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This omplementary projetion method has other appliations. Forexample, it an be used to extend upwind shemes to some weakly hy-perboli systems. These lak omplete eigensystems, so the traditionalform of harateristi upwinding is not possible.
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1 IntrodutionThe standard formulation of upwind di�erene shemes for hyperboli sys-tems requires �nding the Jaobian matrix of the ux funtion and the as-soiated eigensystem (eigenvalues and left and right eigenvetors). The lefteigenvetors de�ne the transformation into the harateristi �elds, the as-soiated eigenvalues de�ne upwind diretions for these �elds, and the righteigenvetors de�ne the transformation bak to the primitive variables.These harateristi upwind shemes are generally onsidered to give thehighest quality numerial results. There is a vast literature on this subjet(see e.g. [4℄ and the referenes therein). Their only drawbak is that theyrequire speifying a omplete eigensystem for the problem. In pratie, thisan involve onsiderable analytial work, as well as some ompliations whenthe eigensystem laks uniqueness (or even existene). In this paper we pointout that, in many ases, the most problemati portion of the eigensysteman be avoided entirely.As motivation, onsider a system whih has a repeated eigenvalue (har-ateristi speed). A ommon example is the ompressible, multi-speies,multidimensional Euler equations [3℄, where the onvetive ow veloity isan eigenvalue repeated one for eah speies and eah spatial dimension (seesetion 4.3). In suh a system, the distint eigenvalues have orrespondingunique eigenvetors (up to salar multiples), but the eigenvetors for therepeated eigenvalue are not unique. The eigen-subspae is well de�ned, butan arbitrary hoie of spanning eigenvetors must be made to obtain a om-plete eigensystem. These arbitrary vetors may form the great majority ofthe eigensystem.When designing a numerial method for suh a system, various riteriaan be applied to help selet one eigenbasis from the in�nitely many hoies.For example, one an look for eigenvetors that are as sparse as possible, inorder to save time projeting into and out of harateristi �elds. One analso demand that the the left and right eigenvetor matries be numeriallywell onditioned (i.e. determinant near 1). Still, there is a high degreeof arbitrariness left over, and for degenerate systems, there are typially avariety of eigensystems presented in the literature.Our goal here is to present an alternative approah whih eliminates theneed to �nd the ambiguous eigenbasis. The basi idea is to projet data3



diretly into the harateristi subspae by using the omplement of the pro-jetion operator de�ned by the unambiguous part of the eigensystem. Com-ponentwise upwind di�erening an be applied diretly to this harateristivetor �eld, in ontrast to the usual approah of upwinding harateristisalar �elds.
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2 The Complementary Projetion Method (CPM)To desribe the omplementary projetion tehnique in detail, we will showhow it relates to the standard harateristi deomposition used in upwinddisretization of a system of n hyperboli onservation laws in one spatialdimension, ~Ut + [~F (~U)℄x = 0: (1)Let the Jaobian of the ux funtion, � ~F (~U )=� ~U , have left and righteigenvetors ~Li and ~Ri, with assoiated eigenvalues �i, i = 1; : : : ; n. Theleft and right eigenvetors are further required to be mutually orthonormal,i.e. ~Li � ~Rj = Æij . Equivalently, the row matrix of left eigenvetors , L, andolumn matrix of right eigenvetors , R, are inverses: LR = RL = I.Given this omplete eigensystem, any upwind di�erene sheme de�nedfor salar equations an be extended to the hyperboli system via a \har-ateristi deomposition". This an be desribed fairly generally as follows:the spatial disretization of [~F (~U )℄x is expressed as a di�erene of uxes be-tween two grid ell walls. Thus the essential step is to ompute the ux at agrid ell wall, ~Fw, given the uxes, ~F (~U), at the nearby grid ell enters [4℄.The �rst step in de�ning the ux at a partiular ell wall is to projet thevetor uxes at eah ell enter into \salar uxes for the ith harateristi�eld", de�ned by f i = ~Liw � ~F (~U ). Here ~Liw, ~Riw and �iw are used to denote leftand right eigenvetors and eigenvalues evaluated at the wall in some fashion.Note the assumed orthonormality implies we an write the original vetorux in terms of these salar uxes as~F (~U) = f 1 ~R1w + f 2 ~R2w + � � �+ fn ~Rnw: (2)This shows that we an think of f i ~Riw as the vetor ontribution to the totalux from the ith harateristi salar ux, f i.Next, for eah salar �eld i, the ell enter harateristi uxes, f i, areinterpolated to the ell wall of interest in an upwind fashion with the upwinddiretion de�ned by the orresponding \harateristi speed" at the wall, �iw.This yields the salar harateristi wall ux, f iw.Finally, the desired total wall ux vetor is de�ned as the sum of all theharateristi vetor ontributions,~Fw = f 1w ~R1w + f 2w ~R2w + � � �+ fnw ~Rnw: (3)5



