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e of eigenve
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teristi
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hoi
e entirely. Instead, a 
omplementary proje
tion te
h-nique 
an be used to formulate upwind di�eren
ing without spe
ifyinga basis.For systems with eigenvalues of high multipli
ity, this approa
hsimpli�es the analyti
al and programming e�ort and redu
es the 
om-putational 
ost. Numeri
al experiments show no signi�
ant di�eren
ein 
omputed results between this formulation and the traditional one,and thus we re
ommend its use for these types of problems.�Resear
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This 
omplementary proje
tion method has other appli
ations. Forexample, it 
an be used to extend upwind s
hemes to some weakly hy-perboli
 systems. These la
k 
omplete eigensystems, so the traditionalform of 
hara
teristi
 upwinding is not possible.
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1 Introdu
tionThe standard formulation of upwind di�eren
e s
hemes for hyperboli
 sys-tems requires �nding the Ja
obian matrix of the 
ux fun
tion and the as-so
iated eigensystem (eigenvalues and left and right eigenve
tors). The lefteigenve
tors de�ne the transformation into the 
hara
teristi
 �elds, the as-so
iated eigenvalues de�ne upwind dire
tions for these �elds, and the righteigenve
tors de�ne the transformation ba
k to the primitive variables.These 
hara
teristi
 upwind s
hemes are generally 
onsidered to give thehighest quality numeri
al results. There is a vast literature on this subje
t(see e.g. [4℄ and the referen
es therein). Their only drawba
k is that theyrequire spe
ifying a 
omplete eigensystem for the problem. In pra
ti
e, this
an involve 
onsiderable analyti
al work, as well as some 
ompli
ations whenthe eigensystem la
ks uniqueness (or even existen
e). In this paper we pointout that, in many 
ases, the most problemati
 portion of the eigensystem
an be avoided entirely.As motivation, 
onsider a system whi
h has a repeated eigenvalue (
har-a
teristi
 speed). A 
ommon example is the 
ompressible, multi-spe
ies,multidimensional Euler equations [3℄, where the 
onve
tive 
ow velo
ity isan eigenvalue repeated on
e for ea
h spe
ies and ea
h spatial dimension (seese
tion 4.3). In su
h a system, the distin
t eigenvalues have 
orrespondingunique eigenve
tors (up to s
alar multiples), but the eigenve
tors for therepeated eigenvalue are not unique. The eigen-subspa
e is well de�ned, butan arbitrary 
hoi
e of spanning eigenve
tors must be made to obtain a 
om-plete eigensystem. These arbitrary ve
tors may form the great majority ofthe eigensystem.When designing a numeri
al method for su
h a system, various 
riteria
an be applied to help sele
t one eigenbasis from the in�nitely many 
hoi
es.For example, one 
an look for eigenve
tors that are as sparse as possible, inorder to save time proje
ting into and out of 
hara
teristi
 �elds. One 
analso demand that the the left and right eigenve
tor matri
es be numeri
allywell 
onditioned (i.e. determinant near 1). Still, there is a high degreeof arbitrariness left over, and for degenerate systems, there are typi
ally avariety of eigensystems presented in the literature.Our goal here is to present an alternative approa
h whi
h eliminates theneed to �nd the ambiguous eigenbasis. The basi
 idea is to proje
t data3



dire
tly into the 
hara
teristi
 subspa
e by using the 
omplement of the pro-je
tion operator de�ned by the unambiguous part of the eigensystem. Com-ponentwise upwind di�eren
ing 
an be applied dire
tly to this 
hara
teristi
ve
tor �eld, in 
ontrast to the usual approa
h of upwinding 
hara
teristi
s
alar �elds.
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2 The Complementary Proje
tion Method (CPM)To des
ribe the 
omplementary proje
tion te
hnique in detail, we will showhow it relates to the standard 
hara
teristi
 de
omposition used in upwinddis
retization of a system of n hyperboli
 
onservation laws in one spatialdimension, ~Ut + [~F (~U)℄x = 0: (1)Let the Ja
obian of the 
ux fun
tion, � ~F (~U )=� ~U , have left and righteigenve
tors ~Li and ~Ri, with asso
iated eigenvalues �i, i = 1; : : : ; n. Theleft and right eigenve
tors are further required to be mutually orthonormal,i.e. ~Li � ~Rj = Æij . Equivalently, the row matrix of left eigenve
tors , L, and
olumn matrix of right eigenve
tors , R, are inverses: LR = RL = I.Given this 
omplete eigensystem, any upwind di�eren
e s
heme de�nedfor s
alar equations 
an be extended to the hyperboli
 system via a \
har-a
teristi
 de
omposition". This 
an be des
ribed fairly generally as follows:the spatial dis
retization of [~F (~U )℄x is expressed as a di�eren
e of 
uxes be-tween two grid 
ell walls. Thus the essential step is to 
ompute the 
ux at agrid 
ell wall, ~Fw, given the 
uxes, ~F (~U), at the nearby grid 
ell 
enters [4℄.The �rst step in de�ning the 
ux at a parti
ular 
ell wall is to proje
t theve
tor 
uxes at ea
h 
ell 
enter into \s
alar 
uxes for the ith 
hara
teristi
�eld", de�ned by f i = ~Liw � ~F (~U ). Here ~Liw, ~Riw and �iw are used to denote leftand right eigenve
tors and eigenvalues evaluated at the wall in some fashion.Note the assumed orthonormality implies we 
an write the original ve
tor
ux in terms of these s
alar 
uxes as~F (~U) = f 1 ~R1w + f 2 ~R2w + � � �+ fn ~Rnw: (2)This shows that we 
an think of f i ~Riw as the ve
tor 
ontribution to the total
ux from the ith 
hara
teristi
 s
alar 
ux, f i.Next, for ea
h s
alar �eld i, the 
ell 
enter 
hara
teristi
 
