms that have been in
orporated into the islands). The solid(straight) line represents the ideal 
ase of perfe
t mass 
onservation. We seethat there is a small mass loss in our method due to numeri
al dissipation,but, in general, mass is 
onserved very well. In parti
ular, the mass loss
an be 
ontrolled under grid re�nement and the order of a

ura
y for mass
onservation is O(�x).To validate the island dynami
s model and its numeri
al implementation,results have been 
ompared to those obtained from KMC simulations. TheKMC simulations were 
arried out on a square latti
e and in
luded a pro
essfor fast edge di�usion so that island shapes are 
ompa
t. The fo
us here ison the submonolayer regime for the 
ase of irreversible aggregation, wherethe nu
leation rate is given by equation (6).With the approa
h dis
ussed here, one 
an obtain the entire island sizedistribution (in
luding spatial information). S
aling of the size distributionfor di�erent values of the 
overage � and D=F in 
omparison with the KMCsimulations is shown in Figure 11. The �lled symbols in Figure 11 
orrespondto s
aled numbers from the level set method (LS), while the open symbols
orrespond to data obtained from KMC methods. The agreement betweenthe two methods is very good for two values of D=F and two values of30
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Figure 11: Comparison of s
aled island-size distributions, where ns is thenumber of islands of size s, sav is the average island size, and � is the 
overage.The experimental data for Fe/Fe(100) 
omes from [37℄.�. Experimental data is represented on the graph by the large 
ir
ularsymbols. For larger values of s=sav, the agreement between the experimentaland simulated data is also very good. The dis
repan
y between the two typesof data for smaller values of s=sav may be due to noise. Sin
e the 
orre
tisland size distribution is obtained, this model 
aptures many of the relevantpro
esses in the submonolayer aggregation regime.The island dynami
s model has no inherent limitations that restri
t itsvalidity to submonolayer growth. In fa
t, one of the advantages of the levelset method is that it 
an des
ribe the merger (
oales
en
e) of islands withinits framework, without spe
i�
ation of any extra parameters. For manyte
hnologi
al appli
ations, it is of interest whether a thin �lm grows in alayer-by-layer fashion, or whether it be
omes rough (many layers exposedat the same time). A quantity that experimentally determines this is theRHEED (re
e
tive high energy ele
tron di�ra
tion) signal. During layer-by-layer growth, the RHEED signal os
illates with a periodi
ity that 
orrespondsto the 
ompletion time for ea
h layer. There is eviden
e that the RHEEDsignal is due to variations in the step edge density [34℄: at layer 
ompletion,there are very few step (island) edges, while at a partially grown layer, thereare many exposed step (island) edges.In Figure 12 results are shown for the step edge density os
illations fordi�erent values of D=F . The step edge density os
illates with an amplitude31
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Figure 12: Step-edge density for di�erent values of D=F obtained with thelevel-set method. The data represents the average over 5 independent real-izations, with L=a = 300 and 400 gridpoints (laterally).that is damped. The latter is due to progressive roughening of the surfa
e.For higher values of D=F , the magnitude is lower, be
ause there are fewer,bigger islands on the surfa
e. Thus, this model qualitatively reprodu
esthe 
orre
t physi
s in the multilayer regime as well. A more quantitativestudy with a 
omparison to the 
orresponding KMC data is 
urrently beingpursued, and will be published elsewhere.5 Con
lusionsIn this arti
le, we have presented further developments and results from alevel set based method that simulates the island dynami
s model for thegrowth of epitaxial thin �lms. Many parts of this numeri
al method wereoriginally proposed in [21℄, although this paper makes some notable improve-ments. In parti
ular, a new treatment was proposed for the internal boundary
ondition that is mush faster than the method in [7℄ and does not needlesslysmear out the interfa
e as originally proposed in [21℄. Results using our nu-meri
al formulation have been previously published in [4, 12℄. In this paper,we have fo
used on explaining the numeri
al algorithm, as well as the nu-meri
al 
hallenges that needed to be over
ome in order to a

urately solveand evolve the equations of motion. We have also detailed how the numeri
almethod was used to address some of the unique issues arising from the island32



dynami
s model, su
h as nu
leation and multilayer growth.The 
omputational results presented here are from the model of irre-versible aggregation. In the 
ase of step trains, the level set method is �rstorder a

urate when 
ompared to an analyti
 solution. For the full islanddynami
s model with nu
leation, good agreement with 
orresponding resultsobtained from KMC simulations shows that the method is a

urate and 
ap-tures the 
orre
t physi
s. In the future, we plan to extend the model toin
orporate a more general boundary 
ondition, 
orresponding to reversibleaggregation. We also plan to improve the overall speed and a

ura
y of the
ode through further development of the method. In 
on
lusion, we feelthat the level set method applied to the island dynami
s model is a usefuland important addition to 
omputational methods for simulating thin �lmgrowth.
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