To introdue the alternative approah, suppose that from the n eigen-values we have a p-fold repeated eigenvalue. Without loss of generality,we will assume that the �rst p eigenvalues, �1w = �2w = � � � = �pw, are re-peated. The orresponding p dimensional harateristi subspae is the spanof f~L1w; : : : ; ~Lpwg. The part of the original ell enter ux vetor ~F (~U ) thatlies in this harateristi subspae is~F = f 1 ~R1w + f 2 ~R2w + � � �+ fp ~Rpw: (4)Note that all of the harateristi �elds ontributing to ~F have the sameupwind diretion for interpolation, sine their harateristi speeds (eigen-values) are idential.Sine ~F has a well-de�ned upwind diretion, upwind di�erening is possi-ble without deomposing ~F further into the individual salar uxes. Instead,we an diretly apply upwind interpolation to the ell enter values of thevetor ~F , in a omponent by omponent fashion. Let ~Fw denote the re-sulting ux value interpolated to the ell wall of interest. Then, the net ellwall ux required in the numerial method an be de�ned via the \partiallydeomposed" form~Fw = ~Fw + fp+1w ~Rp+1w + fp+2w ~Rp+2w + � � �+ fnw ~Rnw; (5)instead of the fully deomposed form in equation 3.So far there is no obvious bene�t to this formulation. The ritial obser-vation that makes this partial deomposition useful is that we an ompute~F without knowing the basis of left and right eigenvetors used to de�ne itin equation 4. Instead, it is simply the omplement of the remaining part ofthe deomposition, i.e.~F = ~F (~U)� �fp+1 ~Rp+1w + fp+2 ~Rp+2w + � � �+ fn ~Rnw� : (6)Thus, in order to apply a fully upwind sheme to a problem where oneharateristi subspae has a repeated eigenvalue, all that is required arethe left and right eigenvetors orresponding to omplementary subspae.In pratie, we simply de�ne the ell wall ux via equation 5 and ompute~Fw from ~F as alulated in equation 6, whih requires only the left andright eigenvetors assoiated with f�p+1w ; : : : ; �nwg. There is never any needto hoose a basis for|or haraterize in any diret way|the subspae asso-iated with the repeated eigenvalue.The basi method of omplementary projetion is exeedingly simple. Inthe following remarks, we elaborate on its properties.6



3 RemarksRemark 1 For a system with a p-fold repeated eigenvalue, the above argu-ment shows the entire vetor �eld ~F has not only a de�nite upwind diretion,it atually has a well-de�ned harateristi speed. Thus, further deomposi-tion into salar harateristi �elds does not provide any greater insight intothe time evolution of the data. Instead, it is simply an arbitrary deomposi-tion into salars that have no greater signi�ane than the salar omponentsof ~F itself.Thus it seems that if we onsider only the quality of the omputed solu-tion, there is no motivation for further deomposition of ~F . Our numerialexperiments on standard test problems on�rm this|i.e. there is no sig-ni�ant di�erene between solutions omputed using full or omplementaryprojetion.Moreover, by not deomposing ~F we an avoid the arbitrary seletionof spanning left and right eigenvetors for the degenerate subspae. Thisrepresents a redution in the need for tedious analysis, programming, andpublishing, and an also notieably redue omputational osts.Based on these fators, we strongly enourage pratitioners to use theomplementary projetion formulation for systems with a repeated eigen-value.Remark 2 When applied to a system with a repeated eigenvalue havinga large multipliity, omplementary projetion may require fewer operationsand therefore result in a faster ode. Let us ompare the omputational ostsof full projetion versus omplementary projetion in detail.We will express the ost as a funtion of the dimension of the undeom-posed subspae, p, and the overall system size n. We will ompare only theost of the portion of the problem that is treated di�erently in eah method,i.e. the ost of treating the �elds with the p-fold repeated eigenvalue.The omputational ost of a full deomposition into the p salar �eldsis pW1 + pW0, where W1 is the average ost of projeting into and out ofa �eld, and W0 is the average ost of doing a salar upwind interpolation.The �eld projetions require omputing ~Liw � ~F (~U) and f iw ~Riw. These areoperations on n-vetors, so the ost is proportional to n, and W1 = �n. The7