uxes, f i, areinterpolated to the 
ell wall of interest in an upwind fashion with the upwinddire
tion de�ned by the 
orresponding \
hara
teristi
 speed" at the wall, �iw.This yields the s
alar 
hara
teristi
 wall 
ux, f iw.Finally, the desired total wall 
ux ve
tor is de�ned as the sum of all the
hara
teristi
 ve
tor 
ontributions,~Fw = f 1w ~R1w + f 2w ~R2w + � � �+ fnw ~Rnw: (3)5



To introdu
e the alternative approa
h, suppose that from the n eigen-values we have a p-fold repeated eigenvalue. Without loss of generality,we will assume that the �rst p eigenvalues, �1w = �2w = � � � = �pw, are re-peated. The 
orresponding p dimensional 
hara
teristi
 subspa
e is the spanof f~L1w; : : : ; ~Lpwg. The part of the original 
ell 
enter 
ux ve
tor ~F (~U ) thatlies in this 
hara
teristi
 subspa
e is~F = f 1 ~R1w + f 2 ~R2w + � � �+ fp ~Rpw: (4)Note that all of the 
hara
teristi
 �elds 
ontributing to ~F have the sameupwind dire
tion for interpolation, sin
e their 
hara
teristi
 speeds (eigen-values) are identi
al.Sin
e ~F has a well-de�ned upwind dire
tion, upwind di�eren
ing is possi-ble without de
omposing ~F further into the individual s
alar 
uxes. Instead,we 
an dire
tly apply upwind interpolation to the 
ell 
enter values of theve
tor ~F , in a 
omponent by 
omponent fashion. Let ~Fw denote the re-sulting 
ux value interpolated to the 
ell wall of interest. Then, the net 
ellwall 
ux required in the numeri
al method 
an be de�ned via the \partiallyde
omposed" form~Fw = ~Fw + fp+1w ~Rp+1w + fp+2w ~Rp+2w + � � �+ fnw ~Rnw; (5)instead of the fully de
omposed form in equation 3.So far there is no obvious bene�t to this formulation. The 
riti
al obser-vation that makes this partial de
omposition useful is that we 
an 
ompute~F without knowing the basis of left and right eigenve
tors used to de�ne itin equation 4. Instead, it is simply the 
omplement of the remaining part ofthe de
omposition, i.e.~F = ~F (~U)� �fp+1 ~Rp+1w + fp+2 ~Rp+2w + � � �+ fn ~Rnw� : (6)Thus, in order to apply a fully upwind s
heme to a problem where one
hara
teristi
 subspa
e has a repeated eigenvalue, all that is required arethe left and right eigenve
tors 
orresponding to 
omplementary subspa
e.In pra
ti
e, we simply de�ne the 
ell wall 
ux via equation 5 and 
ompute~Fw from ~F as 
al
ulated in equation 6, whi
h requires only the left andright eigenve
tors asso
iated with f�p+1w ; : : : ; �nwg. There is never any needto 
hoose a basis for|or 
hara
terize in any dire
t way|the subspa
e asso-
iated with the repeated eigenvalue.The basi
 method of 
omplementary proje
tion is ex
eedingly simple. Inthe following remarks, we elaborate on its properties.6