ost of a salar interpolation, W0, has no dependene on system size n ormultipliity p. Thus the total ost of the standard deomposition has theform �pn + pW0.In the omplementary projetion method, the omputational ost is nW2+nW0, where W2 is the work per omponent required to ompute ~F viaequation 6. This is proportional to the number of terms whih is n� p, andW2 = �(n� p). Thus the overall ost of omplementary projetion takes theform �(n� p)n+ nW0.In the limit of a large system with a large multipliity, the ost of thetraditional method sales like pn, while the new method sales like (n� p)n.If we further assume that the repeated eigenvalue dominates the system, sothat p dominates n�p (e.g. in the equations for multi-speies ow, n�p = 2as p; n!1), then the omplementary projetion method is asymptotiallyless ostly than the traditional approah.This analysis makes it lear that omplementary projetion arries outmore upwind interpolations than the traditional approah (always n, insteadof p), but it an save even more work by avoiding p salar �eld projetions.However, use of a vetorizing or parallel omputer ould potentially alterthis onlusion (e.g. by reduing the ost of the vetor inner produts usedfor full projetion).Also note that it is possible to minimizeW1 by making the eigensystems Land R olletively as sparse as possible. For example, onsider multi-speiesow n � p = 2, and thus the omplementary projetion method sales liken. If the eigensystem was dense, then the full projetion method sales liken2, while the sparse eigensystem hosen in [3℄ yields a full projetion methodwhih sales like n.Remark 3 Consider this projetion tehnique on a more abstrat level.We are able to projet onto the target subspae (and de�ne ~F) without abasis beause we know the omplementary projetion expliitly. That is,~F = (I � P )~F , where P is the projetion de�ned expliitly by the knownpart of the eigensystem. Sine we have all the information needed to performP , we an perform the omplement, I � P , with no additional information.This algebrai trik an only be used to de�ne a single basis-free pro-jetion operator: we an projet onto a subspae S1 without a basis for it,given a basis for its omplement. But if we need projetion operators for twolinearly independent subspaes S1 and S2, it is lear that we must selet abasis for at least one of them. 8



For example, this means that if the eigensystem of a ux funtion ~F (~U)has two distint, repeated eigenvalues, it is not possible to separately upwindeah assoiated harateristi subspae without �nding a basis for either one.An eigenbasis must be seleted for one of the subspaes, and then the otheran be treated without a basis.Remark 4 In ontrast to Remark 3, there is a speial situation in whihmultiple omplementary projetions an be used eÆiently within a singledeomposition. If the ux Jaobian matrix has a blok diagonal struture, itis possible to apply omplementary projetion separately within eah blok.In partiular, within eah major blok it is possible treat a single repeatedeigenvalue without ever onstruting an eigenbasis for the assoiated har-ateristi subspae.To larify the proedure in this ase, let B1 and B2 be the image spaesin Rn assoiated with two distint bloks in the diagonal of the Jaobian.Consider subspaes S1 � B1 and S2 � B2. We will show it is possible tode�ne the projetions onto S1 and S2 without speifying a basis for eitherone.Let Pi be the projetion onto the omplement of Si in Bi. Construtionof Pi requires knowing only a basis in Rn for the omplement of Si in Bi|whih does not require hoosing a basis for the other subspae, Sj . Then,projetion onto Si is de�ned in omplementary fashion as Qi �Pi, where Qiis the projetion from Rn onto Bi. Note that the n� n matrix Qi is trivial,sine it is simply an identity matrix where the orresponding blok, Bi, inthe Jaobian is loated, and zero elsewhere.Remark 5 Another important situation where this omplementary proje-tion an be of use is the upwind disretization of a weakly hyperboli system.These systems have harateristi subspaes that lak a basis of eigenvetors.The simplest example of suh a system isut + aux + vx = 0 (7)vt + avx = 0; (8)where a is a real onstant. The Jaobian is an irreduible Jordan blok; ithas repeated eigenvalue a, but only a one dimensional family of eigenvetorsspanned by (1; 0). The traditional upwind tehnique requires a full eigensys-tem, and so it does not even apply. However, this system an be upwinded9



with omponentwise a-upwind di�erening and speial tehniques for weaklyhyperboli systems whih damp out the unwanted linear growth.More generally, a subsystem loally equivalent an our as a blok insidea larger hyperboli system. The traditional upwind tehnique requiring a fulleigensystem again does not apply. Still, as long as there is an eigenbasis forthe other harateristi �elds, these �elds an be upwinded in the standardway and the omplement, F , an be solved omponentwise, using speialtehniques for weakly hyperboli systems. Note that the standard alterna-tive is to treat the entire system with the weakly hyperboli solver and thusdegrade the quality of the solution in the �elds whih are not weakly hyper-boli. For an example of a system of pratial interest, where this tehniquean be applied, see [2℄.In pratie, a ompliated hyperboli system may develop a repeatedeigenvalue or beome weakly hyperboli (eigenvetors beome dependent)transiently during a alulation. A full harateristi deomposition is ap-propriate as the primary numerial method, but some speial \bak-up"treatment is required when these degenerate ases arise. The method ofomplementary harateristi projetion provides a onvenient \bak-up"formula for the ux in these irumstanes.Remark 6 Complementary projetion an be used to upwind di�erene aharateristi subspae omposed of harateristi �elds moving with di�er-ent speeds, as long as they all have the same upwind diretion. I.e., equa-tions 5 and 6 provide a stable upwind di�erening of the system as long as�1w; : : : ; �pw are all of the same sign.For an extreme example, one ould lump together all the positive speed�elds and apply omponentwise upwinding with no deomposition, knowingonly a basis for the negative speed �elds (whih would in ontrast be treatedby standard deomposition into salar �elds). If it so happened that allthe �elds were positive at some ell wall, upwind di�erening ould be ap-plied in a omponentwise fashion to ompute the ell wall ux ~Fw, with noharateristi �eld projetions at all (the p = n ase).However, lumping together �elds moving at di�erent speeds into a singleundeomposed subspae is not as attrative as it is for the ase of a repeatedeigenvalue. The repeated eigenvalue ase is free of any negative onsequenes,while the more general appliation of omplementary projetion has severalde�ienies.One major de�it is that there is no savings in analytial work|formulas10



for the entire eigensystem must be available. To see why, note that sinethe harateristi speeds are di�erent they will not always have the sameupwind diretion. Under the right onditions they will di�er in sign, andthe assoiated �elds annot be lumped into a subspae with a single upwinddiretion. Sine one must be prepared for this to our, the harateristisalar deomposition must be available as an option for all �elds, and so theassoiated eigenvetors must be known even if they are seldom used. Still,lumping together di�erent �elds an give a major savings in omputationalwork, beause we only need this information when eigenvalues hange sign.There is another ompliation whih an make omplementary proje-tion undesirable, in this non-repeated eigenvalue ase. If �elds moving atdi�erent speeds are lumped into a single subspae, there is the potential fora loss of resolution, when two disontinuities propagating in di�erent �eldsat di�erent speeds move lose together. In eah individual harateristisalar �eld, there is only an isolated disontinuity; this will be resolved tothe extent possible by the hosen upwind sheme for all time. However,in a vetor mixture of two disontinuous �elds, both disontinuities ouldbe present in the same vetor omponent. Sine they move with di�erentspeeds, the faster disontinuity ould overtake the slower one. No matterhow �ne the grid, as the disontinuities pass through eah other there willbe a temporary loss of resolution. The resulting errors|whih are avoidedin the full deomposition|an seriously orrupt the alulation.Remark 7 In ontrast to the loss of resolution diÆulties mentioned inRemark 6, suh problems do not arise during alulations in the repeatedeigenvalue ase. Even if multiple disontinuities are present in di�erent de-generate �elds, beause they move at the same speed, they annot merge. Ahigh auray upwind sheme will maintain resolution as long as the initialdata was resolved by the grid. Further, even when it is possible in priniple,there is no pratial way to isolate the disontinuities by projeting theminto di�erent degenerate salar �elds. This is beause there is no simple wayto determine whih of the in�nitely many distint deompositions will yieldthe desired separation of features.Returning to the onsiderations in Remark 1, note that this reasoningdoes suggest one possible auray-related motivation for performing a fullharateristi deomposition in the repeated eigenvalue ase. Namely, thepossibility that one of the non-unique deompositions might yield a smootherset of salar �elds for salar upwind di�erening than those provided by the11