3 RemarksRemark 1 For a system with a p-fold repeated eigenvalue, the above argu-ment shows the entire ve
tor �eld ~F has not only a de�nite upwind dire
tion,it a
tually has a well-de�ned 
hara
teristi
 speed. Thus, further de
omposi-tion into s
alar 
hara
teristi
 �elds does not provide any greater insight intothe time evolution of the data. Instead, it is simply an arbitrary de
omposi-tion into s
alars that have no greater signi�
an
e than the s
alar 
omponentsof ~F itself.Thus it seems that if we 
onsider only the quality of the 
omputed solu-tion, there is no motivation for further de
omposition of ~F . Our numeri
alexperiments on standard test problems 
on�rm this|i.e. there is no sig-ni�
ant di�eren
e between solutions 
omputed using full or 
omplementaryproje
tion.Moreover, by not de
omposing ~F we 
an avoid the arbitrary sele
tionof spanning left and right eigenve
tors for the degenerate subspa
e. Thisrepresents a redu
tion in the need for tedious analysis, programming, andpublishing, and 
an also noti
eably redu
e 
omputational 
osts.Based on these fa
tors, we strongly en
ourage pra
titioners to use the
omplementary proje
tion formulation for systems with a repeated eigen-value.Remark 2 When applied to a system with a repeated eigenvalue havinga large multipli
ity, 
omplementary proje
tion may require fewer operationsand therefore result in a faster 
ode. Let us 
ompare the 
omputational 
ostsof full proje
tion versus 
omplementary proje
tion in detail.We will express the 
ost as a fun
tion of the dimension of the unde
om-posed subspa
e, p, and the overall system size n. We will 
ompare only the
ost of the portion of the problem that is treated di�erently in ea
h method,i.e. the 
ost of treating the �elds with the p-fold repeated eigenvalue.The 
omputational 
ost of a full de
omposition into the p s
alar �eldsis pW1 + pW0, where W1 is the average 
ost of proje
ting into and out ofa �eld, and W0 is the average 
ost of doing a s
alar upwind interpolation.The �eld proje
tions require 
omputing ~Liw � ~F (~U) and f iw ~Riw. These areoperations on n-ve
tors, so the 
ost is proportional to n, and W1 = �n. The7




ost of a s
alar interpolation, W0, has no dependen
e on system size n ormultipli
ity p. Thus the total 
ost of the standard de
omposition has theform �pn + pW0.In the 
omplementary proje
tion method, the 
omputational 
ost is nW2+nW0, where W2 is the work per 
omponent required to 
ompute ~F viaequation 6. This is proportional to the number of terms whi
h is n� p, andW2 = �(n� p). Thus the overall 
ost of 
omplementary proje
tion takes theform �(n� p)n+ nW0.In the limit of a large system with a large multipli
ity, the 
ost of thetraditional method s
ales like pn, while the new method s
ales like (n� p)n.If we further assume that the repeated eigenvalue dominates the system, sothat p dominates n�p (e.g. in the equations for multi-spe
ies 
ow, n�p = 2as p; n!1), then the 
omplementary proje
tion method is asymptoti
allyless 
ostly than the traditional approa
h.This analysis makes it 
lear that 
omplementary proje
tion 
arries outmore upwind interpolations than the traditional approa
h (always n, insteadof p), but it 
an save even more work by avoiding p s
alar �eld proje
tions.However, use of a ve
torizing or parallel 
omputer 
ould potentially alterthis 
on
lusion (e.g. by redu
ing the 
ost of the ve
tor inner produ
ts usedfor full proje
tion).Also note that it is possible to minimizeW1 by making the eigensystems Land R 
olle
tively as sparse as possible. For example, 
onsider multi-spe
ies
ow n � p = 2, and thus the 
omplementary proje
tion method s
ales liken. If the eigensystem was dense, then the full proje
tion method s
ales liken2, while the sparse eigensystem 
hosen in [3℄ yields a full proje
tion methodwhi
h s
ales like n.Remark 3 Consider this proje
tion te
hnique on a more abstra
t level.We are able to proje
t onto the target subspa
e (and de�ne ~F) without abasis be
ause we know the 
omplementary proje
tion expli
itly. That is,~F = (I � P )~F , where P is the proje
tion de�ned expli
itly by the knownpart of the eigensystem. Sin
e we have all the information needed to performP , we 
an perform the 
omplement, I � P , with no additional information.This algebrai
 tri
k 
an only be used to de�ne a single basis-free pro-je
tion operator: we 
an proje
t onto a subspa
e S1 without a basis for it,given a basis for its 
omplement. But if we need proje
tion operators for twolinearly independent subspa
es S1 and S2, it is 
lear that we must sele
t abasis for at least one of them. 8



For example, this means that if the eigensystem of a 
ux fun
tion ~F (~U)has two distin
t, repeated eigenvalues, it is not possible to separately upwindea
h asso
iated 
hara
teristi
 subspa
e without �nding a basis for either one.An eigenbasis must be sele
ted for one of the subspa
es, and then the other
an be treated without a basis.Remark 4 In 
ontrast to Remark 3, there is a spe
ial situation in whi
hmultiple 
omplementary proje
tions 
an be used eÆ
iently within a singlede
omposition. If the 
ux Ja
obian matrix has a blo
k diagonal stru
ture, itis possible to apply 
omplementary proje
tion separately within ea
h blo
k.In parti
ular, within ea
h major blo
k it is possible treat a single repeatedeigenvalue without ever 
onstru
ting an eigenbasis for the asso
iated 
har-a
teristi
 subspa
e.To 
larify the pro
edure in this 
ase, let B1 and B2 be the image spa
esin Rn asso
iated with two distin
t blo
ks in the diagonal of the Ja
obian.Consider subspa
es S1 � B1 and S2 � B2. We will show it is possible tode�ne the proje
tions onto S1 and S2 without spe
ifying a basis for eitherone.Let Pi be the proje
tion onto the 
omplement of Si in Bi. Constru
tionof Pi requires knowing only a basis in Rn for the 
omplement of Si in Bi|whi
h does not require 
hoosing a basis for the other subspa
e, Sj . Then,proje
tion onto Si is de�ned in 
omplementary fashion as Qi �Pi, where Qiis the proje
tion from Rn onto Bi. Note that the n� n matrix Qi is trivial,sin
e it is simply an identity matrix where the 
orresponding blo
k, Bi, inthe Ja
obian is lo
ated, and zero elsewhere.Remark 5 Another important situation where this 
omplementary proje
-tion 
an be of use is the upwind dis
retization of a weakly hyperboli
 system.These systems have 
hara
teristi
 subspa
es that la
k a basis of eigenve
tors.The simplest example of su
h a system isut + aux + vx = 0 (7)vt + avx = 0; (8)where a is a real 
onstant. The Ja
obian is an irredu
ible Jordan blo
k; ithas repeated eigenvalue a, but only a one dimensional family of eigenve
torsspanned by (1; 0). The traditional upwind te
hnique requires a full eigensys-tem, and so it does not even apply. However, this system 
an be upwinded9



with 
omponentwise a-upwind di�eren
ing and spe
ial te
hniques for weaklyhyperboli
 systems whi
h damp out the unwanted linear growth.More generally, a subsystem lo
ally equivalent 
an o

ur as a blo
k insidea larger hyperboli
 system. The traditional upwind te
hnique requiring a fulleigensystem again does not apply. Still, as long as there is an eigenbasis forthe other 
hara
teristi
 �elds, these �elds 
an be upwinded in the standardway and the 
omplement, F , 
an be solved 
omponentwise, using spe
ialte
hniques for weakly hyperboli
 systems. Note that the standard alterna-tive is to treat the entire system with the weakly hyperboli
 solver and thusdegrade the quality of the solution in the �elds whi
h are not weakly hyper-boli
. For an example of a system of pra
ti
al interest, where this te
hnique
an be applied, see [2℄.In pra
ti
e, a 
ompli
ated hyperboli
 system may develop a repeatedeigenvalue or be
ome weakly hyperboli
 (eigenve
tors be
ome dependent)transiently during a 
al
ulation. A full 
hara
teristi
 de
omposition is ap-propriate as the primary numeri
al method, but some spe
ial \ba
k-up"treatment is required when these degenerate 
ases arise. The method of
omplementary 
hara
teristi
 proje
tion provides a 
onvenient \ba
k-up"formula for the 
ux in these 
ir
umstan
es.Remark 6 Complementary proje
tion 
an be used to upwind di�eren
e a
hara
teristi
 subspa
e 
omposed of 
hara
teristi
 �elds moving with di�er-ent speeds, as long as they all have the same upwind dire
tion. I.e., equa-tions 5 and 6 provide a stable upwind di�eren
ing of the system as long as�1w; : : : ; �pw are all of the same sign.For an extreme example, one 
ould lump together all the positive speed�elds and apply 
omponentwise upwinding with no de
omposition, knowingonly a basis for the negative speed �elds (whi
h would in 
ontrast be treatedby standard de
omposition into s
alar �elds). If it so happened that allthe �elds were positive at some 
ell wall, upwind di�eren
ing 
ould be ap-plied in a 
omponentwise fashion to 
ompute the 
ell wall 
ux ~Fw, with no
hara
teristi
 �eld proje
tions at all (the p = n 
ase).However, lumping together �elds moving at di�erent speeds into a singleunde
omposed subspa
e is not as attra
tive as it is for the 
ase of a repeatedeigenvalue. The repeated eigenvalue 
ase is free of any negative 
onsequen
es,while the more general appli
ation of 
omplementary proje
tion has severalde�
ien
ies.One major de�
it is that there is no savings in analyti
al work|formulas10



for the entire eigensystem must be available. To see why, note that sin
ethe 
hara
teristi
 speeds are di�erent they will not always have the sameupwind dire
tion. Under the right 
onditions they will di�er in sign, andthe asso
iated �elds 
annot be lumped into a subspa
e with a single upwinddire
tion. Sin
e one must be prepared for this to o