omponents of the vetor data, ~F . However, there does not seem to beany pratial, general way of determining whih of the in�nitely many pos-sible deompositions would yield the smoothest set of salar �elds. In theabsene of suh knowledge, omplementary projetion remains our reom-mended method for treating systems with repeated eigenvalues.
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4 ExamplesWe illustrate this approah by onsidering a few ommon hyperboli sys-tems of equations. All alulations were arried out using the ENO methoddesribed in [4℄, though omplementary projetion an be used with anyharateristi upwinding sheme. (The eigenvalues and eigenvetors are allevaluated at ell walls. In what follows, we will assume that this is givenand drop the subsript 'w' as a notational hange only.)4.1 1D Euler EquationsThis simple system provides a lear illustration of the operational di�erenesbetween full deomposition and omplementary projetion.The 1D Euler equations are~Ut + [~F (~U)℄x = 0; (9)~U = 0B� ��uE 1CA ; ~F (~U ) = 0B� �u�u2 + p(E + p)u 1CA ; (10)where E = �p+ �u22 + �h; h(T ) = hf + Z T0 p(s)ds: (11)Here t is time, x is the spatial dimension, � is the density, u is the veloity,E is the energy per unit volume, h is enthalpy per unit mass, hf is the heatof formation or enthalpy at 0K, p is the spei� heat at onstant pressure,and p is the pressure [3℄.We assume pressure is a funtion (or table look-up) of the density and in-ternal energy per unit mass, p = p(�; e), and denote its orresponding partialderivatives by p� and pe. The Jaobian matrix of ~F (~U ) has eigenvalues�1 = u� ; �2 = u; �3 = u+ ; (12)and eigenvetors ~L1 = �b22 + u2 ; �b1u2 � 12 ; b12 � ; (13)13



~L2 = (1� b2; b1u;�b1) ; (14)~L3 = �b22 � u2 ; �b1u2 + 12 ; b12 � ; (15)~R1 = 0B� 1u� H � u 1CA ; ~R2 = 0B� 1uH � 1b1 1CA ; ~R3 = 0B� 1u+ H + u 1CA ; (16)where  = rp� + ppe�2 ; H = E + p� ; (17)b1 = pe�2 ; b2 = 1 + b1u2 � b1H: (18)Sine all the eigenvalues are distint, the above eigensystem is unique(up to salar multiples) and provides a good referene for omparison of fullprojetion and omplementary projetion methods. We will use omplemen-tary projetion to avoid deomposing the harateristi �eld moving withthe ow veloity u (the 2nd �eld, or u-�eld).The vetor ux ontributions from the 1st and 3rd �elds are omputedin the usual way, using eigenvetor projetion. Next we form~F = ~F (~U)� ~L1 ~F (~U)~R1 � ~L3 ~F (~U)~R3: (19)Note that ~F is preisely the unprojeted 2nd �eld ~L2 ~F (~U )~R2, yet it is ob-tained without use of ~L2 or ~R2. We apply omponentwise upwinding to~F , in the u-upwind diretion. Sine ~F is a 3 dimensional vetor, 3 upwindinterpolations are required. The resulting vetor ux is ombined with theontributions from the 1st and 3rd �elds to get the total ux.In ontrast, the standard method would projet the 3 dimensional ~Finto the 1 dimensional salar u-�eld and apply the upwind interpolationonly one. Thus, the omplementary projetion method is more ostly inthis ase.In numerial experiments, we have notied no di�erene between theomplementary alulations in the ase of the 1D Euler equations, exeptthat they run slower (as predited sine the savings ours as the number of14