ur, the 
hara
teristi
s
alar de
omposition must be available as an option for all �elds, and so theasso
iated eigenve
tors must be known even if they are seldom used. Still,lumping together di�erent �elds 
an give a major savings in 
omputationalwork, be
ause we only need this information when eigenvalues 
hange sign.There is another 
ompli
ation whi
h 
an make 
omplementary proje
-tion undesirable, in this non-repeated eigenvalue 
ase. If �elds moving atdi�erent speeds are lumped into a single subspa
e, there is the potential fora loss of resolution, when two dis
ontinuities propagating in di�erent �eldsat di�erent speeds move 
lose together. In ea
h individual 
hara
teristi
s
alar �eld, there is only an isolated dis
ontinuity; this will be resolved tothe extent possible by the 
hosen upwind s
heme for all time. However,in a ve
tor mixture of two dis
ontinuous �elds, both dis
ontinuities 
ouldbe present in the same ve
tor 
omponent. Sin
e they move with di�erentspeeds, the faster dis
ontinuity 
ould overtake the slower one. No matterhow �ne the grid, as the dis
ontinuities pass through ea
h other there willbe a temporary loss of resolution. The resulting errors|whi
h are avoidedin the full de
omposition|
an seriously 
orrupt the 
al
ulation.Remark 7 In 
ontrast to the loss of resolution diÆ
ulties mentioned inRemark 6, su
h problems do not arise during 
al
ulations in the repeatedeigenvalue 
ase. Even if multiple dis
ontinuities are present in di�erent de-generate �elds, be
ause they move at the same speed, they 
annot merge. Ahigh a

ura
y upwind s
heme will maintain resolution as long as the initialdata was resolved by the grid. Further, even when it is possible in prin
iple,there is no pra
ti
al way to isolate the dis
ontinuities by proje
ting theminto di�erent degenerate s
alar �elds. This is be
ause there is no simple wayto determine whi
h of the in�nitely many distin
t de
ompositions will yieldthe desired separation of features.Returning to the 
onsiderations in Remark 1, note that this reasoningdoes suggest one possible a

ura
y-related motivation for performing a full
hara
teristi
 de
omposition in the repeated eigenvalue 
ase. Namely, thepossibility that one of the non-unique de
ompositions might yield a smootherset of s
alar �elds for s
alar upwind di�eren
ing than those provided by the11




omponents of the ve
tor data, ~F . However, there does not seem to beany pra
ti
al, general way of determining whi
h of the in�nitely many pos-sible de
ompositions would yield the smoothest set of s
alar �elds. In theabsen
e of su
h knowledge, 
omplementary proje
tion remains our re
om-mended method for treating systems with repeated eigenvalues.
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4 ExamplesWe illustrate this approa
h by 
onsidering a few 
ommon hyperboli
 sys-tems of equations. All 
al
ulations were 
arried out using the ENO methoddes
ribed in [4℄, though 
omplementary proje
tion 
an be used with any
hara
teristi
 upwinding s
heme. (The eigenvalues and eigenve
tors are allevaluated at 
ell walls. In what follows, we will assume that this is givenand drop the subs
ript 'w' as a notational 
hange only.)4.1 1D Euler EquationsThis simple system provides a 
lear illustration of the operational di�eren
esbetween full de
omposition and 
omplementary proje
tion.The 1D Euler equations are~Ut + [~F (~U)℄x = 0; (9)~U = 0B� ��uE 1CA ; ~F (~U ) = 0B� �u�u2 + p(E + p)u 1CA ; (10)where E = �p+ �u22 + �h; h(T ) = hf + Z T0 
p(s)ds: (11)Here t is time, x is the spatial dimension, � is the density, u is the velo
ity,E is the energy per unit volume, h is enthalpy per unit mass, hf is the heatof formation or enthalpy at 0K, 
p is the spe
i�
 heat at 
onstant pressure,and p is the pressure [3℄.We assume pressure is a fun
tion (or table look-up) of the density and in-ternal energy per unit mass, p = p(�; e), and denote its 
orresponding partialderivatives by p� and pe. The Ja
obian matrix of ~F (~U ) has eigenvalues�1 = u� 
; �2 = u; �3 = u+ 
; (12)and eigenve
tors ~L1 = �b22 + u2
 ; �b1u2 � 12
 ; b12 � ; (13)13



~L2 = (1� b2; b1u;�b1) ; (14)~L3 = �b22 � u2
 ; �b1u2 + 12
 ; b12 � ; (15)~R1 = 0B� 1u� 
H � u
 1CA ; ~R2 = 0B� 1uH � 1b1 1CA ; ~R3 = 0B� 1u+ 
H + u
 1CA ; (16)where 
 = rp� + ppe�2 ; H = E + p� ; (17)b1 = pe�
2 ; b2 = 1 + b1u2 � b1H: (18)Sin
e all the eigenvalues are distin
t, the above eigensystem is unique(up to s
alar multiples) and provides a good referen
e for 
omparison of fullproje
tion and 
omplementary proje
tion methods. We will use 
omplemen-tary proje
tion to avoid de
omposing the 
hara
teristi
 �eld moving withthe 
ow velo
ity u (the 2nd �eld, or u-�eld).The ve
tor 
ux 
ontributions from the 1st and 3rd �elds are 
omputedin the usual way, using eigenve
tor proje
tion. Next we form~F = ~F (~U)� ~L1 ~F (~U)~R1 � ~L3 ~F (~U)~R3: (19)Note that ~F is pre
isely the unproje
ted 2nd �eld ~L2 ~F (~U )~R2, yet it is ob-tained without use of ~L2 or ~R2. We apply 
omponentwise upwinding to~F , in the u-upwind dire
tion. Sin
e ~F is a 3 dimensional ve
tor, 3 upwindinterpolations are required. The resulting ve
tor 
ux is 
ombined with the
ontributions from the 1st and 3rd �elds to get the total 
ux.In 
ontrast, the standard method would proje
t the 3 dimensional ~Finto the 1 dimensional s
alar u-�eld and apply the upwind interpolationonly on
e. Thus, the 
omplementary proje
tion method is more 
ostly inthis 
ase.In numeri
al experiments, we have noti
ed no di�eren
e between the
omplementary 
al
ulations in the 
ase of the 1D Euler equations, ex
eptthat they run slower (as predi
ted sin
e the savings o

urs as the number of14



repeated eigenvalues in
reases). Even in the 
ase of two sho
ks interse
ting[1℄ |whi
h 
auses a transient loss of resolution and is therefore more sensi-tive to di�erent s
hemes|the numeri
al results agree quite ni
ely. Neithers
heme seems to have an advantage over the other as far as a

ura
y orquality of the 
omputed solutions are 
on
erned.As a representative example, 
onsider Example 7 in [5℄ whi
h is the
elebrated Woodward and Colella "bang-bang" problem. Using the CPM,the 
onve
tion step was 23 per
ent slower (as predi
ted), although the qualityof the solution is the same. In fa
t the pointwise relative di�eren
e betweenthe two solutions is on the order of 10�12.4.2 2D Euler EquationsThis is a 
ommon system with a repeated eigenvalue. It also illustrateshow 
omplementary proje
tion applies equally well to systems with multiplespatial dimensions.The 2D Euler equations are~Ut + [~F (~U)℄x + [~G(~U )℄y = 0; (20)~U = 0BBB� ��u�vE 1CCCA ; ~F (~U) = 0BBB� �u�u2 + p�uv(E + p)u 1CCCA ; ~G(~U ) = 0BBB� �v�uv�v2 + p(E + p)v 1CCCA ; (21)where E = �p+ �(u2 + v2)2 + �h; h(T ) = hf + Z T0 
p(s)ds: (22)Here y is the se
ond spatial dimension, and v is the velo
ity in that dimension[3℄. As in the 1D Euler equations, p = p(�; e).The eigenvalues and (one possible set of) eigenve
tors for the Ja
obianmatrix of ~F (~U) are obtained by setting A = 1 and B = 0 in the followingformulas, while those for the Ja
obian of ~G(~U) are obtained with A = 0 andB = 1.The eigenvalues are�1 = û� 
; �2 = �3 = û; �4 = û+ 
; (23)15



and the eigenve
tors are~L1 = �b22 + û2
 ;�b1u2 � A2
 ;�b1v2 � B2
 ; b12 � ; (24)~L2 = �1� b22 � v̂2
 ; b1u2 � B2
 ; b1v2 + A2
 ;�b12 � ; (25)~L3 = �1� b22 + v̂2
 ; b1u2 + B2
 ; b1v2 � A2
 ;�b12 � ; (26)~L4 = �b22 � û2
 ;�b1u2 + A2
 ;�b1v2 + B2
 ; b12 � ; (27)~R1 = 0BBB� 1u�A
v �B
H � û
 1CCCA ; ~R2 = 0BBB� 1u�B
v +A
H � 1b1 + v̂
 1CCCA ; (28)
~R3 = 0BBB� 1u+ B
v �A
H � 1b1 � v̂
 1CCCA ; ~R4 = 0BBB� 1u+A
v +B
H + û
 1CCCA ; (29)where q2 = u2 + v2; û = Au+ Bv; v̂ = Av � Bu; (30)
 = rp� + ppe�2 ; H = E + p� ; (31)b1 = pe�
2 ; b2 = 1 + b1q2 � b1H: (32)Note that the 
hoi
e of eigenve
tors 1 and 4 is unique (up to s
alarmultiples), but the 
hoi
e for eigenve
tors 2 and 3 is not unique. Any two16