repeated eigenvalues inreases). Even in the ase of two shoks interseting[1℄ |whih auses a transient loss of resolution and is therefore more sensi-tive to di�erent shemes|the numerial results agree quite niely. Neithersheme seems to have an advantage over the other as far as auray orquality of the omputed solutions are onerned.As a representative example, onsider Example 7 in [5℄ whih is theelebrated Woodward and Colella "bang-bang" problem. Using the CPM,the onvetion step was 23 perent slower (as predited), although the qualityof the solution is the same. In fat the pointwise relative di�erene betweenthe two solutions is on the order of 10�12.4.2 2D Euler EquationsThis is a ommon system with a repeated eigenvalue. It also illustrateshow omplementary projetion applies equally well to systems with multiplespatial dimensions.The 2D Euler equations are~Ut + [~F (~U)℄x + [~G(~U )℄y = 0; (20)~U = 0BBB� ��u�vE 1CCCA ; ~F (~U) = 0BBB� �u�u2 + p�uv(E + p)u 1CCCA ; ~G(~U ) = 0BBB� �v�uv�v2 + p(E + p)v 1CCCA ; (21)where E = �p+ �(u2 + v2)2 + �h; h(T ) = hf + Z T0 p(s)ds: (22)Here y is the seond spatial dimension, and v is the veloity in that dimension[3℄. As in the 1D Euler equations, p = p(�; e).The eigenvalues and (one possible set of) eigenvetors for the Jaobianmatrix of ~F (~U) are obtained by setting A = 1 and B = 0 in the followingformulas, while those for the Jaobian of ~G(~U) are obtained with A = 0 andB = 1.The eigenvalues are�1 = û� ; �2 = �3 = û; �4 = û+ ; (23)15



and the eigenvetors are~L1 = �b22 + û2 ;�b1u2 � A2 ;�b1v2 � B2 ; b12 � ; (24)~L2 = �1� b22 � v̂2 ; b1u2 � B2 ; b1v2 + A2 ;�b12 � ; (25)~L3 = �1� b22 + v̂2 ; b1u2 + B2 ; b1v2 � A2 ;�b12 � ; (26)~L4 = �b22 � û2 ;�b1u2 + A2 ;�b1v2 + B2 ; b12 � ; (27)~R1 = 0BBB� 1u�Av �BH � û 1CCCA ; ~R2 = 0BBB� 1u�Bv +AH � 1b1 + v̂ 1CCCA ; (28)
~R3 = 0BBB� 1u+ Bv �AH � 1b1 � v̂ 1CCCA ; ~R4 = 0BBB� 1u+Av +BH + û 1CCCA ; (29)where q2 = u2 + v2; û = Au+ Bv; v̂ = Av � Bu; (30) = rp� + ppe�2 ; H = E + p� ; (31)b1 = pe�2 ; b2 = 1 + b1q2 � b1H: (32)Note that the hoie of eigenvetors 1 and 4 is unique (up to salarmultiples), but the hoie for eigenvetors 2 and 3 is not unique. Any two16



independent vetors from the spans of eigenvetors 2 and 3 ould be usedinstead.To avoid hoosing any basis for this ambiguous subspae, we apply thestandard harateristi salar projetions to the 1st and 4th �elds, and thenapply omplementary projetion for the u-�elds:~F = ~F (~U)� ~L1 ~F (~U)~R1 � ~L4 ~F (~U)~R4: (33)We upwind di�erene ~F omponentwise in the u-upwind diretion. Theresult is then ombined with the ux ontributions from the 1st and 4th�elds. Note that the eigenvetors for the 2nd and 3rd �elds were not neededfor the disretization.Four upwind interpolations are required to ompute the ontributionfrom the repeated eigenvalue for the omplementary projetion method, in-stead of only 2 upwind interpolations if full projetion were used. However,we also save two projetions.For a standard dimension by dimension disretization, the omplemen-tary projetion method applies independently to the ux for the seondspatial dimension. Using the eigenvetors appropriate for ~G(~U ), we form~G = ~G(~U)� ~L1 ~G(~U)~R1 � ~L4 ~G(~U )~R4 (34)and upwind di�erene ~G in the v-upwind diretion.4.3 Multi-speies Euler EquationsThe multi-speies Euler equations provide an important example of a hy-perboli system with an eigenvalue repeated many times. Complementaryprojetion beomes quite attrative for suh systems, due to the large ana-lytial and omputational savings.The 2D Euler equations for multi-speies ow with a total of N speiesare ~Ut + [~F (~U)℄x + [~G(~U )℄y = 0; (35)
~U = 0BBBBBBBBBB�

��u�vE�Y1...�YN�1
1CCCCCCCCCCA ; ~F (~U ) = 0BBBBBBBBBB�

�u�u2 + p�uv(E + p)u�uY1...�uYN�1
1CCCCCCCCCCA ; ~G(~U) = 0BBBBBBBBBB�

�v�uv�v2 + p(E + p)v�vY1...�vYN�1;
1CCCCCCCCCCA(36)17



whereE = �p+ �(u2 + v2)2 + � NXi=1 Yihi! ; hi(T ) = hfi + Z T0 p;i(s)ds:(37)Here, Yi is the mass fration of speies i, hi is the enthalpy per unit mass ofspeies i, hfi is the heat of formation of speies i, and p;i is the spei� heatat onstant pressure of speies i [3℄. Note that YN = 1�PN�1i=1 Yi.The pressure is a funtion of the density, internal energy per unit mass,and the mass frations, p = p(�; e; Y1; � � � ; YN�1), and the orrespondingpartial derivatives are denoted by p�; pe and pYi .The eigenvalues and (one possible set of) eigenvetors for the Jaobianmatrix of ~F (~U) , are obtained by setting A = 1 and B = 0 in the followingformulas, while those for the Jaobian matrix of ~G(~U) use A = 0 and B = 1.The eigenvalues are �1 = û� ; (38)�2 = � � � = �N+2 = û; (39)�N+3 = û+ ; (40)Note the (N + 1)-fold repeated eigenvalue.A partiularly sparse hoie of left eigenvetors are given by the rows ofthe matrix0BBBBBBBBBBB�
b22 + û2 + b32 � b1u2 � A2 � b1v2 � B2 b12 �b1z12 � � � �b1zN�121� b2 � b3 b1u b1v �b1 b1z1 � � � b1zN�1v̂ B �A 0 0 � � � 0�Y1 0 0 0... ... ... ... I�YN�1 0 0 0b22 � û2 + b32 � b1u2 + A2 � b1v2 + B2 b12 �b1z12 � � � �b1zN�12

1CCCCCCCCCCCA ; (41)
and the orresponding sparse hoie of right eigenvetors are given by the
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olumns of the matrix0BBBBBBBBBB�
1 1 0 0 � � � 0 1u�A u B 0 � � � 0 u+Av �B v �A 0 � � � 0 v +BH � û H � 1b1 �v̂ z1 � � � zN�1 H + ûY1 Y1 0 Y1... ... ... I ...YN�1 YN�1 0 YN�1

1CCCCCCCCCCA ; (42)
where I is the N � 1 by N � 1 identity matrix andq2 = u2 + v2; û = Au+ Bv; v̂ = Av � Bu; (43) = rp� + ppe�2 ; H = E + p� ; (44)b1 = pe�2 ; b2 = 1 + b1q2 � b1H; (45)b3 = b1 N�1Xi=1 Yizi; zi = �pYipe : (46)Note that the eigenvetors 2 through N +2 are not uniquely determined.Eah one ould be replaed by an arbitrary linear ombination of thoseshown, as long as linear independene is maintained. This gives an indi-ation of the enormous range of possible eigensystems that ould be used,though in pratie they would yield similar omputed solutions. (The ostsmay di�er, though, depending on sparseness.)In partiular, all the �elds in the eigensystem for ~F (~U ) have eigenvalueu, exept for the �rst and last. To avoid hoosing any eigenbasis for thisdegenerate subspae, we apply the standard projetion method to the �rstand last �elds, and treat all the u-�elds by omplementary projetion,~F = ~F (~U )� ~L1 ~F (~U)~R1 � ~LN+3 ~F (~U)~RN+3: (47)We upwind di�erene ~F in the u-upwind diretion. The resulting ell wallux is ombined with the wall ux ontributions from the �rst and the last�elds to yield the net numerial wall ux.19