independent ve
tors from the spans of eigenve
tors 2 and 3 
ould be usedinstead.To avoid 
hoosing any basis for this ambiguous subspa
e, we apply thestandard 
hara
teristi
 s
alar proje
tions to the 1st and 4th �elds, and thenapply 
omplementary proje
tion for the u-�elds:~F = ~F (~U)� ~L1 ~F (~U)~R1 � ~L4 ~F (~U)~R4: (33)We upwind di�eren
e ~F 
omponentwise in the u-upwind dire
tion. Theresult is then 
ombined with the 
ux 
ontributions from the 1st and 4th�elds. Note that the eigenve
tors for the 2nd and 3rd �elds were not neededfor the dis
retization.Four upwind interpolations are required to 
ompute the 
ontributionfrom the repeated eigenvalue for the 
omplementary proje
tion method, in-stead of only 2 upwind interpolations if full proje
tion were used. However,we also save two proje
tions.For a standard dimension by dimension dis
retization, the 
omplemen-tary proje
tion method applies independently to the 
ux for the se
ondspatial dimension. Using the eigenve
tors appropriate for ~G(~U ), we form~G = ~G(~U)� ~L1 ~G(~U)~R1 � ~L4 ~G(~U )~R4 (34)and upwind di�eren
e ~G in the v-upwind dire
tion.4.3 Multi-spe
ies Euler EquationsThe multi-spe
ies Euler equations provide an important example of a hy-perboli
 system with an eigenvalue repeated many times. Complementaryproje
tion be
omes quite attra
tive for su
h systems, due to the large ana-lyti
al and 
omputational savings.The 2D Euler equations for multi-spe
ies 
ow with a total of N spe
iesare ~Ut + [~F (~U)℄x + [~G(~U )℄y = 0; (35)
~U = 0BBBBBBBBBB�

��u�vE�Y1...�YN�1
1CCCCCCCCCCA ; ~F (~U ) = 0BBBBBBBBBB�

�u�u2 + p�uv(E + p)u�uY1...�uYN�1
1CCCCCCCCCCA ; ~G(~U) = 0BBBBBBBBBB�

�v�uv�v2 + p(E + p)v�vY1...�vYN�1;
1CCCCCCCCCCA(36)17



whereE = �p+ �(u2 + v2)2 + � NXi=1 Yihi! ; hi(T ) = hfi + Z T0 
p;i(s)ds:(37)Here, Yi is the mass fra
tion of spe
ies i, hi is the enthalpy per unit mass ofspe
ies i, hfi is the heat of formation of spe
ies i, and 
p;i is the spe
i�
 heatat 
onstant pressure of spe
ies i [3℄. Note that YN = 1�PN�1i=1 Yi.The pressure is a fun
tion of the density, internal energy per unit mass,and the mass fra
tions, p = p(�; e; Y1; � � � ; YN�1), and the 
orrespondingpartial derivatives are denoted by p�; pe and pYi .The eigenvalues and (one possible set of) eigenve
tors for the Ja
obianmatrix of ~F (~U) , are obtained by setting A = 1 and B = 0 in the followingformulas, while those for the Ja
obian matrix of ~G(~U) use A = 0 and B = 1.The eigenvalues are �1 = û� 
; (38)�2 = � � � = �N+2 = û; (39)�N+3 = û+ 
; (40)Note the (N + 1)-fold repeated eigenvalue.A parti
ularly sparse 
hoi
e of left eigenve
tors are given by the rows ofthe matrix0BBBBBBBBBBB�
b22 + û2
 + b32 � b1u2 � A2
 � b1v2 � B2
 b12 �b1z12 � � � �b1zN�121� b2 � b3 b1u b1v �b1 b1z1 � � � b1zN�1v̂ B �A 0 0 � � � 0�Y1 0 0 0... ... ... ... I�YN�1 0 0 0b22 � û2
 + b32 � b1u2 + A2
 � b1v2 + B2
 b12 �b1z12 � � � �b1zN�12

1CCCCCCCCCCCA ; (41)
and the 
orresponding sparse 
hoi
e of right eigenve
tors are given by the

18




olumns of the matrix0BBBBBBBBBB�
1 1 0 0 � � � 0 1u�A
 u B 0 � � � 0 u+A
v �B
 v �A 0 � � � 0 v +B
H � û
 H � 1b1 �v̂ z1 � � � zN�1 H + û
Y1 Y1 0 Y1... ... ... I ...YN�1 YN�1 0 YN�1

1CCCCCCCCCCA ; (42)
where I is the N � 1 by N � 1 identity matrix andq2 = u2 + v2; û = Au+ Bv; v̂ = Av � Bu; (43)
 = rp� + ppe�2 ; H = E + p� ; (44)b1 = pe�
2 ; b2 = 1 + b1q2 � b1H; (45)b3 = b1 N�1Xi=1 Yizi; zi = �pYipe : (46)Note that the eigenve
tors 2 through N +2 are not uniquely determined.Ea
h one 
ould be repla
ed by an arbitrary linear 
ombination of thoseshown, as long as linear independen
e is maintained. This gives an indi-
ation of the enormous range of possible eigensystems that 
ould be used,though in pra
ti
e they would yield similar 
omputed solutions. (The 
ostsmay di�er, though, depending on sparseness.)In parti
ular, all the �elds in the eigensystem for ~F (~U ) have eigenvalueu, ex
ept for the �rst and last. To avoid 
hoosing any eigenbasis for thisdegenerate subspa
e, we apply the standard proje
tion method to the �rstand last �elds, and treat all the u-�elds by 
omplementary proje
tion,~F = ~F (~U )� ~L1 ~F (~U)~R1 � ~LN+3 ~F (~U)~RN+3: (47)We upwind di�eren
e ~F in the u-upwind dire
tion. The resulting 
ell wall
ux is 
ombined with the wall 
ux 
ontributions from the �rst and the last�elds to yield the net numeri
al wall 
ux.19



A total of N + 3 upwind interpolations are required to 
ompute the
ontribution from the repeated eigenvalue for the 
omplementary proje
tionmethod, instead of only N + 1 upwind s
hemes if proje
tion is used. Thusonly 2 extra upwind interpolations are needed to eliminate N +1 
hara
ter-isti
 proje
tions. Starting at about 4 spe
ies, we expe
t the 
omplementaryproje
tion method to be less 
ostly. Moreover, there is no need to ever
onstru
t most of the eigensystem shown above. Had this approa
h beenavailable for previous work, it would have allowed a major savings in ana-lyti
 work, as well as programming and reporting.For a dimension by dimension dis
retization, the same 
onsiderationsapply to the 
ux in the other spatial dimension. Using the �rst and lasteigenve
tors appropriate for ~G(~U), we form~G = ~G(~U )� ~L1 ~G(~U)~R1 � ~LN+3 ~G(~U )~RN+3 (48)and upwind ~G in the v-upwind dire
tion.Numeri
al experiments were 
arried out on examples from [3℄ and [1℄. Forthe 
ase of nine spe
ies, the 
omplementary 
al
ulations were faster than thetraditional approa
h, even though the set of eigenve
tors for the repeatedeigenvalue had been 
arefully 
hosen to be as sparse as possible and theimplementation took full advantage of the sparseness. As the number ofspe
ies is in
reased, the per
entage savings in CPU time in
reases as well.As a parti
ularly diÆ
ult example, we 
ompute example 5.1 from [3℄whi
h is a 
hemi
ally rea
ting "Sod" sho
k tube problem. The 
onve
tionstep was 59 per
ent faster using the CPM, with no degradation in the qualityof the solution. We show the solution in �gure 1 and the relative di�eren
ein �gure 2. The di�eren
es are on the order of about 1 per
ent, and only theunderresolved spe
ies (HO2 and H2O2) di�er by as mu
h as 2 per
ent. Thelargest di�eren
es o

ur near large gradients in the solution where the twos
hemes 
apture dis
ontinuities in slightly di�erent ways. These di�eren
esare too small to be seen by the naked eye and have no e�e
t on the size orstrength of the dis
ontinuities, only the intermediate points whi
h span thejumps. In fa
t, both s
hemes give the result depi
ted in �gure 1.We note that the standard s
heme and the CPM have approximatelythe same CPU time when the eigenvalue is repeated 4 times. That is, for4 spe
ies (3 mass fra
tion equations) in 1 spatial dimension, for 3 spe
ies(2 mass fra
tion equations) in 2 spatial dimensions, or for 2 spe
ies (1 massfra
tion equation) in 3 spatial dimensions. After this point, the CPM isfaster with the gains in CPU time proportional to the number of spe
ies.20
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Figure 1: Thermally Perfe
t Solution (2300 steps)
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5 Con
lusionsWe have introdu
ed the 
omplementary proje
tion method for use in up-wind di�eren
e s
hemes for systems of hyperboli
 
onservation laws. Thisapproa
h provides an alternative to full 
hara
teristi
 de
omposition of a
hara
teristi
 subspa
e, if all asso
iated 
hara
teristi
 speeds are of the samesign. Instead, proje
tion onto the subspa
e is de�ned as the 
omplement ofthe proje
tion onto the remaining 
hara
teristi
 spa
es. This allows the ap-pli
ation of any upwind method without the need of an eigenbasis for thespe
i�ed subspa
e. All that is required is a 
omplete eigenbasis for the 
om-plementary subspa
e.This has parti
ular appli
ation to problems with a repeated eigenvalue.There the eigenspa
e asso
iated with the repeated eigenvalue does not havea unique eigenbasis. The 
omplementary proje
tion method eliminates theneed to 
onstru
t su
h a basis, without any negative side e�e
ts, redu
ingthe analyti
al and programming e�ort required to apply upwind di�eren
ing.Our analysis and experiments also show that avoiding the de
omposition 
ansave 
omputational time in pra
ti
al multi-spe
ies 
ompressible 
ow 
al
u-lations, with no signi�
ant 
hange in 
omputed results.We re
ommend that in the future, pra
titioners use the 
omplementaryproje
tion method to treat hyperboli
 systems with repeated eigenvalues.This method has other potential appli
ations. The most interesting isformulating upwind di�eren
e s
hemes for weakly hyperboli
 systems. Forthese systems, a 
omplete eigensystem does not exist, and thus traditionalupwind 
hara
teristi
 s
hemes do not apply. In 
ontrast, the 
omplimentaryproje
tion method provides a simple way to extend upwind di�eren
ing tothese systems.
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