A total of N + 3 upwind interpolations are required to ompute theontribution from the repeated eigenvalue for the omplementary projetionmethod, instead of only N + 1 upwind shemes if projetion is used. Thusonly 2 extra upwind interpolations are needed to eliminate N +1 harater-isti projetions. Starting at about 4 speies, we expet the omplementaryprojetion method to be less ostly. Moreover, there is no need to everonstrut most of the eigensystem shown above. Had this approah beenavailable for previous work, it would have allowed a major savings in ana-lyti work, as well as programming and reporting.For a dimension by dimension disretization, the same onsiderationsapply to the ux in the other spatial dimension. Using the �rst and lasteigenvetors appropriate for ~G(~U), we form~G = ~G(~U )� ~L1 ~G(~U)~R1 � ~LN+3 ~G(~U )~RN+3 (48)and upwind ~G in the v-upwind diretion.Numerial experiments were arried out on examples from [3℄ and [1℄. Forthe ase of nine speies, the omplementary alulations were faster than thetraditional approah, even though the set of eigenvetors for the repeatedeigenvalue had been arefully hosen to be as sparse as possible and theimplementation took full advantage of the sparseness. As the number ofspeies is inreased, the perentage savings in CPU time inreases as well.As a partiularly diÆult example, we ompute example 5.1 from [3℄whih is a hemially reating "Sod" shok tube problem. The onvetionstep was 59 perent faster using the CPM, with no degradation in the qualityof the solution. We show the solution in �gure 1 and the relative di�erenein �gure 2. The di�erenes are on the order of about 1 perent, and only theunderresolved speies (HO2 and H2O2) di�er by as muh as 2 perent. Thelargest di�erenes our near large gradients in the solution where the twoshemes apture disontinuities in slightly di�erent ways. These di�erenesare too small to be seen by the naked eye and have no e�et on the size orstrength of the disontinuities, only the intermediate points whih span thejumps. In fat, both shemes give the result depited in �gure 1.We note that the standard sheme and the CPM have approximatelythe same CPU time when the eigenvalue is repeated 4 times. That is, for4 speies (3 mass fration equations) in 1 spatial dimension, for 3 speies(2 mass fration equations) in 2 spatial dimensions, or for 2 speies (1 massfration equation) in 3 spatial dimensions. After this point, the CPM isfaster with the gains in CPU time proportional to the number of speies.20
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Figure 1: Thermally Perfet Solution (2300 steps)
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Figure 2: Relative Di�erene (2300 steps)
22



5 ConlusionsWe have introdued the omplementary projetion method for use in up-wind di�erene shemes for systems of hyperboli onservation laws. Thisapproah provides an alternative to full harateristi deomposition of aharateristi subspae, if all assoiated harateristi speeds are of the samesign. Instead, projetion onto the subspae is de�ned as the omplement ofthe projetion onto the remaining harateristi spaes. This allows the ap-pliation of any upwind method without the need of an eigenbasis for thespei�ed subspae. All that is required is a omplete eigenbasis for the om-plementary subspae.This has partiular appliation to problems with a repeated eigenvalue.There the eigenspae assoiated with the repeated eigenvalue does not havea unique eigenbasis. The omplementary projetion method eliminates theneed to onstrut suh a basis, without any negative side e�ets, reduingthe analytial and programming e�ort required to apply upwind di�erening.Our analysis and experiments also show that avoiding the deomposition ansave omputational time in pratial multi-speies ompressible ow alu-lations, with no signi�ant hange in omputed results.We reommend that in the future, pratitioners use the omplementaryprojetion method to treat hyperboli systems with repeated eigenvalues.This method has other potential appliations. The most interesting isformulating upwind di�erene shemes for weakly hyperboli systems. Forthese systems, a omplete eigensystem does not exist, and thus traditionalupwind harateristi shemes do not apply. In ontrast, the omplimentaryprojetion method provides a simple way to extend upwind di�erening tothese systems.
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